header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

In Vivo Kinematics for Subjects Implanted With a Fixed or Mobile Bearing Revision Tka

International Society for Technology in Arthroplasty (ISTA) 2012 Annual Congress



Abstract

Introduction

Previous fluoroscopy studies have been conducted on numerous primary-type TKA, but minimal in vivo data has been documented for subjects implanted with revision TKA. If a subject requires a revision TKA, most often the ligament structures at the knee are compromised and stability of the joint is of great concern. In this present study, subjects implanted with a fixed or mobile bearing TC3 TKA are analyzed to determine if either provides the patient with a significant kinematic advantage.

Methods

Ten subjects are analyzed implanted with fixed bearing PFC TC3 TKA and 10 subjects with a mobile bearing PFC TC3 TKA. Each subject underwent a fluoroscopic analysis during four weight bearing activities: deep knee bend (DKB), chair rise, gait, and stair descent. Fluoroscopic images were taken in the sagittal plane at 10 degree increments for the DKB, 30 degree increments for chair rise, and at heel strike, toe off, 33% and 66% cycle gait and stair descent.

Results

The average weight bearing maximum flexion for the fixed bearing TKA group was 104 degrees (SD = 18.2 degrees). The average medial and lateral anterior-posterior (AP) translation for these subjects from full extension to maximum weight-bearing flexion was −6.74 mm and −8.0 mm in the posterior direction, respectively. The average femorotibial axial rotation was 1.27 degrees from full extension to maximum flexion. The average medial and lateral AP translations respectively from full extension to maximum flexion are shown in Figures 1 and 2 and the corresponding average femorotibial axial rotation pattern is shown in Figure 3. Subjects implanted with a mobile bearing device are presently being analyzed.

Discussion

The fixed bearing device, on average, does not allow for much axial rotation when compared to less constrained or mobile bearing TKA designs. Previous studies have mobile bearing rotating platform primary posterior stabilized devices have documented that the bearing does rotate with the femur. Therefore, it is assumed subjects having a mobile bearing TC3 TKA may achieve greater axial rotation. Subjects having the fixed bearing TC3 TKA did achieve posterior femoral rollback of both condyles, revealing that a fixed bearing revision TKA may act more like a hinged device.