header advert
Results 1 - 50 of 82
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 4 - 4
1 Feb 2021
Coomer S LaCour M Khasian M Cates H Komistek R
Full Access

Introduction

The patella experiences large forces and variable kinematic patterns throughout flexion which could influence function and patient satisfaction after a total knee arthroplasty (TKA). Therefore, the objective of this study is to analyze in vivo patellar mechanism forces and kinematics throughout flexion to determine influencing factors that may lead to patient dissatisfaction.

Methods

Fifty subjects were evaluated in this study, 40 having a Journey II bi-cruciate stabilized (BCS) TKA and 10 having normal, healthy knees. Similar demographics were controlled for each group. Each subject performed a deep knee bend. Kinematics were evaluated using a validated 3D-to-2D fluoroscopic technique while forces were determined using a validated inverse mathematical knee model. A two-tailed t-test was used to evaluate statistical significance.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 18 - 18
1 Feb 2021
LaCour M Khasian M Jennings J Dennis D Komistek R
Full Access

Introduction

Many groups consider passive flexion to be a good indicator of postoperative success, to the point where this outcome directly influences certain outcome scores such as Knee Society Scores (KSS). However, it is alternatively believed that normal-like kinematics result in better TKA outcomes, and previous fluoroscopy studies have demonstrated that there are many parameters that affect weight-bearing range-of-motion. The objective of this study to investigate the correlations between patient-reported outcomes, passive flexion, and weight-bearing knee kinematics.

Methods

The femorotibial kinematics, passive and weight-bearing range-of-motion, and KOOS and KSS for 291 TKA subjects were collected in a retrospective study. The average age, BMI, and post-op time was 69.2±7.2 years, 29.3±4.6, and 22.4±16.3 months, respectively. Pearson correlation analysis was used to find the statistical correlations between the various parameters, and two-tailed t-tests were carried out to find statistical differences.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 51 - 51
1 Feb 2021
Smith L Cates H Freeman M Nachtrab J Komistek R
Full Access

Background

While posterior cruciate retaining (PCR) implants are a more common total knee arthroplasty (TKA) design, newer bi-cruciate retaining (BCR) TKAs are now being considered as an option for many patients, especially those that are younger. While PCR TKAs remove the ACL, the BCR TKA designs keep both cruciate ligaments intact, as it is believed that the resection of the ACL greatly affects the overall kinematic patterns of TKA designs. Various fluoroscopic studies have focused on determination of kinematics but haven't defined differentiators that affect motion patterns. This research study assesses the importance of the cruciate ligaments and femoral geometry for Bi-Cruciate Retaining (BCR) and Posterior Cruciate Retaining (PCR) TKAs having the same femoral component, compared to the normal knee.

Methods

The in vivo 3D kinematics were determined for 40 subjects having a PCR TKA, 10 having a BCR TKA, and 10 having a normal knee, in a retrospective study. All TKA subjects had the same femoral component. All subjects performed a deep knee bend under fluoroscopic surveillance. The kinematics were determined during early flexion (ACL dominant), mid flexion (ACL/PCL transition) and deep flexion (PCL dominant).


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 32 - 32
1 Feb 2021
Dessinger G LaCour M Dennis D Kleeman-Forsthuber L Komistek R
Full Access

Introduction

Although surgical remedies tend to be the long-term solutions for patients with osteoarthritis (OA), many alternatives exist that offer the potential to slow progression, alleviate pain, and/or restore function. One such option is the unloader OA knee brace. The objective of this study was to assess the in vivo medial joint space narrowing with and without the brace during weight-bearing portion of gait.

Methods

Twenty subjects were evaluated after being clinically assessed by a single surgeon to be bone-on-bone on the medial side. In vivo gait kinematics were collected using a validated 3D-to-2D fluoroscopic registration technique (Figure 1). Subjects were asked to first walk on a treadmill without a brace (Figure 2), and then, after a qualified technician fit a properly sized brace to each subject, they were asked to walk again (Figure 3). In vivo fluoroscopic images were captured and registered at heel-strike (HS) and mid stance (MS) for both scenarios. CT scans were used to acquire the patient-specific bone models that were used in the registration process.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 14 - 14
1 Feb 2021
LaCour M Ta M Callaghan J MacDonald S Komistek R
Full Access

Introduction

Current methodologies for designing and validating existing THA systems can be expensive and time-consuming. A validated mathematical model provides an alternative solution with immediate predictions of contact mechanics and an understanding of potential adverse effects. The objective of this study is to demonstrate the value of a validated forward solution mathematical model of the hip that can offer kinematic results similar to fluoroscopy and forces similar to telemetric implants.

Methods

This model is a forward solution dynamic model of the hip that incorporates the muscles at the hip, the hip capsule, and the ability to modify implant position, orientation, and surgical technique. Muscle forces are simulated to drive the motion, and a unique contact detection algorithm allows for virtual implantation of components in any orientation. Patient-specific data was input into the model for a telemetric subject and for a fluoroscopic subject.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 48 - 48
1 Feb 2021
Khasian M LaCour M Dennis D Komistek R
Full Access

Introduction

A common goal of total knee arthroplasty (TKA) is to restore normal knee kinematics. While substantial data is available on TKA kinematics, information regarding non-implanted knee kinematics is less well studied especially in larger patient populations. The objectives of this study were to determine normal femorotibial kinematics in a large number of non-implanted knees and to investigate parameters that yield higher knee flexion with weight-bearing activities.

Methods

Femorotibial kinematics of 104 non-implanted healthy subjects performing a deep knee bend (DKB) activity were analyzed using 3D to 2D fluoroscopy. The average age and BMI were 38.1±18.2 years and 25.2±4.6, respectively. Pearson correlation analysis was used to determine statistical correlations.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 70 - 70
1 Feb 2020
Khasian M LaCour M Dessinger G Meccia B Komistek R
Full Access

Introduction

Forward solution joint models (FSMs) can be powerful tools, leading to fast and cost-efficient simulation revealing in vivo mechanics that can be used to predict implant longevity. Unlike most joint analysis methods, mathematical modeling allows for nearly instantaneous evaluations, yielding more rapid surgical technique and implant design iterations as well as earlier insight into the follow-up outcomes used to better assess potential success. The current knee FSM has been developed to analyze both the kinematics and kinetics of commercial TKA designs as well as novel implant designs.

Objective

The objective of this study was to use the knee FSM to predict the condylar translations and axial rotation of both fixed- and mobile-bearing TKA designs during a deep knee bend activity and to compare these kinematics to known fluoroscopy evaluations.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 93 - 93
1 Feb 2020
Ta M Nachtrab J LaCour M Komistek R
Full Access

Introduction

Conventional hip radiographs allow surgeons, during preoperative planning, to make important decisions. Size and location of implants are routinely measured by overlaying schematics of the implanted components onto preoperative radiographs. Most currently available planning tools are in two-dimensions (2D), using X-ray images and 2D templates of the implants. Determination of the ideal component size requires two radiographic views of the femur: the anterior-posterior (AP) and the lateral direction. The surgeon uses this information to determine component sizes. Even though this approach has been used for many years leading to very good results, this manual process potentially carries multiple shortcomings. The biggest issue with the AP X-ray image is the fact that it is 2D in nature while the measurement's objective is to obtain three-dimensional (3D) parameters.

Objective

The objective of this study is to derive a methodology to automatically select correct THA implant sizes while keeping the anatomical center of each specific patient within a forward solution model (FSM) that predicts post-operative outcomes.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 61 - 61
1 Feb 2020
LaCour M Nachtrab J Ta M Komistek R
Full Access

Introduction

Traditionally, conventional radiographs of the hip are used to assist surgeons during the preoperative planning process, and these processes generally involve two-dimensional X-ray images with implant templates. Unfortunately, while this technique has been used for many years, it is very manual and can lead to inaccurate fits, such as “good” fits in the frontal view but misalignment in the sagittal view. In order to overcome such shortcomings, it is necessary to fully describe the morphology of the femur in three dimensions, therefore allowing the surgeon to successfully view and fit the components from all possible angles.

Objective

The objective of this study was to efficiently describe the morphology of the proximal femur based on existing anatomical landmarks for use in surgical planning and/or forward solution modeling.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 81 - 81
1 Feb 2020
Dessinger G Nachtrab J LaCour M Komistek R
Full Access

Introduction

Untreated hip osteoarthritis is a debilitating condition leading to pain, bone deformation, and limited range of motion. Unfortunately, studies have not been conducted under in vivo conditions to determine progressive kinematics variations to a hip joint from normal to pre-operative and post-operative THA conditions. Therefore, the objective was this study was to quantify normal and degenerative hip kinematics, compared to post-operative hip kinematics.

Methods

Twenty unique subjects were analyzed; 10 healthy, normal subjects and 10 degenerative, subjects analyzed pre-operatively and then again post-operatively after receiving a THA. During each assessment, the subject performed a gait (stance and swing phase) activity under mobile, fluoroscopic surveillance. The normal and diseased subjects had CT scans in order to acquire bone geometry while implanted subjects had corresponding CAD models supplied. Femoral head and acetabular cup centers were approximated by spheres based on unique geometries while the component centers were pre-defined as the center of mass. These centers were used to compare femoral head sliding magnitudes on the acetabular cup during the activity for all subjects. Subjects were noted to have separation with changes in center magnitudes of more than 1 mm during gait. Utilizing 3D-to-2D registration techniques, the hip joint kinematics were derived and assessed. This allowed for visualization of normal subject positioning, pre-op bone deterioration, and implant placement within the bones.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 137 - 137
1 Feb 2020
Dessinger G Argenson J Bizzozero P LaCour M Komistek R
Full Access

Introduction

Numerous fluoroscopic studies have been conducted to investigate kinematic variabilities of total knee arthroplasty (TKA). In those studies, subjects having a posterior stabilized (PS) TKA experience greater weightbearing knee flexion and posterior femoral rollback of the lateral condyle. In those same studies, subjects did experience a high incidence of variable medial condyle motion and reverse axial rotation, especially occurring when the cam engaged the post. More recently, a PS TKA was designed to accommodate both gender and ethnicity. Therefore, the objective of this study was to assess in vivo kinematics for subjects having this TKA type to determine if subjects having this PS TKA experienced more optimal knee kinematics.

Methods

Twenty-five subjects in this study were asked to perform a deep knee bend to maximum knee flexion and a step-up maneuver while under fluoroscopic surveillance. All subjects were patients of one experienced surgeon and received the same PS TKA. Using a 3D-2D registration technique, the CAD models, supplied by the sponsoring company, were superimposed over x-ray images at specified increments throughout the fluoroscopic footage. The kinematics were then analyzed to evaluate lateral anterior/posterior (LAP) and medial anterior/posterior (MAP) condyle translation as well as axial rotation of the femur with respect to the tibia.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 94 - 94
1 Feb 2020
Ta M Nachtrab J LaCour M Komistek R
Full Access

Introduction

Obtaining accurate anatomical landmarks may lead to a better morphologic understanding, but this is challenging due to the variation of bony geometries. A manual approach, non-ideal for surgeons or engineers, requires a CT or MRI scan, and landmarks must be chosen based on the 3D representation of the scanned data. Ideally, anatomical landmarking is achieved using either a statistical shape model or template matching. Statistical modeling approaches require multitude of training data to capture population variation. Prediction of anatomical landmarks through template matching techniques has also been extensively investigated. These techniques are based on the minimization or maximization of an objective or cost function. As is the nature of non-rigid algorithms, these techniques can fail in the local maxima if the template and new bone models have noise or outliers. Therefore, a combination of rigid and non-rigid registration techniques is needed, in order to obtain accurate anatomical landmarks and improve the prediction process.

Objective

The objective of this study was to find a way to efficiently obtain accurate anatomical landmarks based on an existing template's landmarks for use in a forward solution model (FSM) to predict patient specific mechanics.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 62 - 62
1 Feb 2020
LaCour M Nachtrab J Ta M Komistek R
Full Access

Introduction

Previous research defines the existence of a “safe zone” (SZ) pertaining to acetabular cup implantation during total hip arthroplasty (THA). It is believed that if the cup is implanted at 40°±10° inclination and 15°±10° anteversion, risk of dislocation is reduced. However, recent studies have documented that even when the acetabular cup is placed within the SZ, high incidence dislocation and instability remains due to the combination of patient-specific configuration, cup diameter, head size, and surgical approach. The SZ only investigates the angular orientation of the cup, ignoring translational location. Translational location of the cup can cause a mismatch between anatomical hip center and implanted cup center, which has not been widely explored.

Objective

The objective of this study is to define a zone within which the implanted joint center can be altered with respect to the anatomical joint center but will not increase the likelihood of post-operative hip separation or dislocation.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 95 - 95
1 Feb 2020
Ta M Nachtrab J LaCour M Komistek R
Full Access

Summary

The mathematical model has proven to be highly accurate in measuring leg length before and after surgery to determine how leg length effects hip joint mechanics.

Introduction

Leg length discrepancy (LLD) has been proven to be one of the most concerning problems associated with total hip arthroplasty (THA). Long-term follow-up studies have documented the presence of LLD having direct correlation with patient dissatisfaction, dislocation, back pain, and early complications. Several researchers sought to minimize limb length discrepancy based on pre-operative radiological templating or intra-operative measurements. While often being a common occurrence in clinical practice to compensate for LLD intra-operatively, the center of rotation of the hip joint has often changes unintentionally due to excessive reaming. Therefore, the clinical importance of LLD is still difficult to solve and remains a concern for clinicians.


Introduction

Many fluoroscopic studies on total knee arthroplasty (TKA) have identified kinematic variabilities compared to the normal knee, with many subjects experiencing paradoxical motion patterns. The intent of this study was to investigate the results of a newly designed PCR TKA to determine kinematic variabilities and assess these kinematic patterns with those previously documented for the normal knee.

Methods

The study involves determining the in vivo kinematics for 80 subjects compared to the normal knee. 10 subjects have a normal knee, 40 have a Journey II PCR TKA and 40 subjects with the Journey II XR TKA (BCR). Although all PCR subjects have been evaluated, we are continuing to evaluate subjects with a BCR TKA. All TKAs were performed by a single surgeon and deemed clinically successful. All subjects performed a deep knee bend from full extension to maximum flexion while under fluoroscopic surveillance. Kinematics were calculated via 3D-to-2D registration at 30° increments from full extension to maximum flexion. Anterior/posterior translation of the medial (MAP) and lateral (LAP) femoral condyles and femorotibial axial rotation were compared during ranges of motion in relation to the function of the cruciate ligaments.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 100 - 100
1 Feb 2020
Khasian M LaCour M Coomer S Komistek R
Full Access

Background

Although early TKA designs were symmetrical, during the past two decades TKA have been designed to include asymmetry, pertaining to either the trochlear groove, femoral condylar shapes or the tibial component. More recently, a new TKA was designed to include symmetry in all areas of the design, in the hopes of reducing design and inventory costs.

Objective

The objective of this study was to determine the in vivo kinematics for subjects implanted with this symmetrical TKA during a weight-bearing deep knee bend activity.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 85 - 85
1 Feb 2020
Dessinger G LaCour M Komistek R
Full Access

Introduction

Diagnosis of osteoarthritis relies primarily on image-based analyses. X-ray, CT, and MRI can be used to evaluate various features associated with OA including joint space narrowing, deformity, articular cartilage integrity, and other joint parameters. While effective, these exams are costly, may expose the patient to ionizing radiation, and are often conducted under passive, non-weightbearing conditions. A supplemental form of analysis utilizing vibroarthrographic (VAG) signals provides an alternative that is safer and more cost-effective for the patient. The objective of this study is to correlate the kinematic patterns of normal, diseased (pre-operative), and implanted (post-operative) hip subjects to their VAG signals that were collected and to more specifically, determine if a correlation exists between femoral head center displacement and vibration signal features.

Methods

Of the 28 hips that were evaluated, 10 were normal, 10 were diseased, and 8 were implanted. To collect the VAG signal from each subject, two uniaxial accelerometers were placed on bony landmarks near the joint; one was placed on the greater trochanter of the femur and the other along the anterior edge of the iliac crest. The subjects performed a single cycle gait (stance and swing phase) activity under fluoroscopic surveillance. The CAD models of the implanted components were supplied by the sponsoring company while the subject bone models were created from CT scans. 3D-to-2D registration was conducted on subject fluoroscopic images to obtain kinematics, contact area, and femoral center head displacement. The VAG signals were trimmed to time, passed with a denoise filter and wavelet decomposition.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 78 - 78
1 Apr 2019
Dessinger G Mahfouz M Fatah EEA Johnson J Komistek R
Full Access

Introduction

At present, orthopaedic surgeons utilize either CT, MRI or X-ray for imaging a joint. Unfortunately, CT and MRI are quite expensive, non weight-bearing and the orthopaedic surgeon does not receive revenue for these procedures. Although x-rays are cheaper, similar to CT scans, patients incur radiation. Also, all three of these imaging modalities are static. More recently, a new ultrasound technology has been developed that will allow a surgeon to image their patients in 3D. The objective of this study is to highlight the new opportunity for orthopaedic surgeons to use 3D ultrasound as alternative to CT, MRI and X-rays.

Methods

The 3D reconstruction process utilizes statistical shape atlases in conjunction with the ultrasound RF data to build the patient anatomy in real-time. The ultrasound RF signals are acquired using a linear transducer. Raw RF data is then extracted across each scan line. The transducer is tracked using a 3D tracking system. The location and orientation for each scan line is calculated using the tracking data and known position of the tracker relative to the signal. For each scan line, a detection algorithm extracts the location on the signal of the bone boundary, if any exists. Throughout the scan process, a 3D point cloud is created for each detected bone signal. Using a statistical bone atlas for each anatomy, the patient specific surface is reconstruction by optimizing the geometry to match the point cloud. Missing regions are interpolated from the bone atlas.

To validate reconstructed models output models are then compared to models generated from 3D imaging, including CT and MRI.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 61 - 61
1 Apr 2019
Ta M LaCour M Sharma A Komistek R
Full Access

During the preoperative examination, surgeons determine whether a patient, with a degenerative hip, is a candidate for total hip arthroplasty (THA). Although research studies have been conducted to investigate in vivo kinematics of degenerative hips using fluoroscopy, surgeons do not have assessment tools they can use in their practice to further understand patient assessment. Ideally, if a surgeon could have a theoretical tool that efficiently allows for predictive post-operative assessment after virtual surgery and implantation, they would have a better understanding of joint conditions before surgery.

The objectives of this study were (1) to use a validated forward solution hip model to theoretically predict the in vivo kinematics of degenerative hip joints, gaining a better understanding joint conditions leading to THA and (2) compare the predicted kinematic patterns with those derived using fluoroscopy for each subject.

A theoretical model, previously evaluated using THA kinematics and telemetry, was used for this study, incorporating numerous muscles and ligaments, including the quadriceps, hamstring, gluteus, iliopsoas, tensor fasciae latae, an adductor muscle groups, and hip capsular ligaments. Ten subjects having a pre-operative degenerative hip were asked to perform gait while under surveillance using a mobile fluoroscopy unit. The hip joint kinematics for ten subjects were initially assessed using in vivo fluoroscopy, and then compared to the predicted kinematics determined using the model. Further evaluations were then conducted varying implanted component position to assess variability.

The fluoroscopic evaluation revealed that 33% of the degenerative hips experienced abnormal hip kinematics known as “hip separation” where the femoral head slides within the acetabulum, resulting in a decrease in contact area. Interestingly, the mathematical model produced similar kinematic profiles, where the femoral head was sliding within the acetabulum (Figure 1).

During swing phase, it was determined that this femoral head sliding (FHS) is caused by hip capsular laxity resulting in reducing joint tension. At the point of maximum velocity of the foot, the momentum of the lower leg becomes too great for capsule to properly constrain the hip, leading to the femoral component pistoning outwards.

During stance phase, kinematics of degenerative hips were similar to kinematics of a THA subject with mal-positioning of the acetabular cup. Further evaluation revealed that if the cup was placed at a position other than its native, anatomical center, abnormal forces and torques acting within the joint lead to the femoral component sliding within the acetabular cup. It was hypothesized that in degenerative hips, similar to THA, the altered center of rotation is a leading influence of FHS (Figure 2).

The theoretical model has now been validated for subjects having a THA and degenerative subjects. The model has successfully derived kinematic patterns similar to subjects evaluated using fluoroscopy. The results in this study revealed that altering the native joint center is the most influential factor leading to FHS, or more commonly known as hip separation. A new module for the mathematical model is being implemented to simulate virtual surgery so that the surgery can pre- operatively plan and then simulate post-operative results.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 64 - 64
1 Apr 2019
Dessinger G Ta M Zeller I Nachtrab J Sharma A Komistek R
Full Access

Introduction

Many fluoroscopic studies on total knee arthroplasty (TKA) have identified kinematic variabilities compared to the normal knee, with many subjects experiencing paradoxical motion patterns. The intent of this research study was to investigate the results of customized-individual-made (CIM) and off-the-shelf (OTS) PS and PCR TKA to determine kinematic variabilities and to assess these kinematic patterns with those previously documented for the normal knee.

Methods

In vivo kinematics were assessed for 151 subjects – 44 with CIM-PCR, 75 with OTS-PCR, 14 with CIM-PS, and 18 with OTS-PS TKA – using a mobile fluoroscopic system and then evaluated using a 3D-2D registration technique. This was a multicenter evaluation so the group of implants were implanted by two surgeons and selected based on recruitment criteria. Each subject performed a deep knee bend activity (DKB) while under fluoroscopy. The kinematics assessed for each subject were condyle translation (LAP/MAP) and rotation (axial rotation).


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 80 - 80
1 Apr 2019
Nachtrab J Dessinger G Khasian M LaCour M Sharma A Komistek R
Full Access

Introduction

Hip osteoarthritis can be debilitating, often leading to pain, poor kinematics and limiting range of motion. While the in vivo kinematics of a total hip arthroplasty (THA) are well documented, there is limited information pertaining to the kinematics of native, non-arthritic (normal) hips and degenerative hips requiring a THA.

The objective of this study is to evaluate and compare the in vivo kinematics of the normal hip with pre-operative, degenerative hips and post-operative THA.

Methods

Twenty subjects, ten having a normal hip and ten having a pre-operative, degenerative hip that were analyzed before surgery and then post-operatively after receiving a THA. Each subject was asked to perform gait while under mobile fluoroscopic surveillance. Normal and pre-operative degenerative subjects underwent a CT scan so that 3D models of their femur and pelvis could be created. Using 3D-to-2D registration techniques, the hip joint kinematics were derived and assessed.

Femoral head and acetabular cup rotational centers were derived using spheres. The centers of these spheres were used to obtain the femoral head sliding distance on the acetabular cup during the activity. The patient-specific reference femoral head values were obtained from the subjects’ CT scans in a non-weight bearing situation.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 60 - 60
1 Apr 2019
Ta M LaCour M Sharma A Komistek R
Full Access

Currently, hip implant designs are evaluated experimentally using mechanical simulators or cadavers, and total hip arthroplasty (THA) postoperative outcomes are evaluated clinically using long-term follow-up. However, these evaluation techniques can be both costly and time-consuming. Neither can provide an assessment of post-operative results at the onset of implant development. More recently, a forward-solution mathematical model was developed that functions as theoretical joint simulator, providing instant feedback to designers and surgeons alike. This model has been validated by comparing the model predictions with kinematic results from fluoroscopy for both implanted and non-implanted hips and kinetics from a telemetric hip. The model allows surgical technique modifications and implant component placement under in vivo conditions.

The objective of this study was to further expand the capabilities of the model to function as an intraoperative virtual surgical tool (Figure 1). This new module allows the surgeon to simulate surgery, then predict, compare, and optimize postoperative THA outcomes based on component placement, sizing choices, reaming and cutting locations, and surgical methods.

This virtual surgery tool simulates the quadriceps, hamstring, gluteus, iliopsoas, tensor fasciae latae, and an adductor muscle groups, as well as the hip capsular ligament groups. The model can simulate resecting, weakening, loosening, or tightening of soft tissues based on surgical techniques. Additionally, the model can analyze a variety of activities, including gait and deep flexion activities.

Initially, the virtual surgery module offers theoretical surgery tools that allow surgeons to alter surgical alignments, component designs, offsets, as well as reaming and cutting simulations. The virtual model incorporates a built-in CT scan bone database which will assist in determining muscle and ligament attachment sites as well as bony landmarks. The virtual model can be used to assist in the placement of both the femoral component and the acetabular cup (Figure 2).

Moreover, once the surgeon has decided on the placements of the components, they can use the simulation capabilities to run virtual human body maneuvers based on the chosen parameters. The simulations will reveal force, contact stress, and motion predictions of the hip joint (Figure 3). The surgeon can then choose to modify the positions accordingly or proceed with the surgery.

This new virtual surgical tool will allow surgeons to gain a better understanding of possible post-operative outcomes under pre-operative conditions or intra-operatively. Simulations using the virtual surgery model has revealed that improper component placement may lead to non-ideal post-operative function, which has been simulated using the model. Further evaluation is ongoing so that this new module can reveal more information pre-operatively, allowing a surgeon to gain ample information before surgery, especially with difficult and revision cases.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 22 - 22
1 Apr 2018
Ta M Dessinger G Zeller I Kurtz W Anderle M Sharma A Komistek R
Full Access

Introduction

Previous fluoroscopic studies of total knee arthroplasty (TKA) have revealed significant kinematic differences compared to the normal knee. Often, subjects having a TKA experienced kinematic patterns opposite of the normal knee. Therefore, the objective of this study was to determine the in vivo kinematics of subjects implanted with either a customized-individual-made (CIM) or the traditional (OTS) PS TKA to determine if customization offers a distinct advantage to the patient.

Methods

In-vivo kinematics were determined for 33 subjects, 15 having a CIM-TKA and 18 having OTS-TKA using a mobile fluoroscopic system and a 3D–2D registration technique. All of the subjects were implanted by a single surgeon and were scored to be clinically successful. Each subject underwent fluoroscopic observation while performing a weight-bearing (WB) deep knee bend (DKB) and chair rise (CR). The two groups were then compared for the range of motion, condyle translation, and axial rotation.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 24 - 24
1 Apr 2018
Zeller I Grieco T Meccia B Sharma A Komistek R
Full Access

Background

The overall goal of total knee arthroplasty (TKA) is to facilitate the restoration of native function following late stage osteoarthritis and for this reason it is important to develop a thorough understanding of the mechanics of a normal healthy knee.

While there are several methods for assessing TKA mechanics, these methods have limitations that make them prohibitive to both replicating physiological systems and evaluating non-implanted knees. These limitations can be circumvented through the development of mathematical models that use anatomical and physiological inputs to computationally simulate joint mechanics. This can be done in an inverse or forward manner to solve for either joint forces or motions respectively. The purpose of this study is to evaluate one such forward model and determine the accuracy of the predicted motions using fluoroscopy.

Methods

In vivo kinematics were determined during flexion from full extension to 120 degrees for ten normal, healthy, subjects using fluoroscopy and a 3D-to-2D registration method. All ten subjects had previously undergone CT scans allowing for the digital reconstruction of native femur and tibia geometries. These geometries were then input into a ridged body forward model based on Kane's system of dynamics. The resulting kinematics determined through fluoroscopy and the mathematical model were compared for all of the ten subjects.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 38 - 38
1 Apr 2018
LaCour M Ta M Sharma A Komistek R
Full Access

Background

In vivo fluoroscopic studies have proven that femoral head sliding and separation from within the acetabular cup during gait frequently occur for subjects implanted with a total hip arthroplasty. It is hypothesized that these atypical kinematic patterns are due to component malalignments that yield uncharacteristically higher forces on the hip joint that are not present in the native hip. This in vivo joint instability can lead to edge loading, increased stresses, and premature wear on the acetabular component.

Objective

The objective of this study was to use forward solution mathematical modeling to theoretically analyze the causes and effects of hip joint instability and edge loading during both swing and stance phase of gait.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 37 - 37
1 Apr 2018
LaCour M Ta M Sharma A Komistek R
Full Access

Background

Extensive research has previously been conducted analyzing the biomechanical effects of rotational changes (i.e. version and inclination) of the acetabular cup. Many sources, citing diverse dislocation statistics, encourage surgeons to strive for various “safe zones” during the THA operation. However, minimal research has been conducted, especially under in vivo conditions, to assess the consequences of cup translational shifting (i.e. offsets, medial and superior reaming, etc.). While it is often the practice to medialize the acetabular cup intraoperatively, there is still a lack of information regarding the biomechanical consequences of such cup medializations and medial/superior malpositionings.

Objective

Therefore, the objective of this study is to use a validated forward solution mathematical model to vary cup positioning in both the medial and superior directions to assess simulated in vivo kinematics.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 23 - 23
1 Apr 2018
Zeller I Dessinger G Sharma A Fehring T Komistek R
Full Access

Background

Previous in vivo fluoroscopic studies have documented that subjects having a PS TKA experience a more posterior condylar contact position at full extension, a high incidence of reverse axial rotation and mid flexion instability. More recently, a PS TKA was designed with a Gradually Reducing Radius (Gradius) curved condylar geometry to offer patients greater mid flexion stability while reducing the incidence of reverse axial rotation and maintaining posterior condylar rollback. Therefore, the objective of this study was to assess the in vivo kinematics for subjects implanted with a Gradius curved condylar geometry to determine if these subjects experience an advantage over previously designed TKA.

Methods

In vivo kinematics for 30 clinically successful patients all having a Gradius designed PS fixed bearing TKA with a symmetric tibia were assessed using mobile fluoroscopy. All of the subjects were scored to be clinically successful. In vivo kinematics were determined using a 3D-2D registration during three weight-bearing activities: deep-knee-bend (DKB), gait, and ramp down (RD). Flexion measurements were recorded using a digital goniometer while ground reaction forces were collected using a force plate as well. The subjects then assessed for range of motion, condyle translation and axial rotation and ground reaction forces.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 120 - 120
1 Mar 2017
Zeller I LaCour M Meccia B Kurtz W Cates H Anderle M Komistek R
Full Access

Introduction

Historically, knee implants have been designed using average patient anatomy and despite excellent implant survivorship, patient satisfaction is not consistently achieved. One possibility for this dissatisfaction relates to the individual patient anatomic variability. To reduce this inter-patient variability, recent advances in imaging and manufacturing have allowed for the implementation of patient specific posterior cruciate retaining (PCR) total knee arthroplasty (TKA). These implants are individually made based on a patient's femoral and tibial anatomy determined from a pre-operative CT scan. Although in-vitro studies have demonstrated promising results, there are few studies evaluating these implants in vivo. The objective of this study was to determine the in vivo kinematics for subjects having a customized, individually made(CIM) knee implant or one of several traditional, off-the-shelf (OTS) TKA designs.

Methods

In vivo kinematics were assessed for 108 subjects, 44 having a CIM-PCR-TKA and 64 having one of three standard designs, OTS-PCR-TKA which included symmetric TKA(I), single radius TKA(II) and asymmetric TKA(III) designs. A mobile fluoroscopic system was used to observe subjects during a weight-bearing deep knee bend (DKB), a Chair Rise and Normal Gait. All the subjects were implanted by one of two surgeons and were clinically successful (HSS Score>90). The kinematic comparison between the three designs involved range of motion, femoral translation, axial rotation, and condylar lift-off.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 82 - 82
1 Feb 2017
Grieco T Sharma A Hamel W LaCour M Zeller I Cates H Komistek R
Full Access

Background

The Bi-Cruciate Stabilized (BCS) total knee arthroplasty (TKA) incorporates two cam-post mechanisms in order to replicate the functionality and stability provided by the anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL) in the native knee. Recently (2012), a second generation BCS design has introduced femur and tibial bearing modifications that are intended to delay lateral femoral condyle rollback and encourage more stable positioning of the medial femoral condyle to more closely replicate normal knee kinematics. The purpose of this study was to compare the kinematics of this TKA to the normal knee during a weight bearing flexion activity.

Methods

In vivo kinematics were derived for 10 normal non-implanted knees and 40 second generation BCS TKAs all implanted by a single surgeon. Computed tomography (CT) scans were obtained for each normal patient, and 3D reconstruction of the femur, tibia/fibula, and patella was performed. Fluoroscopic images were captured at 60 Hz using a mobile fluoroscopic unit that tracked the knee while patients performed a deep knee bend (DKB) from full extension to maximum flexion. A 3D-to-2D image registration technique was used at 30° increments to determine the transformations of the segmented bones or TKA components. The anterior-posterior motion of the lateral femoral condyle contact point (LAP) and the medial femoral condyle contact point (MAP), as well as tibio-femoral axial rotation, were measured at 30° increments from full extension to maximum flexion. Statistical analysis was conducted at the 95% confidence level.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 95 - 95
1 Feb 2017
LaCour M Sharma A Komistek R
Full Access

Background

Currently, hip implant designs are evaluated experimentally using mechanical simulators or cadavers, and total hip arthroplasty (THA) postoperative outcomes are evaluated clinically using long-term follow-up. However, these evaluation techniques can be both costly and time-consuming. Fortunately, forward solution mathematical models can function as theoretical joint simulators, providing instant feedback to designers and surgeons alike. Recently, a validated forward solution model of the hip has been developed that can theoretically simulate new implant designs and surgical technique modifications under in vivo conditions.

Objective

The objective of this study was to expand the use of this hip model to function as an intraoperative virtual implant tool, thereby allowing surgeons to predict, compare, and optimize postoperative THA outcomes based on component placement, sizing choices, reaming and cutting locations, and surgical methods.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 81 - 81
1 Feb 2017
Grieco T LaCour M Zeller I Sharma A Cates H Hamel W Komistek R
Full Access

Introduction

The Bi-Cruciate Stabilized (BCS) total knee arthroplasty (TKA) incorporates two cam-post mechanisms to reproduce the functionality and stability provided by the anterior cruciate ligament and posterior cruciate ligament in the native knee. The anterior cam-post mechanism provides stability in full extension and early flexion (≤20°) while the posterior cam-post mechanism prevents anterior sliding of the femur during deeper flexion (≥60°). Recently (2012), a second generation BCS design introduced more normal shapes to the femur and tibial bearing geometries that provides delayed lateral femoral condyle rollback and encourages more stable positioning of the medial femoral condyle. The purpose of this study was to compare the in vivo kinematics exhibited by the two generations during weight bearing flexion.

Methods

In vivo kinematics were derived for 126 patients. Eighty-six subjects were implanted with a first generation BCS (BCS 1) TKA and 40 with the second generation BCS (BCS 2) TKA. Fluoroscopic videos were captured for patients while they performed a deep knee bend (DKB) from full extension to maximum flexion. Anterior-posterior motion of the lateral femoral condyle (LAP) and the medial femoral condyle (MAP), as well as tibio-femoral axial rotation, were analyzed at 30° increments from full extension to maximum flexion using a 3D-to-2D image registration technique. Statistical analysis was conducted at the 95% confidence level.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 96 - 96
1 Feb 2017
LaCour M Sharma A Komistek R
Full Access

Background

While not common in the native hip, occurrences of femoral head separation from the acetabular cup during gait are well documented after total hip arthroplasty. Although the effects of this phenomenon are not well understood, we hypothesize that these atypical kinematics are due to component misalignments that yield uncharacteristic forces on the hip joint that are not present in the native hip.

Objective

The objective of this study was to theoretically predict the causes of hip separation during stance phase using forward solution mathematical modelling.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 118 - 118
1 May 2016
Grieco T Komistek R Sharma A Hamel W Zeller I
Full Access

Introduction

Recently, a mobile-fluoroscopy unit was developed which can capture subjects performing unconstrained motions, more accurately replicating everyday demands that patients place on their TKA. The objective of this study was to analyze normal knee and various TKA while subjects perform both traditional and more challenging activities while under surveillance of a mobile fluoroscopy unit.

Methods

Two hundred and seventy-five knees were evaluated using mobile fluoroscopy, which tracks the patient and the joint of interest as they perform a set of activities. Mobile fluoroscopic surveillance was used to investigate patients with customized TKA and off the shelf TKA as well as subjects with posterior stabilized (PS) or posterior cruciate retaining (PCR) TKAs while performing the following activities: (1) deep knee bend, (2) chair-rise, (3) walking up and down steps, (4) normal walking, and/or (5) walking up and down a ramp (Figure 1). The mobile fluoroscopic unit captures images at 60 Hz using a flat panel X-ray detector and the unit follows the patient, using a marker-less system, while the patients perform each activity. Each video was digitized and analyzed to determine the 3D kinematics.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 119 - 119
1 May 2016
LaCour M Komistek R Meccia B Sharma A
Full Access

Introduction

Currently, knee and hip implants are evaluated experimentally using mechanical simulators or clinically using long-term follow-up. Unfortunately, it is not practical to mechanically evaluate all patient and surgical variables and predict the viability of implant success and/or performance. More recently, a validated mathematical model has been developed that can theoretically simulate new implant designs under in vivo conditions to predict joint forces kinematics and performance. Therefore, the objective of this study was to use a validated forward solution model (FSM) to evaluate new and existing implant designs, predicting mechanics of the hip and knee joints.

Methods

The model simulates the four quadriceps muscles, the complete hamstring muscle group, all three gluteus muscles, iliopsoas group, tensor fasciae latae, and an adductor muscle group. Other soft tissues include the patellar ligament, MCL, LCL, PCL, ACL, multiple ligaments connecting the patella to the femur, and the primary hip capsular ligaments (ischiofemoral, iliofemoral, and pubofemoral). The model was previously validated using telemetric implants and fluoroscopic results and is now being used to analyze multiple implant geometries. Virtual implantation allows for various surgical alignments to determine the effect of surgical errors. Furthermore, the model can simulate resecting, weakening, or tightening of soft tissues based on surgical errors or technique modifications.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 75 - 75
1 Jan 2016
Nakamura S Sharma A Nakamura K Ikeda N Zingde S Komistek R Matsuda S
Full Access

Previously more femoral rollback has been reported in posterior-stabilized implants, but so far the kinematic change after post-cam engagement has been still unknown. The tri-condylar implants were developed to fit a life style requiring frequent deep flexion activities, which have the ball and socket third condyle as post-cam mechanism. The purpose of the current study was to examine the kinematic effects of the ball and socket third condyle during deep knee flexion.

The tri-condylar implant analyzed in the current study is the Bi-Surface Knee System developed by Kyocera Medical (Osaka, Japan). Seventeen knees implanted with a tri-condylar implant were analyzed using 3D to 2D registration approach. Each patient was asked to perform a weight-bearing deep knee bend from full extension to maximum flexion under fluoroscopic surveillance. During this activity, individual fluoroscopic video frames were digitized at 10°increments of knee flexion. A distance of less than 1 mm initially was considered to signify the ball and socket contact. The translation rate as well as the amount of translation of medial and lateral AP contact points and the axial rotation was compared before and after the ball and socket joint contact.

The average angle of ball and socket joint contact were 64.7° (SD = 8.7), in which no separation was observed after initial contact. The medial contact position stayed from full extension to ball and socket joint contact and then moved posteriorly with knee flexion. The lateral contact position showed posterior translation from full extension to ball and socket joint contact, and then greater posterior translation after contact (Figure 1). Translation and translation rate of contact positions were significantly greater at both condyles after ball and socket joint contact. The femoral component rotated externally from full extension to ball and socket joint contact, and then remained after ball and socket joint contact (Figure 2). There was no statistical significance in the angular rotation between ball and socket joint contact and maximum flexion. Translation of angular rotation was significantly greater before ball and socket joint contact, however, there was no significance in translation rate before and after ball and socket joint contact.

The ball and socket joint was proved to induce posterior rollback intensively. In terms of axial rotation, the ball and socket joint did not induce reverse rotation, but had slightly negative effects after contact. The ball and socket provided enough functions as a posterior stabilizing post-cam mechanism and did not prevent axial rotation.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 532 - 532
1 Dec 2013
Sharma A Carr C Cheng J Mahfouz M Komistek R
Full Access

Mathematical modeling provides an efficient and easily reproducible method for the determination of joint forces under in vivo conditions. The need for these new modeling methodologies is needed in the lumbar spine, where an understanding of the loading environment is limited. Few studies using telemetry and pressure sensors have directly measured forces borne by the spine; however, only a very small number of subjects have been studied and experimental conditions were not ideal for giving total forces acting in the spine. As a result, alternative approaches for investigating the lumbar spine across different clinical pathologies are essential. Therefore, the objective of this study was to develop of an inverse dynamic mathematical model for theoretically deriving in-vivo contact forces as well as musculotendon forces in patients having healthy, symptomatic, pathological and post-operative conditions of the lumbar spine.

Fluoroscopy and 3D-to-2D image registration were used to obtain kinematic data for patients performing flexion-extension of the lumbar spine. This data served as input into the multi-body, mathematical model. Other inputs included patient-specific bone geometries, recreated from CT, and ground reaction forces. Vertebral bones were represented as rigid bodies, while massless frames symbolized the lower body, torso and abdominal wall (Figure 1). In addition, ligaments were selected and modeled as linear spring elements, along with relevant muscle groups. The muscles were divided into individual fascicles and solved for using a pseudo-inverse algorithm which enabled for decoupling of the derived resultant torques defining the desired kinetic trajectory for the muscles.

The largest average contact forces in the model for healthy, symptomatic, pathological, and post-operative lumbar spine conditions occurred at maximum flexion at L4L5 level and were predicted to be 2.47 BW, 2.33 BW, 3.08 BW, and 1.60 BW, respectively. The FE rotation associated with these theoretical force values was 43.0° in healthy, 40.5° in symptomatic, 44.4° in pathological, and 22.8° in post-operative patients. The smallest forces occurred as patients approached the upright, standing position, followed by slight increases in the contact force at full extension. The theoretically derived muscle forces exhibited similar contributory force profiles in the intact spine (healthy, symptomatic, and pathologic); however, surgically implanted spines experienced an increase in the contribution of the external oblique muscles accompanied with decreased slope gradients in the muscle force profiles (Figure 2).

These altered force patterns may be associated with the decrease in the predicted contact forces in post-operative patients. In addition, the decreased slope gradients in surgically implanted patients corresponds with the observed difficulty of performing the prescribed motion, possibly due to improper muscle firing, thereby leading to slower motion cycles and less ranges-of-motion. On the contrary, patients having an intact spine performed the activity at a faster speed and to greater ranges-of-motion, which corresponds with the higher contact forces derived in the model. In conclusion, this research study presented the development of a mathematical modeling approach utilizing patient-specific data to generate theoretical in-vivo joint forces. This may serve to help progress the understanding for the kinetic characteristics of the native and surgically implanted lumbar spine.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 211 - 211
1 Dec 2013
Komistek R Hamel W Young M Zeller I Grieco T Sharma A
Full Access

INTRODUCTION:

Stationary fluoroscopy has been a viable resource for determining in vivo knee kinematics, but limitations have restricted the use of this technology. Patients can only perform certain normal daily living activities while using stationary fluoroscopy and must conduct the activities at speeds that are slower than normal to avoid ghosting of the images. More recently, a Mobile Tracking Fluoroscopic (MTF) unit has been developed that can track patients in real-time as he/she performs various activities at normal speeds (Figure 1). Therefore, the objective of this study was to compare in vivo kinematics for patient's evaluated using stationary and mobile fluoroscopy to determine potential advantages and disadvantages for use of these technologies.

METHODS:

The MTF is a unique mobile robot that can acquire real-time x-ray records of hip, knee, or ankle joint motion while a subject walks/manoeuvres naturally within a laboratory floor area. By virtue of its mechanizations, test protocols can involve many types of manoeuvres such as chair rises, stair climbing/descending, ramp crossing, walking, etc. Because the subjects are performing such actions naturally, the resulting fluoroscope images reflect the full functionality of their musculoskeletal anatomy. Patients in the study were initially fluoroscoped using a stationary unit and then using the MTF unit.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 279 - 279
1 Dec 2013
Komistek R Mahfouz M Wasielewski R De Bock T Sharma A
Full Access

INTRODUCTION:

Previous modalities such as static x-rays, MRI scans, CT scans and fluoroscopy have been used to diagnosis both soft-tissue clinical conditions and bone abnormalities. Each of these diagnostic tools has definite strengths, but each has significant weaknesses. The objective of this study is to introduce two new diagnostic, ultrasound and sound/vibration sensing, techniques that could be utilized by orthopaedic surgeons to diagnose injuries, defects and other clinical conditions that may not be detected using the previous mentioned modalities.

METHODS:

A new technique has been developed using ultrasound to create three-dimensional (3D) bones and soft-tissues at the articulating surfaces and ligaments and muscles across the articulating joints (Figure 1). Using an ultrasound scan, radio frequency (RF) data is captured and prepared for processing. A statistical signal model is then used for bone detection and bone echo selection. Noise is then removed from the signal to derive the true signal required for further analysis. This process allows for a contour to be derived for the rigid body of questions, leading to a 3D recovery of the bone. Further signal processing is conducted to recover the cartilage and other soft-tissues surrounding the region of interest. A sound sensor has also been developed that allows for the capture of raw signals separated into vibration and sound (Figure 2). A filtering process is utilized to remove the noise and then further analysis allows for the true signal to be analyzed, correlating vibrational signals and sound to specific clinical conditions.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 51 - 51
1 Mar 2013
De Bock T Zingde S Leszko F Tesner R Wasielewski R Mahfouz M Komistek R
Full Access

Introduction

The low-cost, no-harm conditions associated with vibroarthography, the study of listening to the vibrations and sound patterns of interaction at the human joints, has made this method a promising tool for diagnosing joint pathologies. This current study focuses on the knee joint and aims to synchronize computational models with vibroarthographic signals via a comprehensive graphical user interface (GUI) to find correlations between kinematics, vibration signals, and joint pathologies. This GUI is the first of its kind to synchronize computational models with vibroarthographic signals and gives researchers a new advantage of analyzing kinematics, vibration signals, and pathologies simultaneously in an easy-to-use software environment.

Methods

The GUI (Figure 1) has the option to view live or previously captured fluoroscopic videos, the corresponding computational model, and/or the pre- or post-processed vibration signals. Having more than one signal axes available allows for comparison of different filtering techniques to the same signal, or comparison of signals coming from different sensor placements (ex: medial vs. lateral femoral condyle). Using computational models derived using fluoroscopic data synchronized with the vibration signals, the areas of contact between articulating surfaces can be mapped for the in vivo signal (figure 2). This new method gives the opportunity to find correlations between the different sensor signals and contact maps with the diagnosis and cartilage degeneration map, provided by a surgeon, during arthroscopy or TKA implantation (figure 3).


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 332 - 332
1 Mar 2013
Smith J Sharma A Mahfouz M Komistek R
Full Access

Introduction

While fluoroscopic techniques have been widely utilized to study in vivo kinematic behavior of total knee arthroplasties, determination of the contact forces of large population sizes has proven a challenge to the biomedical engineering community. This investigation utilizes computational modeling to predict these forces and validates these with independent telemetric data for multiple patients, implants, and activities.

Methods

Two patients with telemetric implants, the first of which was studied twice with the reexamination occurring 8 years after the first, were studied. Three-dimensional models of the patients' bones were segmented from CT and aligned with the design models of the telemetric implants. Fluoroscopy was collected for gait, deep knee bend, chair rise, and stair activities while being synchronized to the ground reaction force (GRF) plate, telemetric forces, knee flexion angles, electromyography (EMG), and vibration sensors. Registration of the implants and bones to the 2-D fluoroscopy provided the 6 degree of freedom kinematic data for each object. Orientation and position of the components, the GRFs, ligament properties, and muscle attachment locations were the only inputs to the Kane's dynamics inverse solution. Dynamic contact mapping and pseudo-inverse solution method were incorporated to output the predicted muscle forces of the vastus lateralis, rectus femoris, vastus medialis, biceps femoris long head, and gastrocnemius and contact forces at the patellofemoral and medial and lateral tibiofemoral. While every major muscle of the lower limb was incorporated into the model, these five were used in the validation process. EMG signals were processed to determine the neural excitation, muscle activation, and using the dynamic muscle length from the kinematics, the tension generated by these muscles.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 371 - 371
1 Mar 2013
Zingde S Leszko F Sharma A Howser C Meccia B Mahfouz M Dennis D Komistek R
Full Access

INTRODUCTION

In-vivo data pertaining to the actual cam-post engagement mechanism in PS and Bi-Cruciate Stabilized (BCS) knees is still very limited. Therefore, the objective of this study was to determine the cam-post mechanism interaction under in-vivo, weight-bearing conditions for subjects implanted with either a Rotating Platform (RP) PS TKA, a Fixed Bearing (FB) PS TKA or a FB BCS TKA.

METHODS

In-vivo, weight-bearing, 3D knee kinematics were determined for eight subjects (9 knees) having a RP-PS TKA (DePuy Inc.), four subjects (4 knees) with FB-PS TKA (Zimmer Inc.), and eight subjects (10 knees) having BCS TKA (Smith&Nephew Inc.), while performing a deep knee bend. 3D-kinematics was recreated from fluoroscopic images using a previously published 3D-to-2D registration technique (Figure 1). Images from full extension to maximum flexion were analyzed at 10° intervals. Once the 3D-kinematics of implant components was recreated, the cam-post mechanism was scrutinized. The distance between the interacting surfaces was monitored throughout flexion and the predicted contact map was calculated.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 52 - 52
1 Mar 2013
De Bock T Orekhov G Stephens S Dennis D Mahfouz M Komistek R
Full Access

Introduction

Previous fluoroscopy studies have been conducted on numerous primary-type TKA, but minimal in vivo data has been documented for subjects implanted with revision TKA. If a subject requires a revision TKA, most often the ligament structures at the knee are compromised and stability of the joint is of great concern. In this present study, subjects implanted with a fixed or mobile bearing TC3 TKA are analyzed to determine if either provides the patient with a significant kinematic advantage.

Methods

Ten subjects are analyzed implanted with fixed bearing PFC TC3 TKA and 10 subjects with a mobile bearing PFC TC3 TKA. Each subject underwent a fluoroscopic analysis during four weight bearing activities: deep knee bend (DKB), chair rise, gait, and stair descent. Fluoroscopic images were taken in the sagittal plane at 10 degree increments for the DKB, 30 degree increments for chair rise, and at heel strike, toe off, 33% and 66% cycle gait and stair descent.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 333 - 333
1 Mar 2013
De Bock T Smith J Dennis D Mahfouz M Komistek R
Full Access

Introduction

Electromyography (EMG) is the best known method in obtaining in vivo muscle activation signals during dynamic activities, and this study focuses on comparing the EMG signals of the quadriceps muscles for different TKA designs and normal knees during maximum weight bearing flexion. It is hypothesized that the activation levels will be higher for the TKA groups than the normal group.

Methods

Twenty-five subjects were involved in the study with 11 having a normal knee, five a rotating platform (RP) posterior stabilized (PS) TKA, and nine subjects with a PFC TC3 revision TKA. EMG signals were obtained from the rectus femoris, vastus medialis, and vastus lateralis as the patients performed a deep knee bend from full extension to maximum flexion. The data was synchronized with the activity so that the EMG data could be set in flexion-space and compared across the groups. EMG signals were pre-processed by converting the raw signals into neural excitations and normalizing this data with the maximum voluntary contraction (MVC) performed by the subject. The signals were then processed to find the muscle activations which, normalized by MVC, range from 0 to 1.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 109 - 109
1 Sep 2012
Mueller JK Sharma A Komistek R Meccia B
Full Access

Orthopaedic companies spend years and millions of dollars developing and verifying new total knee arthroplasty (TKA) designs. Recently, computational models have been used in the hopes of increasing the efficiency of the design process. The most popular predictive models simulate a cadaveric rig. Simulations of these rigs, although useful, do not predict in vivo behavior. Therefore, in this current study, the development of a physiological forward solution, or predictive, rigid body model of the knee is described.

The models simulate a non-weight bearing extension activity or a weight-bearing deep knee bend (DKB) activity. They solve for both joint forces and kinematics simultaneously and were developed from the ground up. The models are rigid body and use Kane's dynamical equations. The model began with a simple two dimensional non-weight bearing extension activity model of the tibiofemoral joint. Step by step the model was expanded. Quadriceps and hamstring muscles were added to drive the motion. Ligaments were added represented by multiple non-linear spring elements. The model was expanded to three-dimensions (3D) allowing out of plane motions and calculation of medial and lateral condylar forces. The patella was added as its own body allowing for simulation of the patellofemoral joint. The model was then converted to a weight bearing deep knee bend activity. A pelvis and trunk were added and muscles were given physiological origin and insertion points. A modified proportional-integral-derivative (PID) controller was implemented to control the rate of flexion and also to assist in joint stability by adjusting the force in individual quadriceps muscles. A method for representing articulating geometry was developed. Once the deep knee bend model was fully developed (Figure 1) it was converted back to a non-weight bearing extension model (Figure 2) resulting in simulations of a normal knee performing a weight bearing and non-weight bearing activity. The tibiofemoral kinematic results were compared to in vivo kinematics obtained from a fluoroscopy study of five normal subjects. Parameters from the CT models of one of these subjects (Subject 3) were used in the model.

The model kinematics behave as the normal knee does in vivo. The kinetic results were within reasonable ranges with a maximum total quadriceps force of 0.86 BW and 4.73 BW for extension and DKB simulations, respectively (Figure 3 and Figure 4). The maximum total tibiofemoral forces were 1.26 BW and 3.70 BW for extension and DKB, respectively. The relationship between the quadriceps force, patella ligament force and patellofemoral forces are consistent with how the extensor mechanism behaves (Figure 3 and Figure 4). The patellofemoral forces are low between 0 and 20 degrees flexion and the patella ligament and quadriceps forces are close in magnitude from 0 to around 70 degrees flexion when the patellofemoral forces increase and the quadriceps forces increase relative to the patella ligament force. The model allows for virtual implantation of TKA geometry and after kinematic and kinetic validation from in vivo TKA data can be used to predict the behavior of TKA in vivo.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 96 - 96
1 Sep 2012
Komistek R
Full Access

INTRODUCTION

Multiple video fluoroscopic analyses have been performed to determine the in vivo kinematic patterns of total knee arthroplasty (TKA) and non implanted knees. Unfortunately, many of these studies were not correlated with bearing surface forces and possible failure modes that could be detected with a sound sensor. Therefore, the objective of the present study was to conduct a comparative analysis of the kinematic data derived for all subjects having a TKA who were analyzed over the past seventeen years at our laboratory and to determine how these patterns correlate with bearing surface forces and joint sound.

METHODS

Initially, femorotibial contact positions and axial rotation magnitudes were derived for subjects having either a non implanted or implanted knee. Non implanted knees consisted of normal and anterior cruciate ligament (ACL) deficient knees (ACLD). Implanted knees consisted of posterior stabilized (PS) fixed (PSF) and mobile (PSM) bearing, posterior cruciate ligament retaining (PCR) fixed (PCRF) and mobile (PCRM) bearing, posterior cruciate sacrificing mobile (PCSM) bearing and ACL retaining fixed (ACRF) bearing TKA. Each subject, while under fluoroscopic surveillance, performed a weight-bearing deep knee bend and/or normal gait. Using a three-dimensional (3D) model fitting approach, the relative pose of knee implant components were determined in 3D from a single-perspective fluoroscopic image by manipulating a CAD model in three-dimensional space. Anterior/posterior (A/P) contact positions for both the medial and lateral condyles and axial rotation of the femoral component relative to the tibial component were assessed. Then, a subset of these subjects were further analyzed to determine their in vivo bearing surface forces and joint sound using a more recently derived protocol for analyzing audible signals.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 63 - 63
1 Sep 2012
Hamel W Komistek R Dennis D
Full Access

Commercial C-arm fluoroscopes are routinely used to analyze human skeletal joints during motions such as deep knee bends, or chair rises. Such diagnostics are used to characterize pre and post operative arthoplasty results, particularly in association with total joint replacement procedures. Stationary fluoroscopes restrict the patient motion and load conditions, thus diminishing the diagnostic utility of the results. A new class of fluoroscopy has been developed in which a robotic mechanization is used to allow selected joints to be x-rayed while the human subjects perform natural motions such as walking. The tracking fluoroscope system (TFS) is a mobile robot that acquires real-time x-ray records of hip, knee, or ankle joint motion while the patient walks normally. Because the fluoroscope line of sight dynamically tracks the joint of interest, the TFS provides clearer and contained joint images.

The technical features of the TFS will be reviewed, recent development testing summarized, and the results of preliminary patient trials presented.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 137 - 137
1 Sep 2012
Parratte S Lesko F Zingde S Anderle M Mahfouz M Komistek R Argenson J
Full Access

Introduction

Previous fluoroscopic studies compared total knee arthroplasty (TKA) kinematics to normal knees. It was our hypothesis that comparing TKA directly to its non-replaced controlateral knee may provide more realistic kinematics information. Using fluoroscopic analysis, we aimed to compare knee flexion angles, femoral roll-back, patellar tracking and internal and external rotation of the tibia.

Material and methods

15 patients (12 women and 3 men) with a mean age of 71.8 years (SD=7.4) operated by the same surgeon were included in this fluoroscopic study. For each patient at a minimum one year after mobile-bearing TKA, kinematics of the TKA was compared to the controlateral knee during three standardized activities: weight-bearing deep-knee bend, stair climbing and walking. A history of trauma, pain, instability or infection on the non-replaced knee was an exclusion criteria. A CT-scan of the non-replaced knee was performed for each patient to obtain a 3-D model of the knee. The Knee Osteoarthitis Outcome Score (KOOS) was also recorded.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 225 - 225
1 Sep 2012
Zingde S Leszko F Mueller JK Mahfouz M Dennis D Komistek R
Full Access

INTRODUCTION

Posterior stabilized (PS) total knee arthroplasty (TKA) provides posterior stability with the use of a cam-post mechanism which performs the function of the posterior cruciate ligament. The tibial post engages with the femoral cam, prevents the femur from sliding anteriorly and provides the posterior femoral rollback necessary for achieving deep flexion of the knee. However, these designs do not substitute the resection of the anterior cruciate ligament. In order to overcome this deficit, other TKA designs have been recently introduced to provide dual support, with the help of dual cam-post engagement mechanism. Various studies conducted on the PS TKA have suggested that the cam-post mechanism does not engage as designed, resulting in tibial post wear and increased stresses resulting in backside wear of the polyethylene insert component. Also, the in vivo data pertaining to the actual cam-post engagement mechanism in bi-cruciate stabilized knees is still very limited. Therefore, the objective of this study was to determine the cam-post mechanism interaction under in vivo, weight bearing conditions for subjects implanted with either a Rotating Platform (RP) Posterior Stabilized (PS) TKA or a bi-cruciate stabilizing TKA (BCS).

METHODS

In-vivo, weight-bearing, 3D knee kinematics were determined for eight subjects (9 knees) having a RP-PS TKA (DePuy Inc.) and eight subjects (10 knees) having BCS TKA (Smith&Nephew Inc.), while performing a deep knee bend. 3D kinematics was recreated from the fluoroscopic images using a previously published 3D-to-2D registration technique (Figure 1). Images from full extension to maximum flexion were analyzed at 10° intervals. Once the 3D kinematics of all implant components was recreated, the cam-post mechanism was scrutinized. The distance between the interacting surfaces was monitored throughout the flexion and the predicted contact map was calculated. The instances, when the minimum distance between the cam and post surfaces dropped to zero was considered to indicate the engagement of the mechanism. This analysis was carried out for both the, anterior and posterior cam-post engagement sites.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 169 - 169
1 Sep 2012
Dressler M Leszko F Zingde S Sharma A Dennis D Komistek R
Full Access

INTRODUCTION

Knee simulators are being used to evaluate wear. The current international standards have been developed from clinical investigations of the normal knee [1, 2] or from a single TKA patient [3, 4]. However, the forces and motions in a TKA patient differ from a normal knee and, furthermore, the resulting kinematic outcomes after TKA will depend on the design of the device [5]. Consequently, these standard tests may not recreate in-vivo conditions; therefore, the goal of this study was to perform a novel wear simulation using design-specific inputs that have been derived from fluoroscopic images of a deep knee bend.

METHODS

A wear simulation was developed using fluoroscopic data from a pool of eighteen TKA patients performing a deep knee bend. All patients had a Sigma CR Fixed Bearing implant (DePuy) and were well functioning (Knee Society Score > 90). A single patient was selected that represented the typical motions, which was characterized by early rollback followed by anterior motion with an overall modest internal tibial rotation (Figure 1). The relative motion between the femoral and tibial components was transformed to match the coordinate system of an AMTI knee wear simulator [6] and a compressive load input was derived using inverse dynamics [7]. The resulting force and motions (Figure 2) were then applied in a wear simulation with 5 MRad crosslinked and remelted polyethylene for 3 Mcyc at 1 Hz. Components were carefully positioned and each joint (n=3) was tested in 25% bovine calf serum (Hyclone Laboratories), which was recirculated at 37±2°C [3]. Serum was supplemented with sodium azide and EDTA. Wear was quantified gravimetrically every 0.5 Mcyc using a digital balance (XP250, Mettler-Toledo) with load soak compensation.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 170 - 170
1 Sep 2012
Sharma A Komistek R
Full Access

INTRODUCTION

Telemetric implants have provided us with invaluable data as to the in vivo forces occurring in implanted knee joints. However, only a few of them exists. The knee is one of the most studied joints in the human body and various mathematical knee models have been used in the past to predict forces. However, these simulation studies have also been carried out on a small group of patients limiting their general usefulness in understanding overall trends of knee behavior. Therefore, it is the purpose of this research to study the implant forces experienced by a large group of patients so as to have a better understanding of the overall magnitudes and their variability with knee flexion.

METHODS

The patients were selected from a large database of over 3000 knees for which kinematic analysis had previously been carried out using fluoroscopy. The criteria used for selection was that the patients had a successful knee implant (HSS >90) and were able to perform a weight bearing deep knee bend of at least 110 degrees. The patients were randomly chosen without any other restrictions. The kinetic analysis was carried on a cohort of over 100 patients using a previously published inverse dynamic rigid body model. This model, which has been validated using telemetric data, is capable of predicting the contact forces on the medial and lateral condyles of the knee. Analysis was carried out till 130 degrees of flexion to remove any effect of thigh calf contact that the model does not incorporate. 20 normal knees were also included for comparison.