header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

IMPLEMENTATION OF A FORWARD SOLUTION MATHEMATICAL MODEL TO PREDICT FIXED-BEARING VERSUS MOBILE-BEARING TOTAL KNEE ARTHROPLASTY KINEMATICS

International Society for Technology in Arthroplasty (ISTA) meeting, 32nd Annual Congress, Toronto, Canada, October 2019. Part 1 of 2.



Abstract

Introduction

Forward solution joint models (FSMs) can be powerful tools, leading to fast and cost-efficient simulation revealing in vivo mechanics that can be used to predict implant longevity. Unlike most joint analysis methods, mathematical modeling allows for nearly instantaneous evaluations, yielding more rapid surgical technique and implant design iterations as well as earlier insight into the follow-up outcomes used to better assess potential success. The current knee FSM has been developed to analyze both the kinematics and kinetics of commercial TKA designs as well as novel implant designs.

Objective

The objective of this study was to use the knee FSM to predict the condylar translations and axial rotation of both fixed- and mobile-bearing TKA designs during a deep knee bend activity and to compare these kinematics to known fluoroscopy evaluations.

Methods

The knee joint is modeled mathematically using Kane's dynamics, incorporating muscle controllers to predict the muscle forces, contact detection algorithms to compute the knee joint forces, and nonlinear ligaments at the knee joint. The tibiofemoral kinematics data for 20 subjects implanted with fixed-bearing (FB) PS TKA and 20 subjects implanted with mobile-bearing (MB) PS TKA were collected using fluoroscopy data during a deep knee bend (DKB) activity from full extension to 120° of flexion. All subjects were implanted by the same surgeon. The same CAD models for these implanted were incorporated in the FSM to predict the tibiofemoral kinematics. The average component placement from fluoroscopy data were used as an initial condition for the placement of the component in the mathematical model.

Results

Overall, fluoroscopy results showed patients experienced 6.8 mm and 6.4 mm posterior rollback of the lateral femoral condyle for FB and MB PS TKA groups, respectively. The FSM predicted 5.9 mm and 6.3 mm of lateral posterior rollback for FB and MB PS TKA models, respectively (Figure 1). On average, media condyle translated posteriorly −2.9 mm and −2.5 mm, for FB and MB subjects, respectively. The mathematical model prediction for FB and MB models was −1.4 mm and −2.4 mm, respectively (Figure 2). The overall axial rotation was 5.1° and 4.5°, for FB and MB subjects from fluoroscopy, respectively. The axial rotation prediction using the FSM was 6.0° and 4.2°, for FB and MB models, respectively (Figure 3).

Conclusion

Overall, it is clear that the FSM can accurately predict both the patterns and magnitudes of fixed- and mobile-bearing TKA condylar translations and axial rotations, showing consistent rollback of the lateral condyle, less translation of the medial condyle, and consistent axial rotation throughout flexion, all of which were also observed in the fluoroscopy data. The correlation between the theoretically predicted and experimentally confirmed kinematic patterns demonstrates the viability of forward solution modeling as a valuable and accurate method to evaluate total joint replacement mechanics.

For any figures or tables, please contact the authors directly.