header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

THE IN VIVO COMPATIBILITY, INTEGRATION AND REGENERATION OF A DECELLULARIZED PORCINE BONE SCAFFOLD IN AN OVINE MODEL

The British Orthopaedic Research Society (BORS) Annual Meeting, Leeds, England, September 2018.



Abstract

Decellularised extracellular matrix scaffolds show great promise for the regeneration of damaged musculoskeletal tissues (cartilage, ligament, meniscus), however, adequate fixation into the joint remains a challenge. Here, we assess the osseo-integration of decellularised porcine bone in a sheep model. This proof-of-concept study supports the overall objective to create composite decellularised tissue scaffolds with bony attachment sites to enable superior fixation and regeneration.

Porcine trabecular bone plugs (6mm diameter, 10mm long) were decellularised using a novel bioprocess incorporating low-concentration sodium dodecyl sulphate with protease inhibitors. Decellularised bone scaffolds (n=6) and ovine allograft controls (n=6) were implanted into the condyle of skeletally mature sheep for 4 and 12 weeks. New bone growth was visualised by oxytetracycline fluorescence and standard resin semi-quantitative histopathology.

Scaffolds were found to be fully decellularised and maintained the native microarchitecture. Following 4-week implantation in sheep, both scaffold and allograft appeared well integrated. The trabecular spaces of the scaffold were filled with a fibro-mesenchymal infiltrate, but some areas showed a marked focal lymphocytic response, associated with reduced bone deposition. A lesser lymphocytic response was observed in the allograft control. After 12-weeks the lymphocytic reaction was minimised in the scaffold and absent in allografts. The scaffold showed a higher density of new mineralized bone deposition compared to allograft. New marrow had formed in both the scaffold and allografts.

Following the demonstration of osteointegration this bioprocess can now be transferred to develop decellularised composite musculoskeletal tissue scaffolds and decellularised bone scaffolds for clinical regeneration of musculoskeletal tissues.