header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

THE GEOMETRY OF THE PATELLOFEMORAL JOINT



Abstract

Introduction: The normal relationships of the patellofemoral joint provide a basis for the evaluation of patients with patellofemoral abnormalities. Previous studies have often described the patellofemoral joint using X-rays which are encumbered with projectional inaccuracies. We have used CT to describe the geometry of this joint and its relationship to the tibiofemoral joint in terms of angles and distances.

Materials and method: 33 patients had a CT scan prior to medial unicompartmental knee replacement. These patients have minimum patellofemoral joint disease. Special software was used to convert the scans to 3D and measure the distances and angles. The flexion axis of the tibiofemoral joint was found as the line connecting the centres of the spheres fitted to posterior femoral condyles. These two centres and femoral head centre form a frame of reference for reproducible femoral alignment. The trochlear geometry was defined by fitting circles and spheres to slices and surfaces, then constructing an axis through their centres. The geometry of the patella was established by fitting two planes to the proximal and anterior extra-articular surfaces of the patella. The relationships between these planes and the rest of the patella were explored.

Results: The deepest points on the trochlear groove can be fitted to a circle with radius of 23mm (stdev 4mm) and an rms of 0.3mm. This centre is offset by 21mm (stdev 3mm) at an angle of 68° (stdev 8°) from the line connecting the midpoint between the centres of the femoral condyles and a point in the piriform fossa.

On either end of this line, the articular surface of the trochlea can be fitted to spheres of radius 30mm (stdev 6mm) laterally and 27mm (stdev 5mm) and an rms of 0.4mm medially. The centres of the circle and the two spheres fall on a line with an rms of 1.1mm.

The anterior and proximal patellar planes could be described as flat surfaces (rms of 0.4 and 0.3mm). The median ridge could be described as a straight line (rms of 0.2mm). The angle between planes was 112° (stdev 5°); the average angle between the proximal plane and the line on the medial ridge was 62° (stdev4°).

The functional centre of the patella was defined as a point in the centre of 2 planes orthogonal to the sagital plane from the midpoint between the most proximal and most distal points on the median ridge. The length, width and thickness of the patellae were measured at 22mm +/−4mm, 47mm +/− 3mm and 24 mm+/− 2 mm.

Discussion: This investigation has allowed us to characterise the patello-femoral joint geometry. The knowledge of the shapes of the surfaces of this joint and their relationships may help identify and explain the aetiology of patello-femoral dyplasia and other pathologies. It may also be of use in planning and performing joint reconstruction and may have implications for the design of patello-femoral replacements and the rules governing their position.

Correspondence should be addressed to Ms Larissa Welti, Scientific Secretary, EFORT Central Office, Technoparkstrasse 1, CH-8005 Zürich, Switzerland