header advert
Results 1 - 45 of 45
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 35 - 35
1 Jul 2022
Bua N Kwok M Wignadasan W Iranpour F Subramanian P
Full Access

Abstract

Background

The incidence of periprosthetic fractures of the femur around a total knee arthroplasty (TKA) is rising and this is owed to the increased longevity that today's TKA implants allow for, as well as an aging population. These injuries are significant as they are related to increased morbidity and mortality.

Methods

We retrospectively reviewed all periprosthetic fractures around a TKA that presented to our NHS Trust between 2011 to 2020. Medical records were reviewed. Treatment, complications and mortality were noted.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 14 - 14
1 Dec 2020
Haider Z Iranpour F Subramanian P
Full Access

The number of total knee arthroplasties continues to increase annually with over 90,000 total knee replacements performed in the United Kingdom in 2018. Multiple national bodies including the British Association for Surgery of the Knee (BASK) and the British Orthopaedic Association collaborated in July 2019 to produce best practice guidance for knee arthroplasty surgery. This study aims to review practice in a regional healthcare trust against these guidelines.

Fifty total knee replacement operation notes were reviewed between January and February 2020 from 11 different consultant orthopaedic surgeons. Documents were assessed against 17 criteria recommended by the BASK guidance. Personnel names and grades were generally well documented. Tourniquet time and pressure were documented in over 98% of operation notes however, protection from spirit burns was not documented at all. Trialling and soft tissue balancing was well recorded in 100% and 96% of operation notes respectively.

Areas lacking in documentation included methods utilised to optimise cementation technique and removal of cement debris. Protection of key knee structures was documented in only 56% of operation notes clearly. Prior to closure, final assessment of mechanism integrity, collateral ligament was not documented at all and final ROM after implantation of components was recorded 34% of the time.

Subsequently authors have created a universal operation note template, uploaded onto the patient electronic notes, which prompts surgeons to complete documentation of the relevant criteria advocated by BASK.

In conclusion, detailed and systematic documentation is vital to prevent adverse events and reduce the risk of litigation. By producing detailed operative templates this risk can be mitigated.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 15 - 15
1 Dec 2020
Haider Z Aweid B Subramanian P Iranpour F
Full Access

Telemedicine is the delivery of healthcare from a remote location using integrated computer/communication technology. This systematic review aims to explore evidence for telemedicine in orthopaedics to determine its advantages, validity, effectiveness and utilisation particularly during our current pandemic where patient contact is limited.

Databases of PubMed, Scopus and CINHAL were systematically searched and articles were included if they involved any form of telephone or video consultation in an orthopaedic population. Findings were synthesised into four themes: patient/clinician satisfaction, accuracy and validity of examination, safety and patient outcomes and cost effectiveness. Quality assessment was undertaken using Cochrane and Joanna Briggs Institute appraisal tools.

Twenty studies were included consisting of nine RCTs across numerous orthopaedic subspecialties including fracture care, elective orthopaedics and oncology. Studies revealed high patient satisfaction with telemedicine for convenience, less waiting and travelling time. Telemedicine was cost effective particularly if patients had to travel long distances, required hospital transport or time off work. No clinically significant differences were found in patient examination nor measurement of patient reported outcome measures. Telemedicine was reported to be a safe method of consultation. However, studies were of variable methodological quality with selection bias.

In conclusion, evidence suggests that telemedicine in orthopaedics can be safe, cost effective, valid in clinical assessment with high patient/clinician satisfaction. Further work with high quality RCTs is required to elucidate long term outcomes. This systematic review presents up-to-date evidence on the use of telemedicine and provides data for organisations considering its use in the current COVID-19 pandemic and beyond.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 36 - 36
1 Feb 2020
Aframian A Auvinet E Iranpour F Barker T Barrett D
Full Access

Introduction

Gait analysis systems have enjoyed increasing usage and have been validated to provide highly accurate assessments for range of motion. Size, cost, need for marker placement and need for complex data processing have remained limiting factors in uptake outside of what remains predominantly large research institutions. Progress and advances in deep neural networks, trained on millions of clinically labelled datasets, have allowed the development of a computer vision system which enables assessment using a handheld smartphone with no markers and accurate range of motion for knee during flexion and extension. This allows clinicians and therapists to objectively track progress without the need for complex and expensive equipment or time-consuming analysis, which was concluded to be lacking during a recent systematic review of existing applications.

Method

A smartphone based computer vision system was assessed for accuracy with a gold standard comparison using a validated ‘traditional’ infra-red motion capture system which had a defined calibrated accuracy of 0.1degrees. A total of 22 subjects were assessed simultaneously using both the computer vision smartphone application and the standard motion capture system. Assessment of the handheld system was made by comparison to the motion capture system for knee flexion and extension angles through a range of motion with a simulated fixed-flexion deformity which prevented full extension to assess the accuracy of the system, repeating movements ten times. The peak extension angles and also numerous discrete angle measurements were compared between the two systems. Repeatability was assessed by comparing several sequential cycles of flexion/extension and comparison of the maximum range of motion in normal knees and in those with a simulated fixed-flexion deformity. In addition, discrete angles were also measured on both legs of three cadavers with both skin and then bone implanted fiducial markers for ground truth reliability accounting for skin movement. Data was processed quickly through an automated secure cloud system.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 26 - 26
1 Jan 2019
Choudhury A Auvient E Iranpour F Lambkin R Wiik A Hing C Cobb J
Full Access

Patellofemoral osteoarthritis (PFOA) affects 32% men and 36% women over the age of 60years and is associated with anterior knee pain, stiffness, and poor mobility. Patellofemoral arthroplasty (PFA) is a bone-sparing treatment for isolated PFOA. This study set out to investigate the relationship between patient-related outcome measures (PROMs) and measurements obtained from gait analysis before and after PFA. There are currently no studies relating to gait analysis and PFA available in the literature

A prospective cohort study was conducted of ten patients known to have isolated PFOA who had undergone PFA compared to a gender and age matched control group. The patients were also asked to complete questionnaires (Oxford knee score (OKS), EQ-5D-5L) before surgery and one year after surgery. Gait analysis was done on an instrumented treadmill comparing Ground reaction force parameters between the control and pre and post-operative PFA patients

The average age 60 (49–69) years with a female to male ratio of 9:1. Patient and healthy subjects were matched for age and gender, with no significant difference in BMI. Post-op PFA improvement in gait seen in ground reaction force at 6.5km/h. Base support difference was statistically significant both on the flat P=0.0001 and uphill P=0.429 (5% inclination) and P=0.0062 (10% inclination). PROMS response rate was 70%(7/10) pre-operative and 60%(6/10) post-operative. EQ-5D-5L scores reflected patient health state was better post-operatively.

This study found that gait analysis provides an objective measure of functional gait and reflected by significant quality-of-life improvement of patients post PFA. Literature lacks studies relating to gait-analysis and PFA. Valuable information provided by this study highlights that PFA has a beneficial outcome reflected by PROMs and improvement in vertical ground reaction force and gait

Further research is needed to assess how care-providers may use gait-analysis as part of patient care plans for PFOA patients.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 52 - 52
1 Mar 2017
Navruzov T Riviere C Van Der Straeten C Harris S Aframian A Iranpour F Cobb J Auvinet E
Full Access

Background

The accurate positioning of the total knee arthroplasty affects the survival of the implants(1). Alignment of the femoral component in relation to the native knee is best determined using pre- and post-operative 3D-CT reconstruction(2). Currently, the scans are visualised on separate displays. There is a high inter- and intra-observer variability in measurements of implant rotation and translation(3). Correct alignment is required to allow a direct comparison of the pre- and post-operative surfaces. This is prevented by the presence of the prostheses, the bone shape alteration around the implant, associated metal artefacts, and possibly a segmentation noise.

Aim

Create a novel method to automatically register pre- and post-operative femora for the direct comparison of the implant and the native bone.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 115 - 115
1 Mar 2017
Riviere C Shah H Howell S Aframian A Iranpour F Auvinet E Cobb J Harris S
Full Access

BACKGROUND

Trochlear geometry of modern femoral implants is designed for the mechanical alignment (MA) technique for Total Knee Arthroplasty (TKA). The biomechanical goal is to create a proximalised and more valgus trochlea to better capture the patella and optimize tracking. In contrast, Kinematic alignment (KA) technique for TKA respects the integrity of the soft tissue envelope and therefore aims to restore native articular surfaces, either femoro-tibial or femoro-patellar. Consequently, it is possible that current implant designs are not suitable for restoring patient specific trochlea anatomy when they are implanted using the kinematic technique. This could cause patellar complications, either anterior knee pain, instability or accelerated wear or loosening. The aim of our study is therefore to explore the extent to which native trochlear geometry is restored when the Persona® implant (Zimmer, Warsaw, USA) is kinematically aligned.

METHODS

A retrospective study of a cohort of 15 patients with KA-TKA was performed with the Persona® prosthesis (Zimmer, Warsaw, USA). Preoperative knee MRIs and postoperative knee CTs were segmented to create 3D femoral models. MRI and CT segmentation used Materialise Mimics® and Acrobot Modeller® software, respectively. Persona® implants were laser-scanned to generate 3D implant models. Those implant models have been overlaid on the 3D femoral implant model (generated via segmentation of postoperative CTs) to replicate, in silico, the alignment of the implant on the post-operative bone and to reproduce in the computer models the features of the implant lost due to CT metal artefacts. 3D models generated from post-operative CT and pre-operative MRI were registered to the same coordinate geometry. A custom written planner was used to align the implant, as located on the CT, onto the pre-operative MRI based model (figure 1). In house software enabled a comparison of trochlea parameters between the native trochlea and the performed prosthetic trochlea (figure 2). Parameters assessed included 3D trochlear axis and anteroposterior offset from medial facet, central groove, and lateral facet. Sulcus angle at 30% and 40% flexion was also measured. Inter and intra observer measurement variabilities have been assessed.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 117 - 117
1 Mar 2017
Riviere C Howell S Parratte S Vendittoli P Iranpour F Cobb J
Full Access

The mechanical alignment (MA) for Total Knee Arthroplasty (TKA) with neutral alignment goal has had good overall long-term outcomes. In spite of improvements in implant designs and surgical tools aiming for better accuracy and reproducibility of surgical technique, functional outcomes of MA TKA have remained insufficient. Therefore, alternative, more anatomicaloptions restoring part (adjusted MA (aMA) and adjusted kinematic alignment (aKA) techniques) or the entire constitutional frontal deformity (unicompartment knee arthroplasty (UKA) and kinematic alignment (KA) techniques) have been developed, with promising results. The kinematic alignment for TKA is a new and attractive surgical technique enabling a patient specific treatment. The growing evidence of the kinematic alignment mid-term effectiveness, safety and potential short falls are discussed in this paper. The current review describes the rationale and the evidence behind different surgical options for knee replacement, including current concepts in alignment in TKA. We also introduce two new classification systems for “implant alignments options” (Figure 1) and “osteoarthritic knees” (Figure 2) that would help surgeons to select the best surgical option for each patient. This would also be valuable for comparison between techniques in future research.

For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 26 - 26
1 Feb 2017
Leong A Iranpour F Cobb J
Full Access

Background

Surgical planning of long bone surgery often takes place using outdated 2D axes on 2D images such as long leg standing X-rays. This leads to errors and great variation between intra- and inter- observers due to differing frames of reference.

With the advent of 3D planning software, researchers developed 3D axes of the knee such as the Flexion Facet Axis (FFAx) and Trochlear Axis (TrAx), and these proved easy to derive and reliable. Unlike 2D axes, clinicians and scientists can use a single 3D axis to obtain measurements relative to other 3D axes, in all three planes Deriving a 3D axis also does not require an initial frame of reference, such as in trying to derive the 2D Posterior Condylar Axis (PCAx), whereby a slight change in slice orientation will affect its position.

However, there is no 3D axis derived for the tibial plateau yet. Measurements of tibial joint line obliquity are with a 2D axis drawn on AP long leg standing X-rays. The same applies to tibial plateau rotation, as measured by 2D axes drawn on axial CT/MRI slices.

this study aimed to to develop a novel new 3D axis for the tibial plateau to quantify both tibial plateau joint line obliquity and axial rotation.

Methods

Materialise software version 8.0 (Materialise Inc., Belgium) handled segmentation of CT data and for analysis of bony morphology. A line joining the centroids of the medial and lateral tibial plateaus formed the TCAx (Fig1). A line joining the middle coordinate of the TCAx, to the centre of the best-fit sphere between the medial and lateral malleolus formed the Tibial Mechanical Axis (TMAx). A standard frame of reference aligned 72 tibias with the TCAx horizontal in the axial view, and the TMAx aligned parallel to the global reference coordinate system vertical axis. Tibial joint line obliquity was the angle between the TCAx and TMAx on the medial side, also known as the Medial Tibial Plateau Angle (MPTA)(Fig2). The authors compared reliability and accuracy of the TCAx against three other rotational axes of the tibia as described in the literature.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 120 - 120
1 Feb 2017
Leong A Iranpour F Cobb J
Full Access

Background

Constitutional knee varus increases the risk of medial OA disease due to increase in the knee adduction moment and shifting of the mechanical axis medially.

Hueter-Volkmann's law states that the amount of load experienced by the growth plate during development influences the bone morphology. For this reason, heightened sports activity during growth is associated with constitutional varus due to added knee adduction moment. In early OA, X-rays often show a flattened medial femoral condyle extension facet (EF). However, it is unknown whether this is a result of osteoarthritic wear, creep deformation over decades of use, or an outcome of Hueter-Volkmann's law during development. A larger and flattened medial EF can bear more weight, due to increased load distribution. However, a flattened EF may also extrude the meniscus, leading meniscus degeneration and joint failure.

Therefore, this study aimed to investigate whether varus knees have flattened medial EFs of both femur and tibia in a cohort of patients with no signs yet of bony attrition.

Methods

Segmentation and morphology analysis was conducted using Materialise software (version 8.0, Materialise Inc., Belgium). This study excluded knees with bony attrition of the EFs based on Ahlbäck criteria, intraoperative findings, and operation notes history. Standard reference frames were used for both the femur and tibia to ensure reliable and repeatable measurements. The hip-knee-angle (HKA) angle defined varus or valgus knee alignment.

Femur: The femoral EFs and flexion facets (FFs) had best-fit spheres fitted with 6 repetitions. (Fig1)

Tibia: The slopes of the antero-medial medial tibial plateau were approximated using lines. (fig2)


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 11 - 11
1 Feb 2017
Harris S Dhaif F Iranpour F Aframian A Auvinet E Cobb J Howell S Riviere C
Full Access

BACKGROUND

Conventional TKA surgery attempts to restore patients to a neutral alignment, and devices are designed with this in mind. Neutral alignment may not be natural for many patients, and may cause dissatisfaction [1]. To solve this, kinematical alignment (KA) attempts to restore the native pre-arthritic joint-line of the knee, with the goal of improving knee kinematics and therefore patient's function and satisfaction [1].

Proper prosthetic trochlea alignment is important to prevent patella complications such as instability or loosening. However, available TKA components have been designed for mechanical implantation, and concerns remain relating the orientation of the prosthetic trochlea when implants are kinematically positioned. The goal of this study is to investigate how a currently available femoral component restores the native trochlear geometry of healthy knees when virtually placed in kinematic alignment.

METHODS

The healthy knee OAI (Osteoarthritis Initiative) MRI dataset was used. 36 MRI scans of healthy knees were segmented to produce models of the bone and cartilage surfaces of the distal femur. A set of commercially available femoral components was laser scanned. Custom 3D planning software aligned these components with the anatomical models: distal and posterior condyle surfaces of implants were coincident with distal and posterior condyle surfaces of the cartilage; the anterior flange of the implant sat on the anterior cortex; the largest implant that fitted with minimal overhang was used, performing ‘virtual surgery’ on healthy subjects.

Software developed in-house fitted circles to the deepest points in the trochlear grooves of the implant and the cartilage. The centre of the cartilage trochlear circle was found and planes, rotated from horizontal (0%, approximately cutting through the proximal trochlea) through to vertical (100%, cutting through the distal trochlea) rotated around this, with the axis of rotation parallel to the flexion facet axis. These planes cut through the trochlea allowing comparison of cartilage and implant surfaces at 1 degree increments - (fig.1). Trochlear groove geometry was quantified with (1) groove radial distance from centre of rotation cylinder (2) medial facet radial distance (3) lateral facet radial distance and (4) sulcus angle, along the length of the trochlea. Data were normalised to the mean trochlear radius. The orientation of the groove was measured in the coronal and axial plane relative to the flexion facet axis. Inter- and intra-observer reliability was measured.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 113 - 113
1 Jan 2017
Iranpour F
Full Access

Constitutional knee varus increases the risk of medial OA disease due to increase in the knee adduction moment and shifting of the mechanical axis medially. Hueter-Volkmann’s law states that the amount of load experienced by the growth plate during development influences the bone morphology. For this reason, heightened sports activity during growth is associated with constitutional varus due to added knee adduction moment. In early OA, X-rays often show a flattened medial femoral condyle extension facet (EF). However, it is unknown whether this is a result of osteoarthritic wear, creep deformation over decades of use, or an outcome of Hueter-Volkmann’s law during development. A larger and flattened medial EF can bear more weight, due to increased load distribution. However, a flattened EF may also extrude the meniscus, leading meniscus degeneration and joint failure. Therefore, this study aimed to investigate whether varus knees have flattened medial EFs of both femur and tibia in a cohort of patients with no signs yet of bony attrition.

Segmentation and morphology analysis was conducted using Materialise software (version 8.0, Materialise Inc., Belgium). This study excluded knees with bony attrition of the EFs based on Ahlbäck criteria, intraoperative findings, and operation notes history. Standard reference frames were used for both the femur and tibia to ensure reliable and repeatable measurements. The hip-knee-angle (HKA) angle defined varus or valgus knee alignment. Femur: The femoral EFs and flexion facets (FFs) had best-fit spheres fitted with 6 repetitions. Tibia: The slopes of the antero-medial medial tibial plateau were approximated using lines. Results 72 knees met the inclusion and exclusion criteria. The average age was 59 ± 11 years. The youngest was 31 and the oldest 84 years. Thirty-three were male and 39 were female. There was good intra- and inter-observer reliability for EF sphere fitting.

Femur: The results demonstrated that the medial femoral condyle EF is flattened in knees with constitutional varus, as measured by the Sphere Ratios between the medial and lateral EF (varus versus straight: p = 0.006), and in the scaled values for the medial EF sphere radius (varus versus straight: p = 0.005). There was a statistically significant, moderate and positive correlation between the medial femoral EF radius, and the medial femoral EF-FF AP offset.

Tibia: There was a statistically significant difference between the steepness of the slopes of the medial tibial plateau EF in varus and valgus knees, suggesting varus knees have a less concave (flatter) medial EF. Conclusions In comparison to straight knees, varus knees have flattened medial EFs in both femur and tibia. As this was the case in knees with no evidence of bony attrition, this could mean flattened medial EFs may be a result of medial physis inhibition during development, due to Hueter-Volkmann’s law. Flattened medial EFs may increase load distribution in the medial compartment, but could also be a potential aetiology in primary knee OA due to over extrusion of the medial meniscus and edge loading.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 95 - 95
1 Jan 2017
Rivière C Shah H Auvinet E Iranpour F Harris S Cobb J Howell S Aframian A
Full Access

Trochlear geometry of modern femoral implants is designed for mechanical alignment (MA) technique for TKA. The biomechanical goal is to create a proximalised and more valgus trochlea to better capture the patella and optimize tracking. In contrast, Kinematic alignment (KA) technique for TKA respects the integrity of the soft tissue envelope and therefore aims to restore native articular surfaces, either femoro-tibial or femoro-patellar. Consequently, it is possible that current implant designs are not suitable for restoring patient specific trochlea anatomy when they are implanted using the kinematic technique, this could cause patellar complications, either anterior knee pain, instability or accelerated wear or loosening. The aim of our study is therefore to explore the extent to which native trochlear geometry is restored when the Persona®implant (Zimmer, Warsaw, USA) is kinematically aligned.

A retrospective study of a cohort of 15 patients with KA-TKA was performed with the Persona®prosthesis (Zimmer, Warsaw, USA). Preoperative knee MRIs and postoperative knee CTs were segmented to create 3D femoral models. MRI and CT segmentation used Materialise Mimics and Acrobot Modeller software, respectively. Persona®implants were laser scanned to generate 3D implant models. Those implant models have been overlaid on the 3D femoral implant model (generated via segmentation of postoperative CTs) to replicate, in silico, the alignment of the implant on the post-operative bone and to reproduce in the computer models the features of the implant lost due to CT metal artefacts. 3D models generated from post-operative CT and pre-operative MRI were registered to the same coordinate geometry. A custom written planner was used to align the implant, as located on the CT, onto the pre-operative MRI based model. In house software enabled a comparison of trochlea parameters between the native trochlea and the performed prosthetic trochlea. Parameters assessed included 3D trochlear axis and anteroposterior offset from medial facet, central groove, and lateral facet. Sulcus angle at 30% and 40% flexion was also measured. Inter and intra observer measurement variabilities have been assessed.

Varus-valgus rotation between the native and prosthetic trochleae was significantly different (p<0.001), with the prosthetic trochlear groove being on average 7.9 degrees more valgus. Medial and lateral facets and trochlear groove were significantly understuffed (3 to 6mm) postoperatively in the proximal two thirds of the trochlear, with greatest understuffing for the lateral facet (p<0.05). The mean medio-lateral translation and internal-external rotation of the groove and the sulcus angle showed no statistical differences, pre and postoperatively.

Kinematic alignment of Persona®implants poorly restores native trochlear geometry. Its clinical impact remains to be defined.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 22 - 22
1 Jan 2017
Rivière C Lazennec J Van Der Straeten C Iranpour F Cobb J
Full Access

The current, most popular recommendation for cup orientation, namely the Lewinnek box, dates back to the 70's, that is to say at the stone age of hip arthroplasty. Although Lewinnek's recommendations have been associated with a reduction of dislocation, some complications, either impingement or edge loading related, have not been eliminated. Early dislocations are becoming very rare and most of them probably occur in “outlier” patients with atypical pelvic/hip kinematics. Because singular problems usually need singular treatments, those patients need a more specific personalised planning of the treatment rather than a basic systematic application of Lewinnek recommendations. We aim in this review to define the potential impacts that the spine-hip relations (SHRs) have on hip arthroplasty. We highlight how recent improvements in hip implants technology and knowledge about SHRs can substantially modify the planning of a THR, and make the « Lewinnek recommendations » not relevant anymore. We propose a new classification of the SHRs with specific treatment recommendations for hip arthroplasty whose goal is to help at establishing a personalized planning of a THR. This new classification gives a rationale to optimize the short and long-term patient's outcomes by improving stability and reducing edge loading. We believe this new concept could be beneficial for clinical and research purposes.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 65 - 65
1 Jan 2017
Rivière C Iranpour F Cobb J Howell S Vendittoli P Parratte S
Full Access

The mechanical alignment (MA) for Total Knee Arthroplasty (TKA) with neutral alignment goal has had good overall long-term outcomes. In spite of improvements in implant designs and surgical tools aiming for better accuracy and reproducibility of surgical technique, functional outcomes of MA TKA have remained insufficient. Therefore, alternative, more anatomical options restoring part (adjusted MA (aMA) and adjusted kinematic alignment (aKA) techniques) or the entire constitutional frontal deformity (unicompartment knee arthroplasty (UKA) and kinematic alignment (KA) techniques) have been developed, with promising results. The kinematic alignment for TKA is a new and attractive surgical technique enabling a patient specific treatment. The growing evidence of the kinematic alignment mid-term effectiveness, safety and potential short falls are discussed in this paper. The current review describes the rationale and the evidence behind different surgical options for knee replacement, including current concepts in alignment in TKA. We also introduce two new classification systems for “implant alignments options” and “osteoarthritic knees” that would help surgeons to select the best surgical option for each patient. This would also be valuable for comparison between techniques in future research.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 57 - 57
1 Jan 2017
Harris S Dhaif F Iranpour F Aframian A Cobb J Auvinet E Howell S Rivière C
Full Access

Conventional TKA surgery attempts to restore patients to a neutral alignment, and devices are designed with this in mind. Neutral alignment may not be natural for many patients, and may cause dissatisfaction. To solve this, kinematical alignment (KA) attempts to restore the native pre-arthritic joint-line of the knee, with the goal of improving knee kinematics and therefore patient's function and satisfaction.

Proper prosthetic trochlea alignment is important to prevent patella complications such as instability or loosening. However, available TKA components have been designed for mechanical implantation, and concerns remain relating the orientation of the prosthetic trochlea when implants are kinematically positioned. The goal of this study is to investigate how a currently available femoral component restores the native trochlear geometry of healthy knees when virtually placed in kinematic alignment.

The healthy knee OAI (Osteoarthritis Initiative) MRI dataset was used. 36 MRI scans of healthy knees were segmented to produce models of the bone and cartilage surfaces of the distal femur. A set of commercially available femoral components was laser scanned. Custom 3D planning software aligned these components with the anatomical models: distal and posterior condyle surfaces of implants were coincident with distal and posterior condyle surfaces of the cartilage; the anterior flange of the implant sat on the anterior cortex; the largest implant that fitted with minimal overhang was used, performing ‘virtual surgery’ on healthy subjects.

Software developed in-house fitted circles to the deepest points in the trochlear grooves of the implant and the cartilage. The centre of the cartilage trochlear circle was found and planes, rotated from horizontal (0%, approximately cutting through the proximal trochlea) through to vertical (100%, cutting through the distal trochlea) rotated around this, with the axis of rotation parallel to the flexion facet axis. These planes cut through the trochlea allowing comparison of cartilage and implant surfaces at 1 degree increments. Trochlear groove geometry was quantified with (1) groove radial distance from centre of rotation cylinder (2) medial facet radial distance (3) lateral facet radial distance and (4) sulcus angle, along the length of the trochlea. Data were normalised to the mean trochlear radius. The orientation of the groove was measured in the coronal and axial plane relative to the flexion facet axis. Inter- and intra-observer reliability was measured.

In the coronal plane, the implant trochlear groove was oriented a mean of 8.7° more valgus (p<0.001) than the normal trochlea. The lateral facet was understuffed most at the proximal groove between 0–60% by a mean of 5.3 mm (p<0.001). The medial facet was understuffed by a mean of 4.4 mm between 0–60% (p<0.001).

Despite attempts to design femoral components with a more anatomical trochlea, there is significant understuffing of the trochlea, which could lead to reduced extensor moment of the quadriceps and contribute to patient dissatisfaction.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 100 - 100
1 Jan 2017
Navruzov T Rivière C Van Der Straeten C Harris S Cobb J Auvinet E Aframian A Iranpour F
Full Access

The accurate positioning of the total knee arthroplasty affects the survival of the implants(1). Alignment of the femoral component in relation to the native knee is best determined using pre- and post-operative 3D-CT reconstruction(2). Currently, the scans are visualised on separate displays. There is a high inter- and intra-observer variability in measurements of implant rotation and translation(3). Correct alignment is required to allow a direct comparison of the pre- and post-operative surfaces. This is prevented by the presence of the prostheses, the bone shape alteration around the implant, associated metal artefacts, and possibly a segmentation noise.

The aim is to create a novel method to automatically register pre- and post-operative femora for the direct comparison of the implant and the native bone.

The concept is to use post-operative femoral shaft segments free of metal noise and of surgical alteration for alignment with the pre-operative scan. It involves three steps. Firstly, using principal component analysis, the femoral shafts are re-oriented to match the X axis. Secondly, variants of the post-operative scan are created by subtracting 1mm increments from the distal femoral end. Thirdly, an iterative closest point algorithm is applied to align the variants with the pre-operative scan.

For exploratory validation, this algorithm was applied to a mesh representing the distal half of a 3D scanned femur. The mesh of a prosthesis was blended with the femur to create a post-operative model. To simulate a realistic environment, segmentation and metal artefact noise were added. For segmentation noise, each femoral vertex was translated randomly within +−1mm,+−2mm,+−3mm along its normal vector. To create metal artefact random noise was added within 50 mm of the implant points in the planes orthogonal to the shaft. The alignment error was considered as the average distance between corresponding points which are identical in pre- and post-operative femora.

These preliminary results obtained within a simulated environment show that by using only the native parts of the femur, the algorithm was able to automatically register the pre- and post-operative scans even in presence of the implant. Its application will allow visualisation of the scans on the same display for the direct comparison of the perioperative scans.

This method requires further validation with more realistic noise models and with patient data. Future studies will have to determine if correct alignment has any effect on inter- and intra-observer variability.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 51 - 51
1 May 2016
Iranpour F Auvinet E Harris S Cobb J
Full Access

Patellofemoral joint (PFJ) arthroplasty is traditionally performed using mechanical jigs to align the components, and it is hard to fine tune implant placement for the individual patient. These replacements have not had the same success rate as other forms of total or partial knee replacement surgery1.

Our team have developed a computer assisted planning tool that allows alignment of the implant based on measurements of the patient's anatomy from MRI data with the aim of improving the success of patellofemoral joint arthroplasty.

When planning a patellofemoral joint arthroplasty, one must start from the premise that the original joint is either damaged as a result of osteoarthritis, or is dysplastic in some way, deviating from a normal joint. The research aimed to plan PFJ arthroplasty using knowledge of the relationship between a normal PFJ (trochlear groove, trochlea axis and articular surfaces) and other aspects of the knee2, allowing the plan to be estimated from unaffected bone surfaces, within the constraints of the available trochlea.

In order to establish a patient specific trochlea model a method was developed to automatically compute an average shape of the distal femur from normal distal femur STL files (Fig.1). For that MRI scans of 50 normal knees from osteoarthritis initiative (OAI) study were used. Mimics and 3-matic software (Materialise) packages were used for segmentation and analysis of 3D models. Spheres were fitted to the medial and lateral flexion facets for both average knee model and patient knee model. The average knee was rescaled and registered in order to match flexion facet axis (FFA) distance and FFA midpoint of the patient (Fig.2). The difference between the patient surface and the average knee surface allow to plan the patella groove alteration.

The Patella cut is planned parallel to the plane fitted to the anterior surface of the patella. The patella width/thickness ratio (W/T=2) is used to predict the post reconstruction thickness3. The position of the patella component (and its orientation if a component with a median ridge is used) is also planned.

The plan is next fine-tuned to achieve satisfactory PFJ kinematics4 (Fig.3). This will be complemented by intraoperative PFJ tracking which assists with soft tissue releases. PFJ kinematics is evaluated in terms of patella shift, tilt and deviation from the previously described circular path of the centre of the patella.

The effect of preoperative planning on PFJ tracking and soft tissue releases is being examined. Additional study is needed to evaluate whether planning and intraoperative kinematic measurements improve the clinical outcome of PFJ arthroplasty.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 29 - 29
1 May 2016
Harris S Iranpour F Riyat H Cobb J
Full Access

Introduction

The trochlea of a typical patellofemoral replacement or anterior flange of a total knee replacement usually extends past the natural trochlea and continues onto the femoral anterior cortex. One reason for this is that it allows a simple patella button to be permanently engaged in the trochlea groove in an attempt to ensure stability. On the natural patella, the apex helps to guide it into the trochlea groove as the knee moves from full extension into flexion.

The aim is to study whether a generalised patella can be created that is close in form to a healthy patella.

Method

MRI scans were taken of 30 patellae. Characteristics of these patellae (height, width, thickness, apex angle) were measured. The apex angle was found to be similar between patellae (mean=126 degrees, sd = 8.8), as were the ratios between height and width (mean width/height = 1.05, sd = 0.07) and between thickness and width (mean width/thickness = 1.8, sd = 0.19).

These patellae were then segmented to create a surface including cartilage, resulting in 30 STL (stereolithography) files in which the surfaces are represented by triangle meshes.

To design the average patella the individual patellae were aligned to a standard frame of reference by placing a set of landmarks on the proximal/distal, medial/lateral and anterior/posterior extents of each (fig.1). The vertical axis was defined as passing parallel to the proximal/distal points and the horizontal as passing parallel to the medial/lateral points when looking along the computed vertical axis. The origin centre of the frame of reference was chosen to be mid-way between these points. The mean width was then computed and each patella scaled linearly around the origin to give them all equal width.

All the aligned patellae were then averaged together to provide a composite cartilaginous patella. The averaging process was achieved by taking one patella as a seed. The patella chosen for seed was that whose parameters were closest to the average width, height and thickness. An approximately normal vector was passed a point ‘P’ on the seeds, and the points at which these intersected the other models were then determined. The closest intersection point to ‘P’ on each model was chosen and these averaged together. ‘P’ is then replaced in the model with this average point. The averaging process then continues with all the remaining points on the seed model in the same manner to build the average models.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_14 | Pages 8 - 8
1 Dec 2015
Mushtaq N Al Obaidi B Iranpour F Bhattacharya R
Full Access

Introduction

Different techniques for fixation of lateral malleolus have been described. We report our results of using fibula rod for unstable ankle fractures in level one major trauma centre.

Methods

We reviewed the results of 40 ankle fractures (14 open and 26 closed) with significant soft tissue injuries and open fractures that were treated with a fibula rod between 2012 and 2015. The median age of patients was 60 (17–98 years).


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 27 - 27
1 Oct 2012
Strachan R Konala P Iranpour F Prime M Amirthanayagam T Amis A
Full Access

Anatomical referencing, component positioning, limb alignments and correction of mechanical axes are essential first steps in successful computer assisted navigation. However, apart from basic gap balancing and quantification of ranges of motion, routine navigation technique usually fails to use the full potential of the registered information. Enhanced dynamic assessment using an upgraded navigation system (Brainlab V. 2.2) is now capable of producing enhanced ‘range of motion’ analysis, ‘tracking curves’ and ‘contact point observations’.

‘Range of motion analysis’ was performed simultaneously for both tibio-femoral and patella-femoral joints. Other dynamic information including epicondylar axis motion, valgus and varus alignments, antero-posterior tibio-femoral shifts, as well as flexion and extension gaps were simultaneously stored as a series of ‘tracking curves’ throughout a full range of motion. Simultaneous tracking values for both tibiofemoral and patellofemoral motion was also obtained after performing registration of the prosthetic trochlea. However, there seems to be little point in carrying out such observations without fully assessing joint stability by applying controlled force to the prosthetic joint.

Therefore, in order to fully assess ‘potential envelopes of motion’, observations have been made using a set of standardised simple dynamic tests during insertion and after final positioning of trial components. Also, such tests have been carried out before and after any necessary ligament balancing. Firstly, the lower leg was placed in neutral alignment and the knee put through a flexion-extension cycle. Secondly the test was repeated but with the lower leg being placed into varus and internal rotation. The third test was performed with the lower leg in valgus and external rotation. Force applied was up to the point where resistance occurred without any gross elastic deformation of capsule or ligament in a manner typical of any surgeon assessing the stability of the construct. Also a passive technique of using gravity to ‘Drop-Test’ the limb into flexion and extension gave useful information regarding potential problems such as blocks to extension, over-stuffing of the extensor mechanism and tightness of the flexion gap. All the definitive tests were performed after temporary medial capsular closure.

Ten total knee arthroplasties have been studied using this technique with particular reference to the patterns of instability found before, during and after adjustments to component positioning and ligament balancing. Marked intra-operative variation in the stability characteristics of the trial implanted joints has been quantified before correction. These corrections have been analysed in terms of change in translations, rotations and contact points induced by any such adjustments to components and ligament. Certain major typical patterns of instability have begun to be identified including excessive rotational and translational movements. Instability to valgus and external rotational stress was found in two cases and to varus and internal rotational stress in one case before correction. In particular, surprising amounts of edge loading in mid-flexion under stress testing has been identified and corrective measures carried out. Reductions in paradoxical tibio-femoral antero-posterior motion were also observed. Global instability and conversely tightness were also observed in early stages of surgery. Adjustments to component sizes, rotations, tibial slope angles and insert thickness were found to be necessary to optimise range of motion and stability characterisitics on an almost case-by-case basis. Two cases were identified where use of more congruent or stabilised components was necessary. Observation of quite marked loss of contact between tibia and femur was seen on the lateral side of the knee in deep flexion in several cases. Patellar tracking was also being observed during such dynamic tests and in two cases staged partial lateral retinacular releases were carried out to centre patellar tracking on the prosthetic trochlea.

Although numbers in this case series are small, it has been possible to begin to observe, classify and quantify patterns of instability intra-operatively using simple stress tests. Such enhanced intra-operative information may in future make it possible to create algorithms for logical and precise adjustments to ligaments and components in order to optimise range of motion, contact areas and stability in TKR.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IX | Pages 73 - 73
1 Mar 2012
Iranpour F Merican AM Hirschmann MT Cobb JP Amis AA
Full Access

Introduction

Differing descriptions of patellar motion relative to the femur have resulted from many in-vitro and in-vivo studies. The aim of this study was to examine the tracking behaviour of the patella. We hypothesized that patellar kinematics would correlate to the trochlear geometry.

Method

Seven normal fresh-frozen knees were CT scanned and their kinematics with quadriceps loading was measured by an optical tracker system and calculated in relation to the previously-established femoral axes. CT scans were used to reliably define frames of reference for the femur, tibia and the patella. A novel trochlear axis was defined, between the centres of best-fit medial and lateral trochlear articular surfaces spheres.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IX | Pages 75 - 75
1 Mar 2012
Iranpour F Salmasi YM Murphy M Hirschmann MT Amis A Cobb JP
Full Access

Introduction

Tibial patho-morphology has been described as a factor that predisposes to medial compartment osteoarthritis of the knee in 2D analysis. The aim of this study was to investigate whether the morphology of normal and pre-OA medial compartments are really different in 3 dimensions.

Method

A total of 20 normal (group A) and 20 pre-OA knees (group B) were included. Group A consisted of contra-lateral knees of young patients awaiting hip surgery and group B of asymptomatic contra-lateral knees of patients awaiting unicompartmental knee arthroplasty (UKA).

Using 3D reconstructions from CT scans, femurs were aligned to the transcondylar and anatomical axes. The medial femoral extension facet was modelled as a sphere. Its radius and the offsets between its centre and the medial flexion facet centre were measured. The tibias were aligned to a flat portion of the flexion facet (flexion facet plane. A model of analysis was developed by rotating several increments towards and away from the midline to obtain several sagittal section images. For each sagittal section the extension facet angle (EFA), its length, and the submeniscal plane angle and length were analysed.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IX | Pages 76 - 76
1 Mar 2012
Iranpour F Konala P Cobb JP Friederich N Hirschmann MT
Full Access

Introduction

SPECT/CT might be a promising diagnostic modality in patients with painful total knee arthroplasty. It was the purpose of our study to introduce a novel standardised SPECT/CT algorithm for assessing patients with painful primary total knee arthroplasty and to evaluate its clinical applicability and inter- and intra-observer variation and reliability.

Methods

A novel SPECT/CT localisation scheme, which consists of 9 tibial, 9 femoral and 4 patellar regions on standardised transverse, coronal, and sagittal slices was introduced. It was assessed in 18 consecutive patients with painful knees after total knee arthroplasty. The localisation and level of the tracer uptake on SPECT/CT were noted using a color coded 10 steps graded scale (0-100). The inter and intra-observer reliability were assessed. The femoral and tibial prosthetic component position was assessed in the CT images after 3D reconstruction and aligning them to standardised frames of reference. The average root mean square difference±standard deviations and ranges of these measured angles are presented along with the intraclass correlation coefficients for inter- and intraobserver reliability.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IX | Pages 74 - 74
1 Mar 2012
Iranpour F Sayani J Hirschmann MT Amis A Cobb JP
Full Access

Introduction

The trochlear groove plays a major role in the mechanics and patho-mechanics of the patellofemoral joint. Our primary goal was to compare normal, osteoarthritic and dysplastic PFJs in terms of angles and distances.

Method

Computed tomography scans of 40 normal knees (>55 years old), 9 knees with patellofemoral osteoarthritis (group A) and 12 knees with trochlear dysplasia (group B) were analysed using 3D software. The femurs were orientated using a robust frame of reference. A circle was fitted to the trochlear groove. The novel trochlear axis was defined as a line joining the centres of two spheres fitted to the trochlear surfaces, lateral and medial to the trochlear groove. The relationship between the femoral trochlea and the tibiofemoral joint was measured in term of angles and distances (offsets).T-test for paired samples was used (p<0.05).


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 433 - 433
1 Nov 2011
Strachan R Iranpour F Konala P Devadesan B Chia S Merican A Amis A
Full Access

Controversy still exists in the literature regarding efficacy and usefulness of CASN in knee arthroplasty. However, obsession with basic alignments and proper correction of mechanical axes fails to recognise the full future potential of CASN which seems to lie in enhanced dynamic assessment. Basic dynamics usually at least includes intraoperative assessment of limb alignments, flexion-extension gap balancing and simple testing through ranges of motion. However our upgraded CASN system (Brainlab) is also capable of enhanced assessment not only including the provision of data on initial to final alignments but also contact point observations. The system can also perform an enhanced ‘Range Of Motion’ (ROM) analysis including observation of epicondylar axis motion, valgus and varus, antero-posterior shifts as well as flexion and extension gaps. Tracking values for both tibiofemoral and patellofemoral motion have also been obtained after performing registration of the prosthetic trochlea.

Observations were then made using a set of standardised dynamic tests. Firstly, the lower leg was placed in neutral alignment and the knee put through a flexionextension cycle. Secondly the test was repeated but with the lower leg being placed into varus and internal rotation. The third test was performed with the lower leg in valgus and external rotation.

We have been able to carry out these observations in a limited case series of 15 total knee arthroplasties and have found it possible to observe and quantify marked intra-operative variation in the stability characteristics of the implanted joints before corrections have been made and final assessments performed. Indeed contact point observation has found several cases of edge loading before corrections have been made. Also ROM analysis has demonstrated the ability of the system in other cases to observe and then make necessary adjustments of implant positions and ligament balance which alter the amounts of antero-posterior and lateral translations. In this way paradoxical antero-posterior and larger rotational movements have been minimised. Cases where conversion to posterior stabilisation has been necessary have been encountered. Also patellar tracking has been observed during such dynamic tests and appropriate adjustments made to components and soft tissue balancing.

Although numbers in this case series are small, it has been possible to begin to observe, classify and quantify patterns of instability intra-operatively using simple stress tests. Such enhanced intra-operative information may in future make it possible to create algorithms for logical adjustments to ligament balance, component sizes, types and positions. In this way CASN becomes a more useful tool.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 388 - 388
1 Jul 2011
Davda K Konala P Iranpour F Hirschmann M Cobb J
Full Access

A robust frame of reference is required to accurately characterize pathoanatomy in the proximal femur and quantify the femoral head-neck relationship. A three dimensional (3D) femoral neck axis (FNA) could serve such a purpose, but has not yet been established in the current literature.

The primary aim of this study was to develop and evaluate a reliable method of determining the 3D femoral neck axis. Secondly, we wanted to quantify the translational relationship between the femoral head and neck in normal and cam type hips.

Pelvic computed tomographic scans (CT) and radiographs were retrieved from our database of patients who had undergone navigated hip surgery or CT colonography. All patients had given informed consent for their medical files and imaging to be used for research purposes, as approved by the institutional review board.

Pre-operative scans were performed using the Siemens Sensation 64 slice scanner (Siemens Medical Solutions, Erlangen, Germany). The Imperial Protocol developed at the authors’ orthopaedic unit was applied, allowing acquisition of Digital Imaging and Communications in Medicine (DICOM) files of 0.75mm thickness.

Normal and cam type hips (n=30) were identified for analysis. ‘Normal’ hips (n=15) were defined in asymptomatic patients with no previous history of hip disease, and, no obvious abnormality on radiographs or CT. The ‘cam’ hip type (n=15) was defined by the presence of an anterior osseous bump at the head-neck junction, and an alpha angle greater than 50° on hip radiographs.

DICOMs were converted to 3D stereolith (STL) images using validated commercial image processing and analysis software (3-Matics, Materialise Group, Leuven, Belgium).

In order to determine the 3D-FNA, a best fit sphere was applied to the femoral head with a root mean square error of less than 0.5mm. The border between sphere and femoral neck defined the head -neck junction. The bone surface was marked here (including the anterior bump in cam hips) and at the neck base, providing two anatomical rings that defined the superior and inferior limits of the femoral neck. The centre point of each ring was calculated. A line connecting these points defined the femoral neck axis, and was verified on a DICOM viewer in sagittal, axial and coronal planes. The offset between the femoral head centre and neck axis was measured.

The 3D image and axis were further analysed to examine the femoral head-neck relationship, using customized software developed at our institution and previously validated in previous research projects.

To standardize rotational alignment, the femoral neck was aligned vertically in two planes by creating an axis between the tip of the greater trochanter and the center of the lesser trochanter. The aligned proximal femur was viewed end on, and the version of the head relative to the neck determined by calculating the angle between the head centre and a vertical marker placed at the 12 o’clock position. Angles below 180° demonstrated anteversion, while those above 180° demonstrated retroversion.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 389 - 389
1 Jul 2011
Iranpour F Sayani J Hirschmann M Cobb J
Full Access

A profound understanding of the pathoanatomy of the patellofemoral joint is considered to be fundamental for navigated knee arthroplasty. Previous studies used less sophisticated imaging modalities such as photography and plain radiographs or direct measurement tools like probes and micrometers to define the morphology of the trochlear groove, with differing results. This may be due to the complexity of the biomechanics and the geometry of this joint. Our primary goal was to compare normal, osteoarthritic and dysplastic PFJs in terms of angles and distances. To do this we first had to establish a reliable frame of reference.

Computed tomography scans of 40 normal knees (> 55 years old), 9 knees with patellofemoral osteoarthritis (group A) and 12 knees with trochlear dysplasia (group B) were analyzed using 3D software. The femurs were orientated using a robust frame of reference. A circle was fitted to the trochlear groove. The novel trochlear axis was defined as a line joining the centres of two spheres fitted to the trochlear surfaces, lateral and medial to the trochlear groove. The relationship between the femoral trochlea and the tibiofemoral joint was measured in term of angles and distances (offsets). T-test for paired samples was used (p< 0.05). The study was approved by the institutional review conforming to the state laws and regulations.

The normal trochlear groove closely matched a circle (RMS 0.3mm). It was positioned laterally in relation to the mechanical, anatomical, and trans-condylar axes of the femur. It was not co-planar with any of the three axes. After aligning to the new trochlear axis, the trochlear groove appeared more linear than when other axes were used. In comparison to the normal knees; the medial trochlear was smaller in group A (p=0.0003)- see figure 2. The lateral trochlear was smaller in group B (p=0.04). The trochlear groove was smaller in groups B (p=0.0003). Both trochlear centers in groups A+B were more centralized (p=0.00002–0.03). The medial trochlear center was more distal in group A (p=0.03) and the lateral trochlear center was more distal in group B (p=0.00009). The trochlear groove started more distal in group B (p=0.0007).

A better understanding of the 3-dimensional geometry can help better treat or even prevent the progression of disease to the stage of patellofemoral osteoarthritis. In osteoarthritic and dysplastic patellofemoral joints, the trochlea is both smaller and more distally located along the femur. These two factors may contribute to excessive loads that lead to early joint wear. These differences could have biomechanical implications and give us an insight into why joints fail. The data collected may also help in improving current designs and current navigational and surgical techniques used for the treatment of patellofemoral osteoarthritis.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 389 - 389
1 Jul 2011
Iranpour F Salmasi M Murphy M Hirschmann M Cobb J
Full Access

When navigating patellofemoral/unicompartmental knee surgery, the surgeon makes assumptions based upon algorithms developed for total knee arthroplasty. In this study we set out to show how variable the normal knee is. Minor anatomical variations in the shape of our knee may make a big difference in terms of orientation and joint wear patterns. Tibial patho-morphology has been described as a factor that predisposes to medial compartment osteoarthritis of the knee (anteromedial-OA), yet this is limited to 2D analysis. We aimed to describe the 3D morphology of both the tibial and femoral components of the medial compartment of the knee. We hypothesized that morphological differences do exist between normal knees and those predisposed to osteoarthritis.

A total of 20 normal (group A) and 20 pre-OA knees (group B) were included. Group A consisted of contra lateral knees of young patients (< 55 years) awaiting hip surgery and group B of asymptomatic contra lateral knees of patients awaiting unicompartmental knee arthroplasty (UKA). Using 3D reconstructions from CT scans, we analyzed the tibiofemoral joint, which consists of the femoral condyles and the tibial plateau. The femur was aligned to the transcondylar and anatomical axes. The medial femoral extension facet (MFEF) was modeled as a segment of a sphere. The offsets between the MFEF centre and the medial femoral flexion facet centre were measured. The MFEF radius and the MFEF 2D arc angle in the sagittal plane were also measured. The tibias were aligned for flexion-extension and varus-valgus to a flat portion of the flexion facet (flexion facet plane), which lie’s roughly perpendicular to the tibial mechanical axis. To control for axial rotation, the anatomical tibial axis was used. A model of analysis was developed by rotating several increments towards and away from the midline to obtain several sagittal section images. For each sagittal section the medial tibial extension facet (MTEF) slope angle, its length, and the medial tibial submeniscal plane (MTSP) angle and length were analyzed. The relative length proportions of the MTEF, medial tibial flexion facet and MTSP were also measured.

The MFEF was larger and more offset in pre-OA knees. Pre-OA knees also had a significantly larger MFEF arc angle than normals (p< 0.05). The MTEF appeared similar between normal and pre-OA knees. The submeniscal plane was highly variable between subjects but on average horizontally inclined (median 0o, range −15–14o) and formed a crescent shape anteriorly. There was no significant difference in tibial measured parameters between normal and pre-OA tibias (p> 0.05). The method showed good reproducibility using intraclass correlation coefficient (ICC value> 0.9) and Bland-Altman plot analysis.

This study gives the CAOS surgeon some interesting insights into the anatomical variation of the normal knee. We have found evidence of a predisposing patho-morphology to medial-OA in the femoral condyle, but not the tibia. There is evidence of an enlarged flatter extension facet on the medial femoral condyle in the pre-OA knees, with no significant difference in the geometry of the medial tibial plateau, which is now reliably defined based upon a flexion plateau frame of reference.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 391 - 391
1 Jul 2011
Molajo A Konala P Ball S Iranpour F Nathwani D
Full Access

Reconstructive knee arthroplasty in patients with limb deformity can be a daunting and complex task. These patients are often younger and so post traumatic osteoarthritis poses a real challenge. In view of their relative youth, bone preservation would be favourable; however accurate implantation of components is essential. Formulation of a well calculated plan and accurate execution is essential for successful surgery.

We report on a novel method which combines 3D CT joint analysis and computer navigation to define the deformity present pre-operatively and determine whether the proposed reconstruction is feasible. If the reconstructive surgery is feasible, an accurate calculation the correction required is performed. The planned surgery is executed using computer aided navigation surgery.

Eight patients have benefited from the technique. Four patients presented with isolated medial compartment osteoarthritis and intact anterior cruciate ligament. These patients underwent 3D CT joint analysis and computer assisted navigation surgery to accurately implant unicondylar knee replacements.

Four Patients presented with two or three compartment disease. These patients underwent similar 3D CT analysis and navigated Total Knee Replacement.

The series demonstrates the merits of 3D CT joint analysis to accurately define deformity and therefore determine pre-operatively feasibility of corrective surgery proposed. The technique is then complimented by computer assisted navigation surgery to ensure the proposed surgical plan is accurately executed.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 390 - 390
1 Jul 2011
Cobb J Logishetty K Davda K Murphy AJ Iranpour F
Full Access

Cam femoroacetabular impingement (FAI) is currently treated by resecting the femoral cam lesion. Some surgeons advocate additional anterosuperior acetabular rim resection. However, the exact acetabular contribution to cam-FAI has yet to be described. Using 3D-CT analysis, we set out to quantify the acetabular rim shape and orientation in this condition, and to determine the roles of these factors in cam-FAI.

The acetabula of twenty consecutive cam hips (defined by α-angle of Notzli greater than 55° on plain radiographs) undergoing image based navigated surgery. These were compared with twenty normal hips (defined as disease free sockets with a normal femoral head-neck junction) obtained from a CT colonoscopy database.

Using 3D reconstruction software, the pelvis was aligned to the anterior pelvic plane (APP). Starting at the most anterior rim point, successive markers were placed along the rim. A best-fit acetabular rim plane (ARP) was derived, and the subtended angle (SA) between each rim marker and a normal vector from the acetabular centre was calculated. Values above 90° indicated a peak, with less than 90° representing a trough. Inclination and version were measured from the APP.

Our results showed that the rim profile of both cam-type and normal acetabular is an asymmetric succession of three peaks and three troughs. However, the cam-type acetabulum is significantly shallower overall than normal (Mean SA: 84±5° versus 87±4°, p< 0.0001). In particular, at anatomical points in the impingement zone between 12 and 3 o’clock, the subtended angle of cam hips were never higher than normal, and, in fact, at certain points were lower (iliac eminence: 90±5° vs. 93±4° p=0.0094, iliopubic trough: 79±5° vs. 83±4° p=0.0169, pubic eminence 83±7° vs. 84±4° p=0.4445). The orientation of cam and normal hips were almost identical (Inclination: 53±4°vs. 51±3° p=0.2609 and Anteversion: 23±7° vs. 24±6° p=0.3917).

We concluded that cam-type acetabula are significantly shallower than normal. The subtended angles at all points around the hip were lower, and in particular, in the impingement zone between 12 and 3 o’clock not one cam had a subtended angle over 90°. We have therefore been unable to support the hypothesis of mixed-type FAI in cam-type hips.

Bony rim resection in cam hips therefore runs the risk of rendering the acetabulum more morphologically abnormal and even functionally dysplastic. We do not recommend acetabular rim resection in patients with pure cam-type impingement, and await the longer-term results of this practice with apprehension.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 389 - 389
1 Jul 2011
Iranpour F Merican A Hirschmann M Cobb J Amis A
Full Access

Differing descriptions of patellar motion relative to the femur have resulted from many in-vitro and in-vivo studies. The aim of this study was to examine the tracking behaviour of the patella. We hypothesized that patellar kinematics would correlate to the trochlear geometry and that differing previous descriptions could be reconciled by accounting for differing alignments of measurement axes.

Seven normal fresh-frozen knees were CT scanned and their kinematics with quadriceps loading was measured by an optical tracker system and calculated in relation to the previously-established femoral axes. CT scans were used to reliably define frames of reference for the femur, tibia and the patella. A novel trochlear axis was defined, between the centres of best-fit medial and lateral trochlear articular surfaces spheres.

The path of the centre of the patella was circular and uniplanar (RMS error 0.3mm) above 16°±3° knee flexion. The distal end of the median ridge of the patella entered the groove at 6° knee flexion, and the midpoint at 22°. This circle was aligned 6.4° ± 1.6° (mean± SD) from the femoral anatomical axis, 91.2°±3.4° from the epicondylar axis, and 88.3°±3° from the trochlear axis, in the coronal plane. In the transverse plane it was 91.2°±3.4° and 88.3°±3° from the epicondylar and trochlear axes. Manipulation of the data to different axis alignments showed that differing previously-published data could be reconciled. When the anatomic axis of the femur was used to align the coordinates, there was an initial medial and then a lateral translation. Comparing this with the uniplanar and circular path of the center of the patella, it shows that the orientation of the femoral coordinate system affects the description of the patellar medial-lateral translation.

This study has shown the effect of using different coordinate systems on reporting the patellar translation. Choosing a femoral reference that is more in line with the plane of the circular path of motion and the trochlear groove in the coronal plane diminishes the reported subsequent lateral translation of the patella. Once the frame of reference had been aligned to the trochlear axis, there was minimum medial-lateral translation of the patella.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 388 - 388
1 Jul 2011
Davda K Iranpour F Hart A Cobb J
Full Access

A 10° deviation from the ideal cup orientation in Metal on Metal (MoM) bearing couples leads to increased wear and the subsequent risk of early revision surgery. We assessed the accuracy of orthopaedic trainees and consultants in achieving optimal acetabular cup orientation.

49 trainees and 18 consultants were asked to orientate an acetabular component to 40° inclination and 20° anteversion in 3 consecutive pelvic models:

osteoarthritic (OA),

OA with anterior pelvic tilt,

OA with soft tissue cladding, the task most realistic of a surgical scenario.

The trainee group experience in performing hip arthroplasty procedures ranged from novice to expert (> 100 procedures performed). Performance was measured using an image based navigation system.

Average angular error in all tasks was less than 10°, but the range in anteversion or inclination was up to 65°. Eighteen percent of trainees were +/− 10° of the target orientation in Station A, 29% in B and 2% in C. Forty four percent of consultants achieved the safe zone in A, 16% in B and 0% in C. There was no significant difference in accuracy between the two groups in any of the tasks (p> 0.01). There was no correlation between experience and angular accuracy.

We have been unable to demonstrate trainees have the ability to achieve the optimal cup orientation in a clinically relevant safe zone. A similar range of error is found in experienced surgeons. Focused training or intra-operative computer assistance may provide the solution to improving accuracy in this core orthopaedic skill.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 390 - 390
1 Jul 2011
Cobb J Logishetty K Davda K Murphy AJ Iranpour F
Full Access

Pincer femoroacetabular impingement (FAI) is cited as being the result of a socket that is either too deep or retroverted, or both. Using 3D-CT analysis, we set out to quantify the acetabular rim shape and orientation to determine the roles of these two factors in FAI.

Twenty pincer acetabulae were selected from patients undergoing image based navigated surgery, where the lateral centre edge angle was greater than 40° on plain radiographs. The normal group of disease free sockets were obtained from a CT colonography database.

Using 3D reconstruction of their CT scans, a novel method of mapping the acetabular rim profile was created. The pelvis was aligned to the anterior pelvic plane. Starting at the most anterior rim point, successive markers were placed along the rim. A best fit plane (ARP) through the acetabulum was derived, and the subtended angle (SA) between each rim marker and a normal vector from the acetabular centre was calculated. Values above 90° indicated a peak, with less than 90° representing a trough. Inclination and version were measured from a horizontal plane and the ARP, in the coronal and axial view respectively.

The results showed that asymmetric acetabular rim profiles in normal and pincer hips were very similar. However, pincer hips are significantly deeper overall (Mean SA 96±5° vs. 87±4° p< 0.00001) and at each anatomical point of the three eminences (pubic [SA: Normal 84±4° vs. Pincer 94±7° p< 0.00001], iliac [SA: 93±4° vs. 100±6° p=0.00021] and ischial [SA: 92±3° vs. 102±8° p=0.00005]) and two troughs (ilio-pubic [SA: Normal 83±4° vs. Pincer 94±8° p=0.00001] and ilio-ischial [SA: 92±3° vs. 102±8° p=0.00002]).

The orientation of normal and pincer were almost identical (Inclination: 51±3° vs. 51±6° p=0.54 and Version: 24±6° vs. 25°±7° p=0.67).

We conclude that the rim shape of pincer hips follows the same contour as normal hips. In agreement with current radiographic diagnosis, pincer-type hips are characterised by a deeper acetabulum. This ‘overcoverage’ of the femoral head confirms the biomechanical model of pincer-type impingement.

Both inclination and version in these two groups were almost identical, with no truly retroverted acetabulum seen. Pincer impingement resulting from ‘acetabular retroversion’ is a concept currently based upon radiographic signs that we have been unable to confirm in this small 3D study using the subtended angle as the key descriptor of acetabular morphology.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 5 | Pages 629 - 633
1 May 2011
Hirschmann MT Konala P Amsler F Iranpour F Friederich NF Cobb JP

We studied the intra- and interobserver reliability of measurements of the position of the components after total knee replacement (TKR) using a combination of radiographs and axial two-dimensional (2D) and three-dimensional (3D) reconstructed CT images to identify which method is best for this purpose.

A total of 30 knees after primary TKR were assessed by two independent observers (an orthopaedic surgeon and a radiologist) using radiographs and CT scans. Plain radiographs were highly reliable at measuring the tibial slope, but showed wide variability for all other measurements; 2D-CT also showed wide variability. 3D-CT was highly reliable, even when measuring rotation of the femoral components, and significantly better than 2D-CT. Interobserver variability in the measurements on radiographs were good (intraclass correlation coefficient (ICC) 0.65 to 0.82), but rotational measurements on 2D-CT were poor (ICC 0.29). On 3D-CT they were near perfect (ICC 0.89 to 0.99), and significantly more reliable than 2D-CT (p < 0.001).

3D-reconstructed images are sufficiently reliable to enable reporting of the position and orientation of the components. Rotational measurements in particular should be performed on 3D-reconstructed CT images. When faced with a poorly functioning TKR with concerns over component positioning, we recommend 3D-CT as the investigation of choice.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_II | Pages 296 - 296
1 May 2010
Dandachli W Nakhla A Iranpour F Kannan V Amis A Cobb J
Full Access

Acetabular centre positioning in the pelvis has a profound effect on hip joint function. The force–and moment-generating capacities of the hip muscles are highly sensitive to the location of the hip centre. We describe a novel 3D CT-based system that provides a scaled frame of reference (FOR) defining the hip centre coordinates in relation to easily identifiable pelvic anatomic landmarks. This FOR is more specific than the anterior pelvic plane (APP) alone, giving depth, height and width to the pelvis for both men and women under-going hip surgery.

CT scans of 22 normal hips were analysed. There were 14 female and 8 male hips. The APP was used as the basis of the coordinate system with the origin set at the right anterior superior iliac spine. After aligning the pelvis with the APP, the pelvic horizontal dimension (Dx) was defined as the distance between the most lateral points on the iliac crests, and its vertical dimension (Dy) was the distance between the highest point on the iliac wing and the lowest point on ischial tuberosity. The pelvic depth (Dz) was defined as the horizontal distance between the posterior superior iliac spine and the ipsilateral ASIS. The ratios of the hip centre’s x, y, and z coordinates to their corresponding pelvic dimensions (Cx/Dx, Cy/Dy, Cz,Dz) were calculated. The results were analysed for men and women.

For a given individual the hip centre coordinates can be derived from pelvic landmarks. We have found that the mean Cx/Dx measured 0.09 ± 0.02 (0.10 for males, 0.08 for females), Cy/Dy was 0.33 ± 0.02 (0.30 for males, 0.35 for females), and Cz/Dz was 0.37 ± 0.02 (0.39 for males and 0.36 for females). There was a statistically significant gender difference in Cy/Dy (p=0.0001) and Cz/Dz (p=0.03), but not in Cx/Dx (p=0.17). Anteversion for the male hips averaged 19° ± 3°, and for the female hips it was 26° ± 5°. Inclination measured 56° ± 1° for the males and 55° ± 4° for the females. Reliability testing showed a mean intra-class correlation coefficient of 0.95. Bland-Altman plots showed a good inter-observer agreement.

This method relies on a small number of anatomical points that are easily identifiable. The fairly constant relationship between the centre coordinates and pelvic dimensions allows derivation of the hip centre position from those dimensions. Even in this small group, it is apparent that there is a difference between the sexes in all three dimensions. Without the need for detailed imaging, the pelvic points allow the surgeon to scale the patient’s pelvis and thereby know within a few millimetres the ‘normal’ position of the acetabulum for both men and women. This knowledge may be of benefit when planning or undertaking reconstructive hip surgery especially in patients with hip dysplasia or bilateral hip disease where there is no reference available for planning the surgery.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 413 - 413
1 Sep 2009
Ghosh K Merican A Iranpour F Deehan D Amis A
Full Access

Objective: The aim of the study was to test the hypothesis that insertion of a total knee replacement (TKR) may effect range of motion as a consequence of excessive stretching of the retinaculae.

Methods: 8 fresh frozen cadaver knees were placed on a customised testing rig. The femur was rigidly fixed allowing the tibia to move freely through an arc of flexion. The quadriceps were loaded to 175N in their physiologic lines of action using a cable, pulley and weight system. The iliotibial tract was loaded with 30N. Tibiofemoral flexion and extension was measured using an optical tracking system. Monofilament sutures were passed along the fibres of the medial patellofemoral ligament (MPFL) and the deep transverse band in the lateral retinaculum with the anterior ends attached to the patella. The posterior suture ends were attached to ‘Linear Variable Displacement Transducers’. Thus small changes in ligament length were recorded by the transducers. Ligament length changes were recorded every 10° from 90° to 0° during an extension cycle. A transpatellar approach was used when performing the TKR to preserve the medial and lateral retinaculae. Testing was conducted on an intact knee and following insertion of a cruciate retaining TKR (Genesis II). Statistical analysis was performed using a two way ANOVA test.

Results: The MPFL had a mean behaviour close to isometric, while the lateral retinaculum slackened by a mean of 6mm as the knee extended from 60 degrees (Fig 1). After knee replacement there was no statistically significant difference seen in ligament length change patterns in the MPFL, however the lateral retinaculum showed significant slackening from 10 to 0°.

Conclusion: The data does not support the hypothesis that insertion of a TKR causes abnormal stretching of the retinaculuae. This result relates specifically to the TKR design tested.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 398 - 399
1 Sep 2009
Dandachli W Nakhla A Iranpour F Kannan V Cobb J
Full Access

Although acetabular centre positioning has a profound effect on hip joint function, there are very few studies describing accurate methods of defining the acetabular centre position in 3D space. Clinical and plain radiographic methods are inaccurate and unreliable. We hypothesize that a 3D CT-based system would provide a gender-specific scaled frame of reference defining the hip centre coordinates in relation to easily identifiable pelvic anatomic landmarks.

CT scans of thirty-seven normal hips (19 female and 18 male) were analysed. The ratios of the hip centre coordinates to their corresponding pelvic dimensions represented its horizontal (x), vertical (y), and posterior (z) scaled offsets (HSO, VSO, and PSO).

The mean HSO for females was 0.08 ± 0.018, mean VSO was 0.35 ± 0.018, and mean PSO was 0.36 ± 0.017. For males HSO averaged 0.10 ± 0.014, VSO was 0.32 ± 0.015, and PSO was 0.38 ± 0.013. There was a statistically significant gender difference in all three scaled offsets (p=0.04, 0.002, and 0.03 for HSO, VSO, and PSO respectively). Inter-observer agreement tests showed a mean intra-class correlation coefficient of 0.95.

We conclude that this frame of reference is gender-specific giving a unique scale to the patient and allowing reliable derivation of the position of the hip centre from the pelvic dimensions alone. The gender differences should be borne in mind when positioning the centre of a reconstructed hip joint. Using this method, malpositioning, particularly in the antero-posterior (or z) axis, can be identified and addressed in a malfunctioning hip replacement. Pathological states, such as dysplasia and protrusio, can also be accurately described and surgery addressing them can be precisely planned.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 413 - 413
1 Sep 2009
Ghosh K Merican A Iranpour F Deehan D Amis A
Full Access

Objective: The aim of this study was to test the hypothesis that malrotation of the femoral component following total knee replacement (TKR) may lead to patellofemoral complications as a consequence of excessive stretching of the retinaculae.

Methods: 8 fresh frozen cadaver knees were placed on a customised testing rig. The femur was rigidly fixed allowing the tibia to move freely through an arc of flexion. The quadriceps and iliotibial tract were loaded to 205N in their physiologic lines of action using a cable, pulley and weight system. Tibiofemoral flexion and extension was measured using an optical tracking system. Monofilament sutures were passed along the fibres of the medial patellofemoral ligament (MPFL) and the deep transverse band in the lateral retinaculum with the anterior ends attached to the patella. The posterior suture ends were attached to ‘Linear Variable Displacement Transducers’. Thus small changes in ligament length were recorded by the transducers. Ligament length changes were recorded every 10° from 90° to 0° during an extension cycle. A transpatellar approach was used when performing the TKR to preserve the medial and lateral retinaculae. Testing was conducted following insertion of a cruciate retaining TKR (Genesis II). The femoral component was rotated using a custom built intramedullary device. Ligament length changes were measured at neutral rotation, 5° internal and 5° external rotation. Statistical analysis was performed using a two way ANOVA test.

Results: Internal rotation resulted in the MPFL slackening a mean of 1.7mm from 70-0° extension (p< 0.001). External rotation resulted in the MPFL tightening a mean of 1.5mm over the same range (p< 0.01). The lateral retinaculum showed less significant differences.

Conclusion: External rotation resulted in smaller length changes than internal rotation. Patellar tilting as a result of internal rotation may be caused by MPFL slackening and not lateral retinacular tension, contrary to popular understanding.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 413 - 413
1 Sep 2009
Ghosh K Merican A Iranpour F Deehan D Amis A
Full Access

Objective: This study tested the hypothesis that complications resulting from overstuffing the patellofemoral joint after total knee replacement (TKR) may be a consequence of excessive stretching of the retinaculae.

Methods: 8 fresh frozen cadaver knees were placed on a customised testing rig. The femur was rigidly fixed and the tibia moved freely through an arc of flexion. The quadriceps and iliotibial tract were physiologically loaded to 205N using a cable, pulley and weight system. Tibiofemoral flexion/extension was measured using an optical tracking system. Monofilament sutures were passed along the fibres of the medial patellofemoral ligament (MPFL) and the deep transverse band in the lateral retinaculum with the anterior ends attached to the patella. The posterior suture ends were attached to ‘Linear Variable Displacement Transducers’. Thus, small changes in ligament length were recorded by the transducers. Length changes were recorded every 10° from 90°- 0° during an extension cycle. A transpatellar approach was used when performing the TKR to preserve the medial and lateral retinaculae. Testing was conducted following insertion of a cruciate retaining TKR (Genesis II). The patella was resurfaced and various patellar thicknesses were achieved by placing 2mm thick nylon washers behind the ‘onlay’ button. The thicknesses measured were 2mm understuff, pre-cut thickness, 2 and 4mm overstuff. Statistical analysis was performed using a two way ANOVA test.

Results: Patellar understuff resulted in the MPFL slackening an average of 1.6mm from 60 to 0° (p< 0.05). Overstuffing the patella 2mm resulted in no significant length changes whereas 4mm overstuff resulted in a mean increase in MPFL length of 2.3mm throughout extension (p< 0.001). No significant length changes seen in the lateral retinaculum

Conclusion: Overstuffing the PFJ stretches the MPFL, because it attaches directly between two bones. The lateral retinaculum attaches to the relatively mobile ITT, so overstuffing does not stretch it.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 399 - 399
1 Sep 2009
Dixon H Dandachli W Iranpour F Kannan V Cobb J
Full Access

The rotational alignment of the tibia is an as yet unresolved issue for arthroplasty surgeons. Functional variation may be due to minor malrotation of the tibial component. The aim was to find a reliable method for positioning the tibial component in arthroplasty.

CT scans of 21 knees were reconstructed in three dimensions and oriented vertically. A plane was taken 20 mm below the tibial spines. The centre of each tibial condyle was calculated from points taken round that condylar cortex. A tibial tubercle centre was also generated as the centre of the circle that best fit points on the surface of the tubercle in the plane of its most prominent point.

The derived points were identified by three observers with errors of 0.6 – 1mm. The medial and lateral tibial centres were constant features (radius 24mm ± 3mm, and 22mm ± 3mm respectively). An ‘anatomic’ axis was created perpendicular to a line joining these two points. The tubercle centre was found 20mm ± 7mm lateral to the medial tibial centre. Compared to this axis, an axis perpendicular to the posterior condylar axis was internally rotated by 6° ± 3°. An axis based on the tibial tubercle and the tibial spines was also internally rotated by 6° ± 10°.

We conclude that alignment of the knee when based on this ‘anatomic’ axis is more reliable than either of the posterior surfaces. It is also more reliable than any axis involving the tubercle, which is the least reliable feature in the region. The ‘anatomic’ axis can be used in navigated knee arthroplasty for referencing the rotational alignment of the tibial component.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 399 - 400
1 Sep 2009
Brust K Khanduja V Dandachli W Iranpour F Henckel J Hart AJ Cobb J
Full Access

Radiological measurements are an essential component of the assessment of outcome following knee arthroplasty. However, plain radiographic techniques can be associated with significant projectional errors because they are a two-dimensional (2D) representation of a three-dimensional (3D) structure. Angles that are considered within the target zone on one film may be outside that zone on other films. Moreover, these parameters can be subject to significant inter-observer differences when measured. The aim of our study therefore was to quantify the variability between observers evaluating plain radiographs following Unicompartmental knee arthroplasty.

Twenty-three observers, made up of Orthopaedic Consultants and trainees, were asked to measure the coronal and sagittal alignment of the tibial and femoral components from the post-operative long-leg plain radiograph of a Unicompartmental knee arthroplasty. A post-operative CT scan using the low dose Imperial knee protocol was obtained as well and analysed with 3D reconstruction software to measure the true values of these parameters. The accuracy and spread of the pain radiographic measurements were then compared with the values obtained on the CT.

On the femoral side, the mean angle in coronal alignment was 1.5° varus (Range 3.8, SD 1, min 0.1, max 3.9), whereas the mean angle in sagittal alignment was 8.6° of flexion (Range 7.5, SD 1.5, Min 3.7, Max 11.2). The true values measured with CT were 2.4° and 11.0° respectively. As for the tibial component, the mean coronal alignment angle was 89.7° (Range 11.6, SD 3.3, Min 83.8, Max 95.4), and the mean posterior slope was 2.4° (Range 8.7, SD 1.6, Min -2, Max 6.7). The CT values for these were 87.6° and 2.7° respectively.

We conclude that the plain radiographic measurements had a large scatter evidenced by the wide ranges in the values obtained by the different observers. If only the means are compared, the plain radiographic values were comparable with the true values obtained with CT (that is; accuracy was good) with differences ranging from 0.3° to 2.4°. The lack of precision can be avoided with the use of CT, particularly with the advent of low-dose scanning protocols.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 46 - 46
1 Mar 2009
Iranpour F Cobb J Amis A
Full Access

Introduction: The normal relationships of the patellofemoral joint provide a basis for the evaluation of patients with patellofemoral abnormalities. Previous studies have often described the patellofemoral joint using X-rays which are encumbered with projectional inaccuracies. We have used CT to describe the geometry of this joint and its relationship to the tibiofemoral joint in terms of angles and distances.

Materials and method: 33 patients had a CT scan prior to medial unicompartmental knee replacement. These patients have minimum patellofemoral joint disease. Special software was used to convert the scans to 3D and measure the distances and angles. The flexion axis of the tibiofemoral joint was found as the line connecting the centres of the spheres fitted to posterior femoral condyles. These two centres and femoral head centre form a frame of reference for reproducible femoral alignment. The trochlear geometry was defined by fitting circles and spheres to slices and surfaces, then constructing an axis through their centres. The geometry of the patella was established by fitting two planes to the proximal and anterior extra-articular surfaces of the patella. The relationships between these planes and the rest of the patella were explored.

Results: The deepest points on the trochlear groove can be fitted to a circle with radius of 23mm (stdev 4mm) and an rms of 0.3mm. This centre is offset by 21mm (stdev 3mm) at an angle of 68° (stdev 8°) from the line connecting the midpoint between the centres of the femoral condyles and a point in the piriform fossa.

On either end of this line, the articular surface of the trochlea can be fitted to spheres of radius 30mm (stdev 6mm) laterally and 27mm (stdev 5mm) and an rms of 0.4mm medially. The centres of the circle and the two spheres fall on a line with an rms of 1.1mm.

The anterior and proximal patellar planes could be described as flat surfaces (rms of 0.4 and 0.3mm). The median ridge could be described as a straight line (rms of 0.2mm). The angle between planes was 112° (stdev 5°); the average angle between the proximal plane and the line on the medial ridge was 62° (stdev4°).

The functional centre of the patella was defined as a point in the centre of 2 planes orthogonal to the sagital plane from the midpoint between the most proximal and most distal points on the median ridge. The length, width and thickness of the patellae were measured at 22mm +/−4mm, 47mm +/− 3mm and 24 mm+/− 2 mm.

Discussion: This investigation has allowed us to characterise the patello-femoral joint geometry. The knowledge of the shapes of the surfaces of this joint and their relationships may help identify and explain the aetiology of patello-femoral dyplasia and other pathologies. It may also be of use in planning and performing joint reconstruction and may have implications for the design of patello-femoral replacements and the rules governing their position.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 8 | Pages 1032 - 1038
1 Aug 2008
Cobb JP Dixon H Dandachli W Iranpour F

The rotational alignment of the tibia is an unresolved issue in knee replacement. A poor functional outcome may be due to malrotation of the tibial component. Our aim was to find a reliable method for positioning the tibial component in knee replacement.

CT scans of 19 knees were reconstructed in three dimensions and orientated vertically. An axial plane was identified 20 mm below the tibial spines. The centre of each tibial condyle was calculated from ten points taken round the condylar cortex. The tibial tubercle centre was also generated as the centre of the circle which best fitted eight points on the outside of the tubercle in an axial plane at the level of its most prominent point.

The derived points were identified by three observers with errors of 0.6 mm to 1 mm. The medial and lateral tibial centres were constant features (radius 24 mm (sd 3), and 22 mm (sd 3), respectively). An anatomical axis was created perpendicular to the line joining these two points. The tubercle centre was found to be 20 mm (sd 7) lateral to the centre of the medial tibial condyle. Compared with this axis, an axis perpendicular to the posterior condylar axis was internally rotated by 6° (sd 3). An axis based on the tibial tubercle and the tibial spines was also internally rotated by 5° (sd 10).

Alignment of the knee when based on this anatomical axis was more reliable than either the posterior surfaces or any axis involving the tubercle which was the least reliable landmark in the region.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 582 - 582
1 Aug 2008
Iranpour F Cobb J Amis A
Full Access

We have used CT to describe the geometry of the patel-lofemoral joint and its relationship to the tibiofemoral joint.

33 CT scans of patients without patellofemoral disease were performed. 3D images were reconstructed and measured using computer software. The flexion axis of the tibiofemoral joint was found as the line connecting the centres of the spheres fitted to posterior femoral condyles.

The deepest points on the trochlear groove can be fitted to a circle with radius of 23mm (stdev 4mm) and an rms of 0.3mm. This centre is offset by 21mm (stdev 3mm) at an angle of 68° (stdev 8°) from the line connecting the midpoint between the centres of the femoral condyles and a point in the piriform fossa.

On either side of this line, the articular surface of the trochlea can be fitted to spheres of radius 30mm (stdev 6mm) laterally and 27mm (stdev 5mm) and an rms of 0.4mm medially. The centres of the circle and the two spheres fall on a line with an rms of 1.1mm.

The anterior and proximal patellar planes could be described as flat surfaces (rms of 0.4 and 0.3mm). The median ridge could be described as a straight line (rms of 0.2mm). The angle between planes was 112° (stdev 5°); the average angle between the proximal plane and the line on the medial ridge was 62° (stdev4°).

The length, width and thickness of the patellae were measured at 34.2mm +/−4mm, 44.8mm +/− 4.8mm and 22.4 mm+/− 2.3 mm (table).

This investigation has allowed us to characterise the patello-femoral joint geometry which may help identify and explain the aetiology of patello-femoral pathologies. It may have implications for the design of patello-femoral replacements and the rules governing their position.