header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

IN VIVO KINEMATICS COMPARISON BETWEEN SUBJECTS HAVING A POSTERIOR CRUCIATE-RETAINING TOTAL KNEE ARTHROPLASTY OR A BICRUCIATE-RETAINING TOTAL KNEE ARTHROPLASTY AND THE NORMAL KNEE DURING DEEP KNEE BEND

International Society for Technology in Arthroplasty (ISTA) meeting, 32nd Annual Congress, Toronto, Canada, October 2019. Part 1 of 2.



Abstract

Introduction

Many fluoroscopic studies on total knee arthroplasty (TKA) have identified kinematic variabilities compared to the normal knee, with many subjects experiencing paradoxical motion patterns. The intent of this study was to investigate the results of a newly designed PCR TKA to determine kinematic variabilities and assess these kinematic patterns with those previously documented for the normal knee.

Methods

The study involves determining the in vivo kinematics for 80 subjects compared to the normal knee. 10 subjects have a normal knee, 40 have a Journey II PCR TKA and 40 subjects with the Journey II XR TKA (BCR). Although all PCR subjects have been evaluated, we are continuing to evaluate subjects with a BCR TKA. All TKAs were performed by a single surgeon and deemed clinically successful. All subjects performed a deep knee bend from full extension to maximum flexion while under fluoroscopic surveillance. Kinematics were calculated via 3D-to-2D registration at 30° increments from full extension to maximum flexion. Anterior/posterior translation of the medial (MAP) and lateral (LAP) femoral condyles and femorotibial axial rotation were compared during ranges of motion in relation to the function of the cruciate ligaments.

Results

Of the 40 PCR TKAs, the average overall flexion was 112.6°, while the average for normal subjects was 139.0°. Initial BCR subjects revealed a higher than expected 128.0°. From 0=30° knee flexion, PCR subjects demonstrated −4.74±4.94 mm of posterior LAP movement, −2.04±4.07 mm of MAP movement and 3.61±8.13° of external axial rotation. In the same range of motion, normal subjects exhibited −8.80±3.32 mm of LAP movement, −3.81±1.03 mm of MAP movement and an axial rotation of 11.34±3.78°. From 30=90° knee flexion, PCR subjects demonstrated 4.37±8.26 mm of LAP movement, 0.12±7.95 mm of MAP movement and 0.79±11.43° of axial rotation. In the same range of motion, normal subjects exhibited −4.28±3.13 mm of LAP movement, −1.11±2.76 mm of MAP movement and axial rotation of 6.54±4.33°. From 0°-maximum flexion, PCR subjects demonstrated −2.71±5.37 mm of LAP movement, 1.79±4.88 mm of MAP movement and 5.99±5.26° of axial rotation. In the same range of motion, normal subjects exhibited −17.83±6.04 mm of LAP movement, −9.11±4.93 mm of MAP movement and axial rotation of 23.66±7.81°. Overall, the BCR subject displayed kinematic patterns similar to those of a normal knee; more detailed numbers will be presented in the presentation.

Discussion

Subjects having a PCR TKA experienced excellent weight-bearing flexion and kinematic patterns similar to the normal knee, but less in magnitude. These subjects experienced posterior femoral rollback in early and late flexion. During mid-flexion, subjects having a PCR TKA did experience some variable motion patterns, which may be due to the absence of the ACL. Subjects having a BCR TKA experienced more continuous rollback throughout flexion, more similar to the normal knee. Similar to the normal knee, subjects having a PCR TKA did experience progressive axial rotation throughout knee flexion (Figures).

Significance

While they still experience normal-like rollback during early (0°–30°) and late flexion (90°-120°), subjects with a PCR TKA consistently demonstrated Anteriorization of the joint in mid-flexion.