header advert
Results 1 - 50 of 132
Results per page:
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 90 - 90
1 Apr 2019
Cowie RM Pallem N Briscoe A Fisher J Jennings LM
Full Access

Introduction

PEEK-OPTIMA™ has been considered as an alternative to cobalt chrome in the femoral component of total knee replacements. Whole joint wear simulation studies of both the tibiofemoral and patellofemoral joints carried out to date have shown an equivalent wear rate of UHMWPE tibial and patella components against PEEK and cobalt chrome (CoCr) femoral components. In this study, the influence of third body wear on UHMWPE-on-PEEK was investigated, tests on UHMWPE-on-CoCr were carried out in parallel to compare PEEK to a conventional femoral component material.

Methods

Wear simulation was carried out in simple geometry using a 6-station multi-directional pin-on-plate simulator. 5 scratches were created on each PEEK and CoCr plate perpendicular to the direction of the wear test using a diamond stylus to produce scratches with a geometry similar to that observed in retrieved CoCr femoral components. To investigate the influence of scratch lip height on wear, scratches of approximately 1, 2 and 4µm lip height were created. Wear simulation of GUR 1020 UHMWPE pins (conventional, non-sterile) against the plates was carried out for 1 million cycles (MC) using 17g/l bovine serum as a lubricant using kinematic conditions to replicate the average contact pressure and cross-shear in a total knee replacement. Wear of UHMWPE pins was measured gravimetrically and the surface topography of the plates assessed using a contacting Form Talysurf. Wear factors of the pins against the scratched plates were compared to unscratched controls (0µm lip height). Minimum n=3 for each condition and statistical analysis carried out using ANOVA with significance taken at p<0.05.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 48 - 48
1 Apr 2019
Etchels L Wang L Al-Hajjar M Williams S Thompson J Fisher J Wilcox R Jones A
Full Access

INTRODUCTION

There is great potential for the use of computational tools within the design and test cycle for joint replacement devices.

The increasing need for stratified treatments that are more relevant to specific patients, and implant testing under more realistic, less idealised, conditions, will progressively increase the pre-clinical experimental testing work load. If the outcomes of experimental tests can be predicted using low cost computational tools, then these tools can be embedded early in the design cycle, e.g. benchmarking various design concepts, optimising component geometrical features and virtually predicting factors affecting the implant performance. Rapid, predictive tools could also allow population-stratified scenario testing at an early design stage, resulting in devices which are better suited to a patient-specific approach to treatment.

The aim of the current study was to demonstrate the ability of a rapid computational analysis tool to predict the behaviour of a total hip replacement (THR) device, specifically the risk of edge loading due to separation under experimental conditions.

METHODS

A series of models of a 36mm BIOLOX® Delta THR bearing (DePuy Synthes, Leeds, UK) were generated to match an experimental simulator study which included a mediolateral spring to cause lateral head separation due to a simulated mediolateral component misalignment of 4mm. A static, rigid, frictionless model was implemented in Python (PyEL, runtime: ∼1m), and results were compared against 1) a critically damped dynamic, rigid, FE model (runtime: ∼10h), 2) a critically damped dynamic, rigid, FE model with friction (µ = 0.05) (runtime: ∼10h), and 3) kinematic experimental test data from a hip simulator (ProSim EM13) under matching settings (runtime: ∼6h). Outputs recorded were the variation of mediolateral separation and force with time.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 43 - 43
1 Apr 2019
Johnston H Abdelgaied A Pandit H Fisher J Jennings LM
Full Access

Component alignment and soft tissue constraints are key factors affecting function and implant survival after total knee replacement (TKR). Knee kinematics contribute to knee function whilst soft tissue constraints and component alignment impact polyethylene wear. This study experimentally investigated the effect of soft tissue constraints and component alignment on the kinematics and wear of a TKR.

A six station electromechanical ProSim knee simulator was used with the ISO 14243-1:2009 standard force control inputs; axial force, flexion-extension (FE), tibial rotation (TR) torque and anterior-posterior (AP) force. This allowed the kinematics to vary with the test conditions. The soft tissue constraints were simulated using virtual springs.

DePuy Sigma XLK fixed bearing TKRs were tested in 25% bovine serum (in 0.04% sodium azide) lubricant. The average output kinematics across 6 stations were found for each test and the peak values compared. The wear rates were calculated over 2 million cycles (MC), the serum was changed every 350,000 cycles and the tibial inserts weighed after every MC. A one way ANOVA and post hoc Tukey's test was used to compare the kinematics and wear with significance taken at p<0.05.

The kinematics and wear rates for three soft tissue conditions were established under ideal alignment (Table 1). The ISO standard springs for a cruciate substituting (CS) and a cruciate retaining (CR) prosthesis were used to represent a knee with a resected ACL and PCL and a knee with a resected ACL respectively. The third spring condition was based on clinical data to represent a “stiff” knee.

Three other alignment conditions were then assessed using “stiff” knee springs; 4° varus, 14° rotational mismatch and 10° posterior tibial slope. These alignments were chosen to represent the range found in clinical data.

Under ideal alignment the “stiff” knee springs had significantly lower peak AP and TR displacements (0.9mm, 2mm, 2mm and 3.6°, 7.1°, 7.8° for the “stiff”, CR and CS springs respectively) than the other springs (p<0.01). The “stiff” knee spring had a significantly lower wear rate than the CR spring; 1.58 ±1.20mm³/MC compared to 4.71±1.29 mm³/MC (p<0.01).

The varus and rotated components had significantly larger peak AP displacements of 2.56mm and 2.42mm respectively, than the ideal and tibial slope fixtures (1.97mm and 0.92mm respectively) (p<0.01). The rotated components had significantly higher internal rotation of 12.2° compared to 4.4°, 3.7° and 3.5° for the tibial slope, varus and ideal components respectively (p<0.01).

The ideal and varus components had significantly lower wear than the tibial slope and rotated components (1.58±1.20mm³/MC and 0.15±0.83mm³/MC compared to 8.24±7.72mm³/MC and 5.19±1.12mm³/MC respectively) (p<0.01). This may be due to increased AP and TR displacements with the rotated components and the increased anterior AP displacement with the tibial slope components, resulting in wear on the posterior edge of the tibial insert.

Soft tissue constraints and component alignment had a significant effect on the kinematics and wear. Experimental simulation should test a variety of soft tissue and alignment conditions to reflect the range observed clinically and determine causes for early failure.

For any figures or tables, please contact the authors directly.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 50 - 50
1 Apr 2019
Cowie RM Briscoe A Fisher J Jennings LM
Full Access

Introduction

PEEK-OPTIMA™ has been considered as an alternative to cobalt chrome in the femoral component of total knee replacements. Wear simulation studies of both the tibiofemoral and patellofemoral joints carried out to date have shown an equivalent wear rate of UHMWPE tibial and patella components against PEEK and cobalt chrome (CoCr) femoral components implanted under optimal alignment conditions. In this study, fundamental pin-on-plate studies have been carried out to investigate the wear of UHMWPE-on-PEEK under a wider range of contact pressure and cross-shear conditions.

Methods

The study was carried out in a 6 station multi-axial pin-on-plate reciprocating rig. UHMPWE pins (conventional, non- sterile) were articulated against PEEK-OPTIMA™ plates, initial Ra ∼0.02µm. The lubricant used was 25% bovine serum (17g/l) supplemented with 0.03% sodium azide. The contact pressure and cross-shear ratio conditions were selected to replicate those in total knee replacements and to be comparable to previously reported studies of UHMPWE-on-CoCr tested in the same pin-on-plate simulators. Contact pressures from 2.1 to 25.5MPa were created by changing the diameter of the contact face of the pin, the cross-shear ratios ranged from 0 (uniaxial motion) to 0.18. Wear of the UHMWPE pins was measured gravimetrically and the surface topography of the plates assessed using a contacting Form Talysurf. N=6 was carried out for each condition and statistical analysis carried out using ANOVA with significance taken at p<0.05.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 79 - 79
1 Apr 2019
Abdelgaied A Fisher J Jennings LM
Full Access

Introduction

The number of young and more active patients requiring total knee replacement (TKR) is increasing. Preclinical evaluation and understanding the long-term failure of TKR is therefore important. Preclinical wear simulation of TKR is usually performed according to the International Standards Organization (ISO) recommendations. Two international standards for preclinical wear simulation of TKRs have been developed so that the anterior-posterior (AP) translation and internal-external (IE) rotation can be driven in either force or displacement control. However, the effects of using different control regimes on the kinematics and wear of the same TKR have not been investigated. The current study investigated the kinematics, contact mechanics and wear performance of a TKR when running under ISO force and displacement control standards using an experimentally validated computational model.

Materials/Methods

Three different ISO control standards were investigated using a size C Sigma curved TKR (DePuy, UK), with moderately cross-linked UHMWPE curved inserts; ISO-14243-3-2004, ISO-14243-3-2014 and ISO- 14243-1-2009. Axial force and flexion-extension angle are common for the three standards. AP and IE motions are displacement controlled in ISO-14243-3-2004 and ISO-14243-3-2014, with the only difference being a reversal of AP polarity between the two standards, and are force controlled in ISO-14243-1-2009. The test setup and soft tissue constraints were defined in accordance with ISO recommendations. The wear model was based on the modification of Archard's law where the wear volume is defined as a function of contact area, sliding distance, cross-shear and contact stress. The simulation framework has been independently validated against experimental wear rates under three different standard and highly demanding daily activities (Abdelgaied et al. 2018).


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 22 - 22
1 Jan 2019
Fermor H Herbert A Jones G Fisher J Ingham E
Full Access

Decellularised extracellular matrix scaffolds show great promise for the regeneration of damaged musculoskeletal tissues (cartilage, ligament, meniscus), however, adequate fixation into the joint remains a challenge. Here, we assess the osseo-integration of decellularised porcine bone in a sheep model. This proof-of-concept study supports the overall objective to create composite decellularised tissue scaffolds with bony attachment sites to enable superior fixation and regeneration.

Porcine trabecular bone plugs (6mm diameter, 10mm long) were decellularised using a novel bioprocess incorporating low-concentration sodium dodecyl sulphate with protease inhibitors. Decellularised bone scaffolds (n=6) and ovine allograft controls (n=6) were implanted into the condyle of skeletally mature sheep for 4 and 12 weeks. New bone growth was visualised by oxytetracycline fluorescence and standard resin semi-quantitative histopathology.

Scaffolds were found to be fully decellularised and maintained the native microarchitecture. Following 4-week implantation in sheep, both scaffold and allograft appeared well integrated. The trabecular spaces of the scaffold were filled with a fibro-mesenchymal infiltrate, but some areas showed a marked focal lymphocytic response, associated with reduced bone deposition. A lesser lymphocytic response was observed in the allograft control. After 12-weeks the lymphocytic reaction was minimised in the scaffold and absent in allografts. The scaffold showed a higher density of new mineralized bone deposition compared to allograft. New marrow had formed in both the scaffold and allografts.

Following the demonstration of osteointegration this bioprocess can now be transferred to develop decellularised composite musculoskeletal tissue scaffolds and decellularised bone scaffolds for clinical regeneration of musculoskeletal tissues.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 47 - 47
1 Jan 2019
Abdelgaied A Fisher J Jennings LM
Full Access

Experimental simulation is the gold standard wear testing method for total knee replacements (TKR), with reliable replication of physiological kinematic conditions. When combined with a computational model, such a framework is able to offer deeper insight into the biomechanical and wear mechanisms. The current study developed and validated a comprehensive combined experimental and computational framework for pre-clinical biomechanics and wear simulation of TKR.

A six-station electro-mechanical knee simulator (SimSol, UK), capable of replicating highly demanding conditions with improved input kinematic following, was used to determine the wear of Sigma fixed bearing curved TKRs (DePuy, UK) under three different activities; standard-walking, deep-squat, and stairs-ascending. The computational model was used to predict the wear under these 3 conditions. The wear calculation was based on a modification of Archard's law which accounted for the effects of contact stress, contact area, sliding distance, and cross-shear on wear. The output wear predictions from the computational model were independently validated against the experimental wear rates.

The volumetric wear rates determined experimentally under standard-walking, deep-squat, and stairs-ascending conditions were 5.8±1.4, 3.5±0.8 and 7.1±2.0 [mm3/mc] respectively (mean ± 95% CI, n=6). The corresponding predicted wear rates were 4.5, 3.7, and 5.6 [mm3/mc]. The coefficient of determination for the wear prediction of the framework was 0.94.

The wear predictions from the computational model showed good agreement with the experimental wear rates. The model did not fully predict the changes found experimentally, indicating other factors in the experimental simulation not yet incorporated in the framework, such as plastic deformation, may play an additional role experimentally in high demand activities. This also emphasises the importance of the independent experimental validation of computational models.

The combined experimental and computational framework offered deeper insight into the contact mechanics and wear from three different standard and highly demanding daily activities. Future work will adopt the developed framework to predict the effects of patients and surgical factors on the mechanics and wear of TKR.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 16 - 16
1 Jan 2019
Whitaker S Edwards J Guy S Ingham E Fisher J Herbert A
Full Access

The concept of decellularised xenografts as a basis for anterior cruciate ligament (ACL) reconstruction was introduced to overcome limitations in alternative graft sources such as substantial remodelling delaying recovery and donor site morbidity. This study aimed to measure the biomechanical properties of decellularised porcine super flexor tendon (pSFT) processed to create ACL grafts of varying diameters, with a view to facilitating production of stratified ‘off the shelf’ products with specified functional properties for use in ACL reconstructive surgery.

Decellularisation was carried out using a previously established procedure, including antibiotic washes, low concentration detergent (0.1% sodium dodecyl sulphate) washes and nuclease treatments. Decellularised pSFTs were prepared to create double-bundle grafts of 7, 8 and 9mm diameter (n=6 in each group). Femoral and tibial fixations were simulated utilising Arthrex suspension devices (Tightrope®) and interference screws in bovine bone respectively.

Dynamic stiffness and creep were measured under cyclic loading between 50–250N for 1000 cycles at 1Hz. This was followed by ramp to failure at 200mm/min from which linear stiffness and load at failure were measured. Data were analysed using either 1- or 2-way ANOVA as appropriate with Tukey post-hoc analysis (p<0.05).

Significant differences were found between all groups for dynamic stiffness and between 7 & 9mm and 8 & 9mm groups for dynamic creep. Significant differences were also found between 7, 8 & 9mm groups for linear stiffness (167.8±4.9, 186.9±16.6 & 216.3±12.4N/mm respectively), but no significant differences were found between groups for load at failure (531.5±58.9, 604.1±183.3 & 627.9±72.4N respectively).

This study demonstrated that decellularised pSFTs possess comparable biomechanical properties to other ACL graft options (autografts and allografts). Furthermore, grafts can be stratified by their diameter to provide varying biomechanical profiles depending on the anatomy and individual needs of the recipient.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 3 - 3
1 Jan 2019
Edwards J Ingham E Fisher J Herbert A
Full Access

We have developed a decellularised porcine superflexor tendon (pSFT), which has shown promising regenerative capacity in an ovine model of anterior cruciate ligament (ACL) repair. This study investigated the strain rate dependent and dynamic mechanical properties of native and decellularised pSFTs.

Decellularisation was carried out using a previously established procedure, including antibiotic washes, low concentration detergent (0.1% sodium dodecyl sulphate) washes and nuclease treatments.

Three different strain rates were employed: 1, 10 & 100%s-1 (n=6 for all groups). Toe-region modulus (E0), linear-region modulus (E1), transition coordinates (εT, σT), tensile strength (UTS) and failure strain were calculated. For DMA, specimens were loaded between 1 & 5MPa with increasing frequency up to 2Hz. Dynamic (E*), storage (E') and loss (E'') moduli, and tan delta were calculated for native and decellularised groups (n=6). Data was analysed by 2-way ANOVA and Tukey post-hoc test (p<0.05).

For decellularised tendons, altering the strain rate did not affect any of the static tensile properties. For native pSFTs, the UTS, failure strain and E1 were not affected by changing the strain rate. Increasing the strain rate significantly increased E0 (1% vs 10% and 1% vs 100%) and σT (1% vs 100%) and decreased εT (1% vs 10% and 1% vs 100%) for native pSFT. E*, E' and E'' were all significantly reduced in decellularised specimens compared to native controls across all frequencies investigated. No significant differences were found for tan delta.

Evidence of strain rate dependency was witnessed in the native pSFTs by increase of the toe region modulus and displacements of the transition point coordinates. This response was not seen in the tissue following decellularisation. DMA demonstrated a reduction in dynamic, storage and loss moduli. Tan delta (E''/E') remained unchanged, indicating reductions in solid and fluid components are interlinked.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 32 - 32
1 Jan 2019
Liu A Ingham E Fisher J Jennings LM
Full Access

A pre-clinical experimental simulation model has been previously successfully developed, and was shown to have the potential for investigation of the biomechanical and tribological performance of early stage knee therapies. In order to investigate interventions that may necessitate sacrifice of the natural ligaments, it is necessary to replicate their function. This study investigated the most effective spring constraint conditions for the porcine knee model with the aim of replicating the natural ligament function.

The replication of natural ligament function was achieved through the use of physical springs in the anterior-posterior (AP) axis. Spring-9 (9 N/mm) and spring-20 (20 N/mm) were set at different free lengths in a natural knee simulator. The A/P displacement and shear force outputs from porcine knee samples (N=6) were measured and the most appropriate spring setting was determined by comparing the outputs at different spring settings with intact knee.

The A/P displacement of both spring-9 and spring-20 showed similar shapes to the all ligament control. Spring-9 with a free length of 4 mm and spring-20 with a free length of 5 mm showed minimal differences in A/P displacement output compared to the all ligament controls. There was no statistical difference between the two minimal differences either in A/P displacement or in shear force (paired t-test, p>0.05), which indicated that both conditions were appropriate spring constraint settings for the natural porcine knee model.

A porcine knee simulation model with refined spring constraint conditions was successfully developed in this study. Human knee model is currently under investigation using the methodology developed in porcine knee model, which will be more appropriate to investigate the effect of early stage knee therapies on the tribological function of the natural knee.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 43 - 43
1 Apr 2018
Johnston H Abdelgaied A Fisher J Jennings L
Full Access

Variation in soft tissue constraints influence the kinematics and wear of total knee replacements (TKRs). The aim of this study was to experimentally investigate the effect of variation in the soft tissue constraints on the output kinematics of a fixed bearing TKR with different insert geometries. The kinematics have been shown to affect the wear rate of TKRs; increased output displacements may result in an increased wear rate. The soft tissue constraints were simulated experimentally using virtual springs.

A new generation six station electromechanical ProSim knee simulator was used with the ISO 14243–1:2009 standard force control inputs; axial force, flexion-extension (FE), tibial rotation (TR) torque and anterior-posterior (AP) force. This allowed the kinematics to vary due to the test conditions. The ISO standard spring tensions of 44N/mm and 0.36Nm/° and gaps of 2.5mm and 6° were used for the AP and TR springs respectively.

Different combinations of the input profiles were run in order to test the effect of their absence. The spring gaps were varied between 0mm–3mm and 0°–6° and the tensions between 0N/mm–250N/mm and 0Nm/°–1Nm/° for the AP and TR respectively. Three tibial insert designs were tested; high conformity curved (CVD), partially lipped (PLI) and flat.

DePuy PFC Sigma fixed bearing components were tested in 25% bovine serum (in 0.04% sodium azide) lubricant. For each test 100 cycles were recorded on each station and then averaged. The CVD insert was used for all tests, the PLI insert was also used to test the effect of spring tension.

The TR and AP output displacement profiles were affected by the FE position along with the TR torque and AP force respectively. The absence of these inputs changed the shape of the output profiles significantly. The spring gaps affected the peak AP and TR displacements (6.4mm to 3.7mm and 8° to 5.8° for maximum and zero spring gaps respectively). The spring tensions had a higher effect on the peak AP than TR position due to the design of the CVD insert restricting the TR movement (8.3mm to 3.7mm and 8.8° to 7.4° for no springs and maximum tension respectively). The spring gaps and tensions affected the amplitudes of the output profiles not their shape.

The lower conformity inserts had a higher peak TR position (23° for the flat and 8.1° for the CVD insert) which occurred earlier in the cycle. The flat insert resulted in more anterior displacement, potentially due to the high conformity on the anterior side of the CVD and PLI inserts. The spring tension test had an increased effect on the PLI than the CVD insert. The PLI insert resulted in a higher change in displacements due to the spring tensions (10.4mm to 3.5mm and 13.6° to 8.8°).

Soft tissue constraints and insert design had a significant effect on the kinematic outputs. Spring tensions and gaps for experimental testing should be chosen to reflect those of a specific patient group.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 8 - 8
1 Apr 2018
Cowie R Briscoe A Fisher J Jennings L
Full Access

Introduction

PEEK-OPTIMA™ has been considered as an alternative bearing material to cobalt chrome in the femoral component of total knee replacements. To better understand the tribology of UHMWPE-on-PEEK-OPTIMA™ and to find the most appropriate environmental conditions under which to test this novel bearing material combination, a series of tests under different protein lubricant concentrations at rig (∼24°C) and elevated temperature (∼35°C) were carried out in simple geometry wear and friction rigs. Under all conditions, the wear of UHMWPE-on-PEEK-OPTIMA™ was compared to UHMWPE-on-cobalt chrome (CoCr).

Methods

The pins used were GUR1020 UHMWPE (conventional, non-sterile) and the plate material was either polished CoCr (Ra<0.01µm) or PEEK-OPTIMA (Ra∼0.03µm) provided by Invibio Ltd, UK. The wear simulation was carried out in a six station reciprocating rig. The kinematic conditions were consistent for all tests and reflected the average cross shear and contact pressure (3.2MPa) in a total knee replacement. Tests were carried out at either rig running temperature (∼24°C) or at elevated temperature (∼35°C) and in varying protein lubricant concentrations (0, 2, 5, 25 and 90%). Wear of the UHMWPE pins was determined by gravimetric analysis. The pin-on-plate friction rig study was carried out at rig temperature in 0, 2, 5, 25 and 90% serum and reflected the contact pressure used in the wear tests. Measurements were taken using a piezoelectric sensor and the steady state friction derived. At least 3 repeats were taken for each study, statistical analysis carried out using ANOVA with significance taken at p<0.05.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 7 - 7
1 Apr 2018
Cowie R Briscoe A Fisher J Jennings L
Full Access

Introduction

Experimental wear simulation of an all-polymer knee implant has shown an equivalent rate of wear of UHMWPE tibial components against PEEK-OPTIMA™ and cobalt chrome femoral components of a similar initial geometry and surface topography. However, when the patella is resurfaced with an UHMWPE patella button, it is important to also ascertain the wear of the patella. Wear debris from the patella contributes to the total volume of wear debris produced by the implant which should be minimised to reduce the potential for osteolysis and subsequent implant loosening. The aim of this study was to investigate the wear of the patellofemoral joint in an all-polymer knee implant. The wear of UHMWPE patellae articulating against PEEK-OPTIMA™ femoral components was compared to UHMWPE articulating against cobalt chrome femoral components.

Materials and Methods

Six mid-size (size C) PEEK-OPTIMA™ femoral components (Invibio Knee Ltd., UK) and six cobalt chrome femoral components of similar initial surface topography and geometry were coupled with 28mm all-polyethylene GUR1020 patellae (conventional, EO sterile) (Maxx Orthopaedics, USA). The implants were set up in a ProSim 6 station electromechanical knee simulator (Simulation Solutions, UK) which was modified for testing the patellofemoral joint. 3 million cycles (MC) of wear simulation was carried out under kinematics aiming to replicate a gait cycle adapted for an electromechanical simulator from previous work by Maiti et al. The simulator used has six degrees of freedom of which four were controlled; axial force up to 1200N, flexion/extension 22°, superior-inferior (SI) displacement (22mm) and Abduction-adduction (AA) (4°). The SI and AA were displacement controlled and driven through the patella. The medial-lateral displacement and tilt (internal/external rotation) of the patella were passive so the patella button was free to track the trochlear groove. The lubricant used was 25% bovine serum supplemented with 0.03% sodium azide to retard bacterial growth. The wear of patellae was determined gravimetrically with unloaded soak controls used to compensate for the uptake of moisture by the UHMWPE. The mean wear rate ± 95% confidence limits were calculated and statistical analysis was carried out using ANOVA with significance taken at p<0.05.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 35 - 35
1 Apr 2018
Al-Hajjar M Lancaster-Jones OO Ali M Jennings L Williams S Fisher J
Full Access

Introduction and Aims

There are many surgical, implant design and patient factors that should be considered in preclinical testing of hip replacement which are not being considered in current standards. The aim of this study was to develop a preclinical testing method that consider surgical positioning, implant design and patient factors and predict the occurrence and severity of edge loading under the combination of such conditions. Then, assess the safety and reliability of the implant by predicting the wear, deformation and damage of the implant bearings under worst case conditions.

Methods

Ceramic-on-ceramic (CoC, 36mm, BIOLOX® delta, Pinnacle®, DePuy Synthes, UK) and metal-on polyethylene (MoP, 36mm, Marathon®, Pinnacle®, DePuy Synthes, UK) bearings were used for this study on multi-station multi-axis hip joint simulators. Two factors were varied, cup inclination angles (45° and 65°) and translational mismatch between the femoral head and acetabular cup (0, 2, 3 and 4 (mm)). Under each condition for both CoC and MoP bearings, three million cycles of gait cycle testing were completed with wear, deformation and/or damage measurements completed at one million cycle intervals. Other outputs of the study were the level of dynamic separation between the femoral head and acetabular cup during gait, the maximum force at the rim during edge loading when the head was sliding back to the cup confinement. Means and 95% confidence limits were determined and statistical analysis were done using one way ANOVA with significance taken at p<0.05.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 51 - 51
1 Apr 2018
Avadi MS Meng L Anderson J Fisher J Wang M Jin Z Qiu Y Williams S
Full Access

INTRODUCTION

Avascular necrosis (AVN) of the femoral head (FH) initiates from biological disruptions in the bone and may progress to mechanical failure of the hip. Mechanical and structural properties of AVN bone have not been widely reported, however such understanding is important when designing therapies for AVN. Brown et al.[1] assessed mechanical properties of different regions of AVN FH bone and reported 52% reduction in yield strength and 72% reduction in elastic modulus of necrotic regions when compared to non-necrotic bone. This study aimed to characterise structural and mechanical properties of FH bone with AVN and understand the relationship between lesion volume and associated mechanical properties.

METHODS

Twenty FH specimens from patients undergoing hip arthroplasty for AVN and six non-pathological cadaveric FH controls were collected. Samples were computed tomography scanned and images analysed for percentage lesion volume with respect to FH volume. Samples were further divided for structural and mechanical testing. The mechanical property group were further processed to remove 9mm cylindrical bone plugs from the load bearing and non-load-bearing regions of the FHs. FH and bone plug samples were tested in compression (1mm/min); elastic modulus and yield stress were calculated.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_2 | Pages 15 - 15
1 Feb 2018
Steele J Fisher J Bruce-Low S Smith D Osborne N Newell D
Full Access

Purpose and Background

Strengthening the lumbar extensor musculature is a common recommendation for CLBP. Although reported as effective, variability in response in CLBP populations is not well investigated. This study investigated variability in responsiveness to isolated lumbar extension (ILEX) resistance training in CLBP participants by retrospective analysis of 3 RCTS.

Methods and Results

Data from 77 intervention participants was available (males = 43, females = 34) 37 control participants (males = 20, females = 17). Intervention participants all underwent 12wks of ILEX resistance training and changes in ILEX strength, pain (VAS) and disability (ODI) measured. True inter-individual response variability was examined through calculation of difference in the standard deviation of change scores for both control and intervention. Intervention participants were classified into using k-means cluster analysis for strength changes and using MCIC cut-offs for VAS and ODI. Analysis suggested true inter-individual responses to the intervention existed. Participants were classified for strength changes as low (n = 31), medium (n = 36), and high responders (n = 10). Participants were classified for VAS changes as negative (n = 3), non-responders (n = 34), responders (n = 15), and high responders (n = 19). Participants were classified for ODI changes as negative (n = 2), non-responders (n = 21), responders (n = 29), and high responders (n = 25).


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 49 - 49
1 May 2017
Fox N Stanley M Thomas D Fisher J Ingham E
Full Access

The ability to pre-clinically evaluate new cartilage substitution therapies in viable physiological biotribological models, such as the femoral-tibial joint would be advantageous. Methods for osteochondral (OC) plug culture have been developed and the aim of this study was to extend these methods to organ culture of whole femoral condylar and tibial osteochondral tissues.

Porcine femoral condyles and tibial plateau were aseptically dissected. The majority of cancellous bone was removed leaving intact cartilage and a layer of cortical bone. OC plugs were from porcine knee condyles. “Whole joint” tissues and OC plugs were cultured in defined medium and the viability of the cartilage at day 0, 8 or 14 days of culture assessed by XTT assay and LIVE/DEAD staining. Histological analysis (H&E; alcian blue staining) was used to determine cell number and visualise glycosominoglycans (GAGs). GAG levels were quantified in the cartilage using the dimethylene blue assay.

XTT conversion by OC plug cartilage reduced significantly between day 0 and day 8 with no further change between day 8 and 14. GAG levels did not change. “Whole joint” tissue behaved similarly with reduced XTT conversion between days 0 and 8 (femoral only) and days 0 and 14 (femoral and tibial). LIVE/DEAD staining showed the majority of cells remained alive in the mid and deep cartilage zones. There was a band of mainly dead cells in the surface zone, from day 0. There was no change in the GAG levels over the 14 day culture period.

In conclusion, large cuts of femoral and tibial osteochondral tissues were maintained in organ culture for extended periods. Surface zone chondrocytes rapidly lost membrane integrity ex-vivo whereas mid- and deep zone chondrocytes remained viable. It is hypothesised that physiological loading in a novel physically interactive bioreactor will improve the viability and will be the focus of future studies.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 49 - 49
1 Apr 2017
Lancaster-Jones O Al-Hajjar M Thompson J Isaac G Fisher J
Full Access

Background

Many factors contribute to the occurrence of edge-loading conditions in hip replacement; soft tissue tension, surgical position, patient biomechanical variations and type of activities, hip design, etc. The aim of this study was to determine the effect of different levels of rotational and translational surgical positioning of hip replacement bearings on the occurrence and severity of edge-loading and the resultant wear rates.

Method

The Leeds II Hip-Joint Simulator and 36mm diameter alumina matrix composite ceramic bearings (BIOLOX delta, DePuy Synthes, UK) were used in this study. Different levels of mismatch between the reconstructed rotational centres of the head and the cup were considered (2, 3 and 4mm) in the medial-lateral axis. Two cup inclination angles were investigated; an equivalent to 45 and 65 degrees in-vivo, thus six conditions (n=6 for each condition) were studied in total with three million cycles completed for each condition. The wear of the ceramic-on-ceramic bearings were determined using a microbalance (Mettler Toledo, XP205, UK) and the dynamic microseparation displacement was measured using a Liner Variable Differential Transformer.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 60 - 60
1 Mar 2017
Lancaster-Jones OO Al-Hajjar M Williams S Jennings L Thompson J Isaac G Fisher J
Full Access

Introduction and Aims

Clinically many factors such as variations in surgical positioning, and patients' anatomy and biomechanics can affect the occurrence and severity of edge loading which may have detrimental effect on the wear and durability of the implant. Assessing wear of hundreds of combinations of conditions would be impractical, so a preclinical testing approach was followed where the occurrence and severity of edge loading can be determined using short biomechanical tests. Then, selected conditions can be chosen under which the wear can be determined. If a wear correlation with the magnitude of dynamic separation or the severity of edge loading can be shown, then an informed decision can be made based upon the biomechanical results to only select important variables under which the tribological performance of the implant can be assessed. The aim of this study was to determine the relationship between the wear of ceramic-on-ceramic bearings and the (1) magnitude of dynamic separation, (2) the maximum force reached during edge loading and (3) the severity of edge loading resulting from component translational mismatch between the head and cup centres.

Methods

The Leeds II hip joint simulator with a standard walking cycle and 36mm diameter ceramic-on-ceramic bearings (BIOLOX® delta, DePuy Synthes Joint Reconstruction, Leeds, UK.) were used. The study was in two parts. Part one: a biomechanical study where the dynamic separation, the maximum load during edge loading, and the duration of edge loading alongside the magnitude of forces under edge loading (severity of edge loading) were assessed. Part two; a wear study where the wear rates of the bearing surfaces were assessed under a series of input conditions. These input testing conditions included inclining the acetabular cups at 45° and 65° cup inclination angle (in-vivo equivalent), with 2, 3, and 4mm medial-lateral component mismatch between the centres of the head and the cup. This equated to six conditions being assessed, each with three repeats for the biomechanical test, and six repeats completed for the wear study.

The severity of edge loading was assessed as described in Equation 1.

Severity of Edge Loading = ∫tt0 F(x) dx + ∫tt0 F(y) dy … Equation 1,

where F(x) is the axial load, F(y) is the medial-lateral load and t-t0 is the duration of edge loading.

The wear of the ceramic bearings were determined using gravimetric analysis (XP205, Mettler Toledo, UK).


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 61 - 61
1 Mar 2017
Lancaster-Jones OO Al-Hajjar M Williams S Jennings L Thompson J Isaac G Fisher J
Full Access

Introduction and Aims

There are many variables that can affect the occurrence and severity of edge loading in hip replacement. A translational mismatch between the centres of rotation of the head and cup may lead to dynamic separation, causing edge loading and increased wear. Combining a steep inclination angle with such translational mismatch in the medial-lateral axis caused a larger magnitude of separation and increased severity of edge loading. Previous studies have shown variation in the hip Swing Phase Load (SPL) during gait between different patients. The aim of this study was to apply a translational mismatch and determine the effect of varying the SPL on the occurrence and severity of edge loading under different cup inclination angles in a hip joint simulator.

Methods

The Leeds II hip joint simulator with a standard gait cycle and 36mm diameter ceramic-on-ceramic bearings (BIOLOX® delta) were used in this study. The study was in two stages; [1] a biomechanical study where the magnitude of dynamic separation, the duration of edge loading and the magnitude of force under edge loading (severity) were assessed under variations in component positioning and SPLs. [2] A wear study to assess edge loading with selected input conditions. For the biomechanical study, a combination of four mismatches, three cup inclination angles, and eight SPLs (Table 1) were investigated. For the wear study, three SPL conditions were selected with one cup angle and one mismatch (Table 1). Three million cycles were completed under each condition. Mean wear rates and 95% confidence limits were determined and statistical analysis (one way ANOVA) completed (significance taken at p<0.05).

Table 1: Study matrix


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 12 - 12
1 Mar 2017
Smyth A Fisher J Suñer S Brockett C
Full Access

Introduction

Total ankle replacement (TAR) is surgically complex; malalignment can arise due to surgical technique or failure to correct natural varus/valgus malalignment. Across joint replacement, malalignment has been associated with pain, component edge loading, increased wear and higher failure rates. Good component alignment is considered instrumental for long term TAR success. The conforming surface geometry of mobile bearing TARs leaves no freedom for coronal plane malalignment. The aim of this study was to investigate the biomechanical effect of coronal alignment on a mobile bearing TAR.

Methods

Three TARs (Zenith, Corin Group) were tested under five coronal malalignment angles from 0–10° in a single station electromechanical knee simulator applying a typical ankle gait profile. As swing phase load is critical to TAR contact mechanics but will vary depending on the joint laxity. Swing loads of 100N, 300N and 500N were investigated. A positive control test with a swing load of 1000N was also studied, and was expected to eliminate the majority of lift off effects. Under each condition, the version was allowed to move freely while tests were performed, and the version profile under each alignment angle was recorded. Each test was carried out for 600 cycles in 25% bovine serum. Under the same loading conditions, but without lubrication, a Tekscan sensor recorded data from two cycles to assess the change in contact pressure and area at the five coronal angles.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 21 - 21
1 Feb 2017
Hua X Wilcox R Fisher J Jones A
Full Access

INTRODUCTION

Mal-positioning of the acetabular component in total hip replacement (THR) could lead to edge loading, accelerated component wear, impingement and dislocation [1,2]. In order to achieve a successful position for the acetabular component, the assessment of the acetabular orientation with reference to different coordinate systems is important [3]. The aims of the present study were to establish a pelvic coordinate system and a global body coordinate system, and to assess the acetabular orientations of natural hips with reference to the two coordinate systems.

METHODS

Three-dimensional (3D) computed tomographic (CT) images of 56 subjects (28 males and 28 females) lying supine were obtained from a public image archive (Cancer Image Archive, website: www.cancerimagingarchive.net). 3D solid models of pelvis and spine were generated from the CT images. Two coordinate systems, pelvic and global body coordinate systems, were established. The pelvic coordinate system was established based on four bony landmarks on the pelvis: the bilateral anterior superior iliac spines (RASIS and LASIS) and the bilateral pubic tubercles (RPT and LPT). The global body coordinate system was generated based on the bony landmarks on the spine: the geometric centers of five lumbar vertebrae bodies and the most dorsal points of five corresponding spinous processes, as well as the anterior sacral promontory (Fig 1a and 1b). The acetabular rim plane was obtained by fitting a set of point along the acetabular rim to a plane using least squares method. The acetabular orientation was defined as the three coordinate components (x-, y- and z- components) of the unit normal vector of the acetabular rim plane in the two coordinate systems (Fig. 1c).


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 13 - 13
1 Feb 2017
Ali M Al-Hajjar M Thompson J Isaac G Jennings L Fisher J
Full Access

Introduction

Variations in component position can lead to dynamic separation and edge loading conditions. In vitro methods have been developed to simulate edge loading conditions and replicate stripe wear, increased wear rate, and bimodal wear debris size distribution, as observed clinically [1, 2]. The aim of this study was to determine the effects of translational and rotational positioning on the occurrence of dynamic separation and severity of edge loading, and then investigate the wear rates under the most severe separation and edge loading conditions on an electromechanical hip joint simulator.

Materials and Methods

A hip joint simulator (ProSim EM13, Simulation Solutions, UK) was set up with 36mm diameter ceramic-on-ceramic (BIOLOX®delta, PINNACLE®, DePuy Synthes, UK) hip replacements. Three axes of rotation conditions (ISO 14242-1 [3]) was applied to the femoral head. This study was in two parts. I) A biomechanical test was carried out at 45° (n=3) and 65° (n=3) cup inclination angles with 1, 2, 3 and 4 (mm) medial-lateral translational mismatch between the centres of the head and cup. The amount of dynamic separation displacement between the head and cup was measured using a position sensor. The severity of edge loading was determined from the area under the axial force and medial-lateral force outputs during the time of separation [4]. II) A wear test was carried out at 45° (n=6) and 65° (n=6) cup inclination angles for three million cycles with translational mismatch of 4mm between the head and cup. The lubricant used was diluted new-born calf serum (25% v/v). Volumetric wear measurements were undertaken at one million cycle intervals and mean wear rates were calculated with 95% confidence limits. Statistical analysis was carried out using ANOVA and a t-test with significance levels taken at p<0.05.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 148 - 148
1 Feb 2017
Groves D Fisher J Williams S
Full Access

Introduction

Geometric variations of the hip joint can give rise to abnormal joint loading causing increased stress on the articular cartilage, which may ultimately lead to degenerative joint disease. In-vitro simulations of total hip replacements (THRs) have been widely reported in the literature, however, investigations exploring the tribology of two contacting cartilage surfaces, and cartilage against metal surfaces using complete hip joint models are less well reported.

The aim of this study was to develop an in-vitro simulation system for investigating and comparing the tribology of complete natural hip joints and hemiarthroplasties with THR tribology. The simulation system was used to assess natural porcine hip joints and porcine hemiarthroplasty hip joints. Mean friction factor was used as the primary outcome measure to make between-group comparisons, and comparisons with previously published tribological studies.

Method

In-vitro simulations were conducted on harvested porcine tissue. A method was developed enabling natural acetabula to be orientated with varying angles of version and inclination, and natural femoral heads to be potted centrally with different orientations in all three planes. Acetabula were potted with 45° of inclination and in the complete joint studies, natural femoral heads were anatomically matched and aligned (n=5). Hemiarthroplasty studies (n=5) were conducted using cobalt chrome (CoCr) heads mounted on a spigot (Figure 1), size-matched to the natural head. Natural tissue was fixed using PMMA (polymethyl methacrylate) bone cement.

A pendulum friction simulator (Simulator Solutions, UK), with a dynamic loading regime of 25–800N, ± 15° flexion-extension (FE) at 1 Hertz was used. The lubricant was a 25% (v/v) bovine serum. Axial loading and motion was applied through the femoral head and frictional torque was measured using a piezoelectric transducer, from which the friction factor was calculated.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 1 - 1
1 Feb 2017
Abdelgaied A Fisher J Jennings L
Full Access

Introduction

The input mechanical properties of knee replacement bearing materials, such as elastic modulus and Poisson's ratio, significantly contribute to the accuracy of computational models. They should therefore be determined from independent experimental studies, under similar test conditions to the clinical and experimental conditions, to provide reliability to the models. In most cases, the reported values in the literature for the elastic modulus and Poisson's ratio of the bearing materials have been measured under tensile test conditions, in contrast to the compressive operating conditions of the total knee replacements (TKR). This study experimentally determined the elastic modulus and Poisson's ratio of conventional and moderately cross-linked ultra-high molecular weight polyethylene (UHMWPE) under compressive test conditions. These material parameters will be inputs to future computational models of TKR.

Materials/Methods

To determine the Poisson's ratio of the conventional and moderately cross-linked UHMWPE, contact areas of 12mm diameter cylindrical specimens of 10.2mm length were measured experimentally under a compressive displacement of 1mm, at a strain rate of 12mm/min that was held for 10minutes. A computational model was developed in Abaqus, 6.14–1, to simulate this experimental test assuming different values for the Poisson's ratio of the UHMWPE cylindrical specimens. The curve fitted relationship between the computationally predicted contact area and Poisson's ratio was used to calculate the Poisson's ratio of the UHMWPE specimens, using the experimentally measured contact areas. Using a similar approach, the equivalent elastic modulus of the UHMWPE was calculated using the computationally calculated curve fitted contact area-elastic modulus relationship, from the computational simulation of a ball-on-flat compression test, and the experimentally measured contact area from a ball-on-flat dynamic compression test. This experiment used 10mm thick UHMWPE flat specimens against a 63.5mm rigid ball, under a compressive dynamic sinusoidal loading of 250N average load, and 6000 cycles. The applied test conditions maintained the stress level within the reported range for the TKR.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 31 - 31
1 Feb 2017
Jahani F Fisher J Barton D Brooks J Wilcox R Jones A
Full Access

Introduction

The performance of total hip replacement (THR) devices can be affected by the quality of the tissues surrounding the joint or the mismatch of the component centres during hip replacement surgery. Experimental studies have shown that these factors can cause the separation of the two components during walking cycle (dynamic separation) and the contact of the femoral head with the rim of the acetabular liner (edge loading), which can lead to increased wear and shortened implant lifespan1. There is a need for flexible pre-clinical testing tools which allow THR devices to be assessed under these adverse conditions. In this work, a novel dynamic finite element model was developed that is able to generate dynamic separation as it occurs during the gait cycle. In addition, the ability to interrogate contact mechanics and material strain under separation conditions provides a unique means of assessing the severity of edge loading. This study demonstrates these model capabilities for a range of simulated surgical translational mismatch values, for ceramic-on-polyethylene implants.

Methodology

The components of the THR were aligned and constrained as illustrated in Figure 1. CAD models of commercially available implant geometries were used (DePuy Synthes, Leeds, UK) modified for model simplicity by removing anti-rotation features.

The polyethylene cup liner was given elastic-plastic behaviour. An axial load following the Paul cycle pattern (5 repetitive cycles) with maximum of 3KN and swing phase load of 0.3KN, was applied through the cup holder. The effect of translational mismatch was implemented by using a spring element connected to the cup unit on the lateral side. The spring was compressed by a fixed amount to replicate a degree of medial-lateral mismatch of the components. The instantaneous resultant force vector dictated the dynamic sliding behaviour of the cup against the head. In this study, translational medial-lateral mismatch values of 1, 2, 3 and 4mm were used and the medial-lateral dynamic separation, contact pressure maps and plastic strain were recorded.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 2 - 2
1 Feb 2017
Abdelgaied A Fisher J Jennings L
Full Access

Introduction

Surface wear of polyethylene is still considered a long-term risk factor for clinical success, particularly as life expectancy and activity levels increase. Computational models have been used extensively for preclinical wear prediction and optimization of total knee replacements (TKR). In most cases, the input wear parameters (wear factors and coefficients) to the computational models have been experimentally measured under average contact stresses to simulate standard activities. These wear studies are not therefore applicable for more adverse conditions that could lead to edge loading and high stress conditions, including higher levels of activities and severe loading conditions. The current study investigated the multidirectional pin-on-plate wear performance of moderately cross-linked ultra-high molecular weight polyethylene (UHMWPE) under high applied nominal contact stress, to be used as inputs to a computational model investigating adverse high stress conditions.

Materials/Methods

Moderately cross-linked UHMWPE (GUR_1020,5Mrad gamma irradiation) pins were tested against cobalt–chrome alloy (CoCr) plates in a multidirectional pin-on-plate wear simulator. The CoCr metallic plates were polished to an average surface roughness of 0.01μm. The pin rotation and the plate reciprocation of ±30º and 28mm were in phase, having a common frequency of 1Hz, and resulted in a multidirectional motion at the pin-plate contact surface in a flat-on-flat configuration. Six different pin diameter and applied load combinations were tested, resulting in applied nominal contact stresses from 4 to 80[MPa](Fig.1). Each set was run for 1million cycles in 25% bovine serum as a lubricant. The volumetric wear was calculated from the weight loss measurements using a density 0.93mg/mm3 for the UHMWPE material. The wear factor and wear coefficient were calculated as (volumetric wear/(load x sliding distance)) and (volumetric wear/(contact area x sliding distance)) respectively[1]. Statistical analysis of the data was performed in ANOVA and significance was taken at p<0.05.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 149 - 149
1 Feb 2017
Groves D Vasiljeva K Al-Hajjar M Fisher J Williams S
Full Access

Introduction

Contact between the femoral head and rim of the acetabular liner in total hip replacements has been linked to adverse tribological performance that may potentially shorten the lifespan of the prosthesis. Predicting the size and location of the contact area can be done computationally, however, experimental validation of these models is challenging due to the conforming nature of the bearing surfaces.

This study aimed to develop a method of accurately determining the in-vitro contact area between the femoral head and acetabular cup in metal-on-polyethylene and ceramic-on-polyethylene bearings under different component orientations.

Method

Metal-on-polyethylene and ceramic-on-polyethylene samples, with a nominal diameter of 36mm (DePuy Synthes, Leeds, UK), were tested with the cups orientated using a combination of inclination (equivalent to 45°, 55° and 65° in-vivo) and version (−20°, 0°, 20° and 40°) angles. The liners, which were first gold hard-coated (EMSCOPE SC 500, Quarum Technologies, UK), were inserted into a Pinnacle® titanium shell, and femoral heads were mounted on a vertical spigot (Figure 1). A single-station multi-axis electromechanical hip joint simulator (Prosim, Simulator Solutions, UK) was used to position the samples with 18.7° flexion, 6.2° adduction and 8.3° external rotation, congruous with just after heel strike (ISO 14242-1), and apply a 3kN static axial load through the centre of the femoral head.

The contact area was generated by manually turning the head about the vertical axis of the centre of rotation of the applied load, removing the gold hard-coating from the contacting areas. The contact area was determined from photographs of the acetabular cup using SolidWorks (Dassault Systèmes, US) and ImageJ (National Institutes of Health, US) software packages. Three repeats under each combination of cup angles were completed, and the mean contact area and 95% confidence limits were determined for each bearing under all cup angle combinations.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 8 - 8
1 Feb 2017
Al-Hajjar M Vasiljeva K Heiner A Kruger K Baer T Brown T Fisher J Jennings L
Full Access

Introduction

Previous studies have shown that third body damage to the femoral head in metal-on-polyethylene hip replacement bearings can lead to accelerated wear of the polyethylene liners. The resulting damage patterns observed on retrieved metal heads are typically scratches and scrapes. The damage created in vitro must represent the third body damage that occurs clinically. A computational model was developed to predict the acceleration of wear of polyethylene articulating against in vitro damaged femoral heads. This involved using a damage registry from retrieval femoral heads to develop standardized templates of femoral head scratches statistically representative of retrieval damage

The aim of this study was to determine the wear rates of polyethylene liners articulating against retrievals and artificially damaged metal heads for the purpose of validating a computational wear prediction model; and to develop and validate an in vitro standardised femoral head damage protocol for pre-clinical testing of hip replacements.

Materials and Methods

Twenty nine, 32mm diameter, metal-on-moderately cross-linked polyethylene bearings (MarathonTM) inserted into Ti-6Al-4V shells (Pinnacle®) were tested in this study. All products were manufactured by DePuy Synthes, Warsaw, Indiana, USA. Following a retrieval study seven different damage patterns were defined, and these were applied to the femoral heads using a four-degree-of-freedom CNC milling machine (Figure 1). The ProSim 10-station pneumatic hip joint simulator (Simulation Solutions, UK) was used for experimental wear simulation using standard gait cycles and testing each experimental group for 3 million cycles. The acetabular cups were inclined at 35° on the simulator (equivalent to 45° in vivo). The wear volumes were determined using a microbalance (Mettler-Toledo XP205, Switzerland) at one million cycle intervals. Statistical analysis used was one way ANOVA followed by a post hoc analysis with significance taken at p<0.05.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 12 - 12
1 Feb 2017
Ali M Al-Hajjar M Jennings L Fisher J
Full Access

Introduction

Edge loading of hip replacements may result in plastic deformation, creep and wear at the rim of the cup and potentially fatigue failure. Variations in component positioning can lead to dynamic separation and edge loading [1]. The aim of this study was firstly to investigate the effects of translational and rotational positioning on the dynamic separation and severity of edge loading, and secondly to determine the wear rates of metal-on-polyethylene bearings under the more severe separation and edge loading conditions.

Materials and Methods

A hip joint simulator (ProSim EM13, Simulation Solutions, UK) was set up with 36mm diameter metal-on-polyethylene hip replacements (Marathon™, DePuy Synthes Joint Reconstruction, Leeds, UK). This study was in two parts. I) A biomechanical test was carried out at 45° (n=3) and 65° (n=3) cup inclination angles with 1, 2, 3 and 4 (mm) medial-lateral translational mismatch between the head and cup centres. The severity of edge loading was calculated from the area under the axial force and medial-lateral force outputs during the time of separation when the load was acting on the edge of the cup [2]. II) For two conditions (two million cycles), the head and cup were concentric for cups inclined equivalent clinically to 45° (n=3) and 65° (n=3). For two further conditions (three million cycles), 4mm medial-lateral translational mismatch between centres was applied for cups inclined equivalent clinically to 45° (n=6) and 65° (n=6). Volumetric wear measurements were undertaken at one million cycle intervals. The lubricant was diluted new-born calf serum (25% v/v). Plastic deformation and wear were determined using a coordinate measurement machine. Mean values were calculated with 95% confidence limits. Statistical analysis was carried out using ANOVA and a t-test with significance levels taken at p<0.05.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 41 - 41
1 Oct 2016
Ali M Al-Hajjar M Jennings L Fisher J
Full Access

Edge loading due to dynamic separation can occur due to variations in component positioning such as a steep cup inclination angle (rotational) or mismatch between the centres of rotation of the head and the cup (translational). The aim of this study was to determine the effect of variations in rotational and translational positioning of the cup on the magnitude of dynamic separation, wear and deformation of metal-on-polyethylene bearings.

Eighteen 36mm diameter metal-on-polyethylene hip replacements were tested on an electromechanical hip simulator. Standard gait with concentric head and cup centres were applied for cups inclined at 45° (n=3) and 65° (n=3) for two million cycles. A further two tests with translational mismatch of 4mm applied between the head and cup bearing centres for cups inclined at 45° (n=6) and 65° (n=6) were run for three million cycles. Wear was determined using a microbalance and deformation by geometric analysis. Confidence intervals of 95% were calculated for mean values, and t-tests and ANOVA were used for statistical analysis (p<0.05).

Under 4mm mismatch conditions, a steeper cup inclination angle of 65° resulted in larger dynamic separation (2.1±0.5mm) compared with cups inclined at 45° (0.9±0.2mm). This resulted in larger penetration at the rim under 65° (0.28±0.04mm) compared to 45° (0.10±0.09mm) cup inclination conditions (p<0.01). Wear rates under standard concentric conditions were 12.8±3.8 mm3/million cycles and 15.4±5.0 mm3/million cycles for cups inclined at 45° and 65° respectively. Higher wear rates were observed under 4mm of translational mismatch compared with standard concentric conditions at 45° (21.5±5.5 mm3/million cycles, p<0.01) and 65° (23.0±5.7 mm3/million cycles, p<0.01) cup inclination.

Edge loading under dynamic separation conditions due to translational mismatch resulted in increased wear and deformation of the polyethylene liner. Minimising the occurrence and severity of edge loading through optimal component positioning may reduce the clinical failure rates of polyethylene.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 15 - 15
1 Oct 2016
Herbert A Edwards J Ingham E Fisher J
Full Access

Acellular porcine super flexor tendon (pSFT) offers a promising solution to replacement of damaged anterior cruciate ligament [1]. It is desirable to package and terminally sterilise the acellular grafts to eliminate any possible harmful pathogens. However, irradiation techniques can damage the collagen ultra-structure and consequently reduce the mechanical properties [2]. The aims of this study were to investigate the effects of irradiation sterilisation of varying dosages on the biomechanical properties of the acellular pSFT.

Tendons were decellularised using a previously established protocol [1] and subjected to irradiation sterilisation using either 30 kGy gamma, 55 kGy gamma, 34 kGy E-beam, 15 kGy gamma, 15 kGy E-beam and (15+15) kGy E-beam (fractionated dose). Specimens then underwent stress relaxation and strength testing at 0 and 12 months post sterilisation to determine whether any effect on these properties was progressive. For stress relaxation testing, specimens were analysed using a Maxwell-Wiechert model. For strength testing, the ultimate tensile strength, Young's modulus and failure strain were assessed.

Significant differences were found which demonstrated that all irradiation treatments had an effect on the time-independent and time-dependent viscoelastic properties of irradiated tendons compared to per-acetic acid only treated controls. Interestingly, no significant differences were found between the irradiated groups. Similar trends were found for the strength testing properties. No significant differences were found between groups at 0 and 12 months.

Tendons retained sufficient biomechanical properties following sterilisation, however it was notable that there were no significant differences between the irradiated groups, as it was believed higher dosages would lead to a greater reduction in the mechanical properties. The changes observed were not altered further after 12 months storage, indicating the acellular pSFT graft has a stable shelf-life.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 27 - 27
1 Oct 2016
Ali M Al-Hajjar M Jennings L Fisher J
Full Access

Edge loading due to dynamic separation can occur due to variations in component positioning such as a steep cup inclination angle (rotational) or mismatch between the centres of rotation of the head and the cup (translational). The aim of this study was to determine the effect of variations in rotational and translational positioning of the cup on the magnitude of dynamic separation, wear and deformation of metal-on-polyethylene bearings.

Eighteen 36mm diameter metal-on-polyethylene hip replacements were tested on an electromechanical hip simulator. Standard gait with concentric head and cup centres were applied for cups inclined at 45° (n=3) and 65° (n=3) for two million cycles. A further two tests with translational mismatch of 4mm applied between the head and cup bearing centres for cups inclined at 45° (n=6) and 65° (n=6) were run for three million cycles. Wear was determined using a microbalance and deformation by geometric analysis. Confidence intervals of 95% were calculated for mean values, and t-tests and ANOVA were used for statistical analysis (p<0.05).

Under 4mm mismatch conditions, a steeper cup inclination angle of 65° resulted in larger dynamic separation (2.1±0.5mm) compared with cups inclined at 45° (0.9±0.2mm). This resulted in larger penetration at the rim under 65° (0.28±0.04mm) compared to 45° (0.10±0.05mm) cup inclination conditions (p<0.01). Wear rates under standard concentric conditions were 12.8±3.8 mm3/million cycles and 15.4±5.0 mm3/million cycles for cups inclined at 45° and 65° respectively. Higher wear rates were observed under 4mm of translational mismatch compared with standard concentric conditions at 45° (21.5±5.5 mm3/million cycles, p<0.01) and 65° (23.0±5.7 mm3/million cycles, p<0.01) cup inclination.

Edge loading under dynamic separation conditions due to translational mismatch resulted in increased wear and deformation of the polyethylene liner. Minimising the occurrence and severity of edge loading through optimal component positioning may reduce the clinical failure rates of polyethylene.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 35 - 35
1 Oct 2016
Asif I Williams S Fisher J Al-Hajjar M Anderson J Tipper J
Full Access

Wear particles produced by alumina ceramic-on-ceramic (CoC) bearings cause a minimal immunological response with low cytotoxicity and inflammatory potential1, 2. However, more comprehensive immunological studies are yet to be completed for the composite CoC (zirconia-toughened, platelet reinforced alumina) hip replacements due to difficulties in isolating the very low volume of clinically relevant wear debris generated by such materials in vitro. The aim of this study was to compare the cytotoxic effects of clinically relevant cobalt chromium (CoCr) nano-particles with commercial composite ceramic particles.

Composite ceramic particles (commercial BIOLOX® delta powder) were obtained from CeramTec, Germany and clinically relevant CoCr wear particles were generated using a six station pin-on-plate wear simulator. L929 fibroblast cells were cultured with 50µm3 of CoCr wear debris or composite ceramic particles at low to high volumes ranging from 500µm3–0.5µm3 per cell and the cyctotoxic effects of the particles were assessed over a period of 6 days using the ATP-Lite™ cell viability assay.

The composite ceramic particles were bimodal in size (0.1–2µm & 30–100nm) and showed mild cytotoxic effects when compared with equivalent particle volumes (50µm3) of clinically relevant CoCr nano-particles (10–120nm). The CoCr nano-particles had significant cytotoxic effects from day 1, whereas the composite ceramic particles only showed cytotoxic effects at particle concentrations of 50 and 500µm3 after 6 days. The increased cytotoxicity of the clinically relevant CoCr nano-particles may have been attributed to the release of Co and Cr ions.

This study demonstrated the potential cytotoxic effects of model ceramic particles at very high volume concentrations, but it is unlikely that such high particle volumes will be experienced routinely in vivo in such low wearing bearing materials. Future work will investigate the longer-term effects on genotoxicity and oxidative stress of low volumes of clinically-relevant generated BIOLOX® delta ceramic wear particles.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 94 - 94
1 May 2016
Cowie R Briscoe A Fisher J Jennings L
Full Access

Introduction

There is a demand for longer lasting arthroplasty implants driving the investigation of novel material combinations. PEEK has shown promise as an arthroplasty bearing material, with potentially relatively bio inert wear debris [1]. When coupled with an all-polyethylene tibial component this combination shows potential as a metal-free knee. In this study, the suitability of PEEK Optima® as an alternative to cobalt chrome for the femoral component of total knee replacements was assessed using experimental knee wear simulation under two kinematic conditions.

Methods

Three cobalt chrome and three injection moulded PEEK Optima® (Invibio Biomaterial Solutions, UK) femoral components of similar geometry and surface roughness (mean surface roughness (Ra) ∼0.02µm) were coupled with all-polyethylene GUR1020 (conventional, unsterilised) tibial components in a 6 station ProSim knee simulator (Simulation Solutions, UK). 3 million cycles (MC) of wear simulation were carried out under intermediate kinematics (maximum anterior-posterior (AP) displacement 5mm) followed by 3MC under high kinematics (AP 10mm) [2] with 25% serum as the lubricant. The wear of the tibial component was assessed gravimetrically. At each measurement point, the surface roughness of the femoral components was determined using contacting profilometry and throughout testing, the bulk lubricant temperature was monitored close to the articulating surfaces.

Statistical analysis was carried out using ANOVA, with significance at p<0.05.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 4 - 4
1 May 2016
Abdelgaied A Brockett C Hardaker C Fisher J Jennings L
Full Access

Introduction

To meet the demands of younger more active patients more robust pre-clinical wear testing methods are required, in order to simulate a wider range of activities. A new electromechanical simulator (Simulation Solutions, UK) with a greater range of motion, a driven abduction/adduction axis and improved input kinematic following has been developed to meet these requirements, as well as requirements of the relevant international standards. This study investigated the wear of a fixed bearing total knee replacement using this new electromechanical knee simulator, comparing with previous data from a pneumatic simulator.

Materials/Methods

The wear of six Sigma CR fixed bearing TKRs (DePuy, UK) with curved moderately cross-linked polyethylene inserts (XLK) was determined in pneumatic and electromechanical Prosim knee simulators (Simulation Solutions, UK). Standard gait displacement controlled kinematics were used, with a maximum anterior-posterior displacement of either 10mm (high) or 5mm (intermediate) [1]. The output profiles from the simulators were obtained and compared to the demand input profiles. The lubricant used was 25% new-born calf serum and wear determined gravimetrically. Statistical analysis was performed using the one-way ANOVA with 95% confidence interval and significance was taken at p<0.05.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 15 - 15
1 May 2016
Ali M Al-Hajjar M Fisher J Jennings L
Full Access

Introduction

Translational surgical mismatch in the centres of rotation of the femoral head and acetabular cup in hip joint replacements can lead to dynamic microseparation resulting in edge loading contact [1]. Increased wear in retrieved ceramic-on-ceramic bearings has been associated with edge loading [2]. Hip joint simulators were used to replicate increased wear rate, stripe wear and bimodal wear debris size distribution, as seen clinically [3,4]. Recently developed electromechanical simulators are able to comply with the latest international standards, which include three axes of rotation conditions [5]. Previous simulators had applied two axes of rotation under microseparation conditions [6]. Therefore, the aim of this study was to compare the wear of ceramic-on-ceramic bearings obtained under edge loading due to microseparation conditions during gait using the same electromechanical hip joint simulator with two axes of rotation and three axes of rotation conditions.

Materials and Methods

A six-station electromechanical hip joint simulator (ProSim EM13, Simulation Solutions, UK) was set up with 36mm diameter ceramic-on-ceramic (BIOLOX® delta, PINNACLE®, DePuy Synthes, UK) hip replacements. The wear was determined for two million cycles under standard conditions with two axes of rotation conditions (n=6), two million cycles under microseparation conditions with two axes of rotation conditions (n=6) (Figure 1a), and two million cycles under microseparation conditions with three axes of rotation conditions (n=6) (Figure 1b). The loading profiles [5,7] comprised of 3kN twin peak loads and 300N swing phase load under standard conditions. The swing phase load was reduced to approximately 70N under microseparation conditions. Approximately 0.5mm of dynamic microseparation between the head and the cup was applied in the medial/lateral direction. The components were lubricated with 25% new-born calf serum supplemented with 0.03% sodium azide to minimise bacterial growth. The gravimetric wear rates were compared over two million cycles for each test (XP205, Mettler Toledo, UK). The mean wear rates of the head and cup were calculated with 95% confidence limits and statistical analysis was carried out (t-test) with significance levels taken at p<0.05. A coordinate-measurement machine (Legex 322, Mitutoyo, UK) was used to construct a three-dimensional map of the femoral head surface wear.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 44 - 44
1 May 2016
Smyth A Fisher J Traynor A Brockett C
Full Access

Introduction

Total ankle replacements (TAR) are a much debated alternative to ankle fusion for treatment of end stage arthritis. Compared with hip and knee replacements these are implanted in small numbers with less than 500 per year recorded by the joint registry for England and Wales. The small numbers are a likely result of typically low mid-term survival rates, as well as extensive contra-indications for surgery. There have been multiple generations of TARs consisting of both constrained and unconstrained designs but due to device classification pre-clinical testing has been minimal.

Method

Five Zenith (Corin Group PLC), Titanium Nitride (TiN) coated, unconstrained TARs with conventional polyethylene inserts (Figure 1) were tested in an adapted knee simulator (Simulator Solutions, UK) for six million cycles (MC). The input parameters (Figure 2) were taken from available literature as there is no recognised ISO standard in place. A parametric study with three conditions was conducted to understand the impact of kinematic inputs on the polyethylene wear rate. These conditions aimed to understand the effect of both linear wear with isolated flexion, then multidirectional motion by implementing a rotational input with and without anterior/posterior (AP) displacement. Each condition was run for two MC.

Stage One: Flexion and Load

Stage Two: Flexion, Load, Rotation and Displacement

Stage Three: Flexion, Load and Displacement

A lubricant of 25% bovine serum, 0.03% Sodium Azide solution was used to replicate the protein content of the natural joint capsule. The wear was measured gravimetrically every million cycles and surface measurements taken with a contacting profilometer.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 92 - 92
1 May 2016
Lancaster-Jones O Al-Hajjar M Williams S Jennings L Thompson J Isaac G Fisher J
Full Access

Introduction and Aims

In order to improve the longevity and design of an implant, a wide range of pre-clinical testing conditions should be considered including variations in surgical delivery, and patients' anatomy and biomechanics. The aim of this research study was to determine the effect of the acetabular cup inclination angle with different levels of joint centre mismatch on the magnitude of dynamic microseparation, occurrence and severity of edge loading and the resultant wear rates in a hip joint simulator.

Methods

The six-station Leeds Mark II Anatomical Physiological Hip Joint Simulator and 36mm diameter ceramic-on-ceramic bearings (BIOLOX® delta) were used in this study. A standard gait cycle, with a twin-peak loading (2.5kN peak load and approximately 70N swing phase load), extension/flexion 15°/+30° and internal/external ±10° rotations, was applied. Translational mismatch in the medial-lateral axis between the centres of rotation of the head and the cup were considered. In this study, mismatches of 2, 3 and 4 (mm) were applied. Two acetabular cup inclination angles were investigated; equivalent to 45° and 65° in-vivo. These resulted in a total of six conditions [Figure 1] with n=6 for each condition. Three million cycles were completed under each condition. The lubricant used was 25% (v/v) new-born calf serum supplemented with 0.03% (w/v) sodium azide to retard bacterial growth. The wear of the ceramic bearings were determined using a microbalance (XP205, Mettler Toledo, UK) and a coordinate measuring machine (Legex 322, Mitutoyo, UK). The stripe wear was analysed using RedLux software. The dynamic microseparation displacement was measured using a linear variable differential transformer. Mean wear rates and 95% confidence limits were determined and statistical analysis (one way ANOVA) completed with significance taken at p<0.05. Results Increasing the medial-lateral joint centre mismatch from 2 to 3 to 4mm resulted in an increased dynamic microseparation [Figure 2]. A similar trend was observed for the wear. A higher level of medial-lateral mismatch increased the wear rate under both 45° and 65° cup inclination angle conditions [Figure 3]. The mean wear rates obtained under 65° were significantly higher compared to those obtained under the 45° cup inclination angle conditions for a given medial-lateral mismatch in the joint centre (p=0.02 for 2mm mismatch, p=0.02 for 3 mm mismatch, and p<0.01 for 4mm mismatch).


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 76 - 76
1 Jan 2016
Jennings L Al-Hajjar M Carbone S Begand S Oberbach T Delfosse D Fisher J
Full Access

Introduction

Ceramic composites have been developed to further improve the mechanical properties, reduce risk of fracture, and increase the survivorship of ceramic-on-ceramic bearings in total hip replacement1.

The aim of this study was to evaluate the wear of two novel ceramic composite materials under edge loading conditions due to translational mal-positioning when used in both like-on-like and mixed pairing configurations; and to compare their performance to earlier generation ceramic-on-ceramic bearings.

Materials and Methods

The head-on-cup configurations of three ceramic materials (see Figure 1), were ATZ-on-ATZ, ZTA-on-ZTA, Al2O3-on-Al2O3, ATZ-on-ZTA, ZTA-on-ATZ, Al2O3-on-ATZ, ATZ-on-Al2O3and Al2O3-on-ZTA. All combinations were size 28mm and were supplied by Mathys Orthopädie GmbH (Morsdorf, Germany). They were tested for four million cycles on the Leeds II hip simulator under microseparation2,3,4 conditions representing translational mal-positioning. The gait cycle comprised extension/flexion (−15º/+30º), internal external rotation (+/−10º) and a twin peak load with a maximum of 3kN. Microseparation was achieved by applying a 0.5mm dynamic medial/lateral displacement using a spring load resulting in edge loading at heel strike. New-born calf serum (25%) was used as a lubricant. Wear was assessed gravimetrically every million cycles. Statistical analysis was performed using one-way ANOVA (significance taken at p<0.05).


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 18 - 18
1 Jan 2016
Brockett C Smyth A Day M Harris N Partridge S Williams S Fisher J
Full Access

Introduction

Total ankle replacement (TAR) has been used as a surgical intervention for arthritis since the 1970s. However, unlike clinically successful hip and knee replacements, TARs are renowned for extensive contraindications to surgery and high failure rates with an average of 83% survival at 5 years. The majority cite aseptic loosening as the reason for failure. The aim of this study wais to analyse retrieved TARs visually and through interferometry to identify potential the failure mechanisms associated with these devices.

Methods

Retrieved total ankle replacements (n=11) from consecutive revision surgeries carried out at Chapel Allerton Hospital, Leeds between August 2012 and January 2014, were collected for study at the University of Leeds, under an NRES approved procedure (09/H1307/60).

The bearing surfaces of the samples were visually inspected for evidence of damage and wear. The bearing surfaces between the tibial component and the flat surface of the polyethylene insert were then examined using a scanning white light interferometer (NP Flex, Bruker, USA). It was not possible to characterise the talar bearing surface or the inferior polyethylene surface at this stage through interferometry due to the curvature of the surface. The components were aligned and five sections on each of the surfaces measured. These sections represented; anterior-medial, anterior-lateral, posterior-medial, posterior lateral and central regions of the bearing surfaces. 3D roughness values were recorded, and the mean 3D surface roughness compared between implants. Measurements were taken on the medial and lateral aspects of the bearing surfaces to investigate whether damage was location specific. A coefficient of determination was calculated to assess the relationship between implantation time and surface roughness.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 99 - 99
1 Jan 2016
Cowie R Carbone S Aiken S Cooper J Fisher J Jennings L
Full Access

Introduction

When third body particles originating from bone cement or bone void fillers become trapped between articulating surfaces of joint replacements, contact surfaces may be damaged leading to accelerated wear and premature failure of the implant. In this study, the damage to cobalt chrome counterfaces by third body particles from PMMA bone cement (GMV, DePuy) and various bone void fillers was investigated; then wear tests of UHMWPE were carried out against these surfaces.

Methods

Third body particles of polymerised GMV bone cement and the bone void fillers; OsteoSet (with tobramycin), Stimulan and Stimulan+ (with vancomycin and tobramycin) (provided by Biocomposites Ltd.) were trapped between an UHMWPE pin and a highly polished cobalt chrome plate. A load of 120N was applied to the pin and using an Instron materials testing machine, the plate was pulled beneath the pin to recreate third body damage [1]. The resulting surface topography of the plate was analysed using white light interferometry (Bruker NPFLEX). Pin on plate wear tests of GUR 1020 UHMWPE pins were carried out against the plates perpendicular to the direction of damage for 500,000 cycles in 25% bovine serum using a 6-station multi-axial reciprocating rig under conditions to replicate the kinematics in total knee replacement. Wear of the pins was determined by gravimetric analysis and results were compared to negative (highly polished) control plates and positive controls scratched with a diamond stylus (lip height 2µm). Statistical analysis was carried out using one-way ANOVA with significance taken at p<0.05.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 100 - 100
1 Jan 2016
Cowie R Briscoe A Fisher J Jennings L
Full Access

Introduction

UHMWPE articulating against PEEK-OPTIMA® has the potential for use as a novel bearing couple in joint arthroplasty due to its potentially low wear rates and the bioinertness of its wear debris. The aim of this study was to investigate the role of protein in the lubricant on the wear of UHMWPE articulating against PEEK at both room and physiological temperature.

Methods

The wear of GUR1020 UHMWPE pins articulating against PEEK plates (Ra ∼0.06µm) was compared to highly polished cobalt chrome plates (Ra <0.01µm) in a 6-station multi-axial pin-on-plate rig using kinematics to replicate those in total knee arthroplasty. Tests were carried out at either ∼20°C or ∼36°C and wear was investigated under varying concentrations of bovine serum (0, 25 or 90%). Studies were carried out for 1 Million cycles with wear of the UHMWPE pins assessed gravimetrically using unloaded soak controls to compensate for moisture uptake.

Statistical analysis was carried out using ANOVA with significance taken at p<0.05.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 26 - 26
1 Jan 2016
Hammouche S Fisher J Tipper J Williams S
Full Access

Introduction

Hip replacements are falling short of matching the life expectancy of coxarthritis patients, due to implanting THR in younger patients and due to increasingly active patients. The most frequently implanted hip prostheses use cross linked (XL) polyethylene (PE) on metal bearings in the USA and most of the Western world. Concerns remain in the long term around the potential of wear debris-induced aseptic loosening. Thus exploring lower-wearing alternative bearings remains a major research goal.

PEEK (poly-ether-ether-ketone) is a thermoplastic polymer with enhanced mechanical properties. This study compared the wear of PEEK to the wear of cross linked polyethylene, when sliding against cobalt chrome (CoCr) metallic counterfaces, and compared the wear of carbon-fibre reinforced (CFR)-PEEK to cross linked polyethylene when sliding against metallic and ceramic counterfaces under different contact stresses within the hip joint.

Methods

The following materials were studied: unfilled PEEK (OPTIMA, Invibio) and CFR-PEEK (MOTIS, Invibio) against either high carbon (HC) CoCr or Biolox Delta ceramic plates. The comparative control material was a moderately cross-linked PE (Marathon, DePuy Synthes).

A simple geometry wear study was undertaken. A rotational motion of ±30° across a sliding distance of ±28 mm (cross shear of 0.087), and contact pressures of 1.6 or 4 MPa were applied. The lubricant was 25% (v/v) bovine serum and the wear test was conducted for 1 million cycles at 1 Hz. Wear was assessed gravimetrically. A validated soak control method was used to adjust for serum absorption-induced mass changes during the wear test. Surface profilometry was assessed pre and post wear test.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 77 - 77
1 Jan 2016
Al-Hajjar M Williams S Jennings L Thompson J Isaac G Ingham E Fisher J
Full Access

Introduction

Increased wear rates [1, 2] and acetabular rim fracture [3] of hip replacement bearings reported clinically have been associated with edge loading, which could occur due to rotational and/or translational mal-positioning [4]. Surgical mal-positioning can lead to dynamic microseparation mechanisms resulting in edge loading conditions. In vitro microseparation conditions have replicated stripe wear and the bi-modal wear debris distribution observed clinically [5, 6]. The aim of this study was to investigate the effect of steep cup inclination, representing rotational mal-positioning, on the magnitude of dynamic microseparation, severity of edge loading, and the resulting wear rate of a ceramic-on-ceramic bearing, under surgical translational mal-positioning conditions.

Materials and Methods

Ceramic-on-ceramic bearings where the ceramic liner was inserted into a titanium alloy cup (BIOLOX® delta and Pinnacle® respectively, DePuy Synthes, UK) were tested on the six-station Leeds II hip simulator. The first test was run with the cups inclined at an angle equivalent, clinically, to 45° (n=6) and the second test was run with the cups inclined at an angle equivalent, clinically, to 65° (n=6). A standard gait cycle was run. A fixed surgical translational mal-positioning of 4mm between the centres of rotations of the head and the cup in the medial/lateral axis was applied on all stations. Both tests ran for three million cycles each. The lubricant used was 25% new-born calf serum. Wear was assessed gravimetrically using a microbalance (XP205, Mettler Toledo, UK) and geometrically using a coordinate measuring machine (CMM, Legex 322, Mitutoyo, UK). Statistical analysis was done using one way ANOVA with significance taken at p<0.05.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 78 - 78
1 Jan 2016
Brockett C Carbone S Fisher J Jennings L
Full Access

Introduction

Wear debris induced osteolysis and loosening continue to cause clinical failure in total knee replacement (TKR). To improve longevity and reduce wear alternative materials have been examined. Carbon-fibre-reinforced poly–ether-ether-ketone (CFR-PEEK) has shown promising results in wear studies [1–2].

The aim of this study was to explore the use of CFR-PEEK and PEEK as alternative bearing materials for polyethylene in TKR through experimental knee joint wear simulation.

Methods

Two novel materials were studied as an alternative to polyethylene as the tibial bearing surface in a TKR configuration using a Cobalt chrome femoral bearing in current clinical use. Six right Sigma CR fixed bearing TKRs (DePuy Synthes, UK) were paired with either PEEK or CFR-PEEK custom-made flat inserts (Invibio, UK) in a Prosim knee simulator (Simulator Solutions, UK). The tibial inserts were 14mm thick, to give an equivalent thickness to existing insert designs. A flat geometry was selected as this has previously been shown to yield low wear in polyethylene bearings [3]. The tests were conducted under High Kinematics, with anterior-posterior and internal-external displacement control [4]. Tests were conducted for three million cycles, lubricated with 25% bovine serum, with wear assessed gravimetrically at 1 and 3Mc.

Images of the wear scars were recorded at completion of the study. Visual inspection of the tibial inserts was used to identify regions of wear damage for SEM analysis (EVO MA15-Smart SEM, Zeiss, Germany)


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 7 - 7
1 Jul 2014
Brockett C Carbone S Jennings L Fisher J
Full Access

Summary Statement

Wear of total knee replacement (TKR) is a clinical concern. This study demonstrated low-conformity moderately cross-linked-polyethylene fixed bearing TKRs showed lower volumetric wear than conventional-polyethylene curved fixed bearing TKRs highlighting potential improvement in TKR performance through design and material selection.

Introduction

Wear of total knee replacement (TKR) continues to be a significant factor in the clinical performance of the implants. Historically, failure due to delamination and fatigue directed implant design towards more conforming implants to reduce contact stress. However, the new generations of more oxidatively-stable polyethylene have improved the long-term mechanical properties of the material, and therefore allowed more flexibility in the bearing design. The purpose of this study was to investigate the effect of insert conformity and material on the wear performance of a fixed bearing total knee replacement through experimental simulation.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 144 - 144
1 Jul 2014
Al-Hajjar M Fisher J Hardaker C Kurring G Isaac G Williams S
Full Access

Summary Statement

The frictional torque of ceramic-on-ceramic bearings tended to increase with increasing the bearings size (32, 48, 56mm). However, the frictional torque was significantly lower than that measured on metal-on-metal bearings under well positioned and well lubricated conditions.

Introduction

Larger head size in total hip replacement theoretically provides increased range of motion and enhanced stability. However, there are potential clinical concerns regarding increased frictional torques with large diameter metal-on-metal bearings causing loosening of the acetabular cups and corrosion at the taper. The aim of this study was to determine the frictional torques of large diameter BIOLOX® delta ceramic-on-ceramic bearings.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 214 - 214
1 Dec 2013
Abdelgaied A Brockett C Liu F Jennings L Jin Z Fisher J
Full Access

Introduction:

Backside wear has been previously reported through in-vitro and in-vivo to have a significant contribution to the total wear in rotating bearing TKRs.

The present study investigated the contribution of backside wear to the total wear in the PFC Sigma rotating platform mobile bearing TKR. In addition, the wear results were compared to the computed wear rates of the PFC Sigma fixed bearing TKR, with two different bearing materials.

Materials and Methods:

The commercially available PFC Sigma rotating platform mobile bearing and PFC Sigma fixed bearing total knee replacements, size 3 (DePuy, UK) were tested, with either conventional or moderately cross-linked (5 MRad) GUR1020 UHMWPE bearing materials. The computational wear model for the knee implants was based on the contact area and an independent experimentally determined non-dimensional wear coefficient [1,2,3].

The experimental wear test for the mobile bearing was force controlled using the ISO anterior-posterior force (ISO14243-1-2009). However, due to time limitation of the explicit simulation required to run the force controlled model, the simulation was run using the AP displacements taken from the experimental knee simulator which was run under the ISO AP force. The Sigma fixed bearing TKR was run under high level of anterior-posterior displacements (maximum of 10 mm).


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 2 - 2
1 Dec 2013
Al-Hajjar M Clarkson P Williams S Jennings L Thompson J Fisher J
Full Access

Introduction

Stripe wear, observed on retrieved ceramic hip replacements, has only been replicated in vitro under translational mal-positioning conditions where the centres of rotation of the head and the cup are mismatched1,2; an in vitro condition termed “microseparation”.

The aim of this study was to compare the edge loading mechanisms observed under microseparation conditions due to translational mal-positioning conditions simulated on two different hip joint simulators.

Materials and Methods

The components used in this study were zirconia-toughened-alumina ceramic-on-ceramic bearings (36 mm) inserted into titanium alloy acetabular cups (BIOLOX® delta and Pinnacle® respectively, DePuy Synthes Joint Reconstruction, Leeds, UK). Six couples were tested for two million cycles under 0.5 mm dynamic microseparation conditions on the Leeds II hip joint simulator as described by Nevelos et al2 and Stewart et al3 (Figure 1). Ten bearing couples were tested for two million cycles under microseparation conditions achieved in two different ways on the ProSim pneumatic hip joint simulator (SimSol, Stockport, UK). Two conditions were tested; condition (1)- the femoral head was left to completely separate (the vertical motion was controlled at 1 mm) causing it to contact the inferior rim of the acetabular cup before edge loading on the superior rim at heel strike (n = 5) and condition (2)- springs were placed below the plate holding the femoral head to control the tilt of the head laterally towards the rim of the acetabular cup as the negative pressure was applied (n = 5; Figure 1). Wear was assessed gravimetrically every million cycles using a microbalance (Mettler AT201, UK). Three-dimensional reconstructions of the wear area on the heads were obtained using a coordinate measuring machine (Legex 322, Mitutoyo, UK) and SR3D software (Tribosol, UK).