header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

THE CIRCULAR PATH OF THE PATELLA AROUND THE TROCHLEAR AXIS



Abstract

Differing descriptions of patellar motion relative to the femur have resulted from many in-vitro and in-vivo studies. The aim of this study was to examine the tracking behaviour of the patella. We hypothesized that patellar kinematics would correlate to the trochlear geometry and that differing previous descriptions could be reconciled by accounting for differing alignments of measurement axes.

Seven normal fresh-frozen knees were CT scanned and their kinematics with quadriceps loading was measured by an optical tracker system and calculated in relation to the previously-established femoral axes. CT scans were used to reliably define frames of reference for the femur, tibia and the patella. A novel trochlear axis was defined, between the centres of best-fit medial and lateral trochlear articular surfaces spheres.

The path of the centre of the patella was circular and uniplanar (RMS error 0.3mm) above 16°±3° knee flexion. The distal end of the median ridge of the patella entered the groove at 6° knee flexion, and the midpoint at 22°. This circle was aligned 6.4° ± 1.6° (mean± SD) from the femoral anatomical axis, 91.2°±3.4° from the epicondylar axis, and 88.3°±3° from the trochlear axis, in the coronal plane. In the transverse plane it was 91.2°±3.4° and 88.3°±3° from the epicondylar and trochlear axes. Manipulation of the data to different axis alignments showed that differing previously-published data could be reconciled. When the anatomic axis of the femur was used to align the coordinates, there was an initial medial and then a lateral translation. Comparing this with the uniplanar and circular path of the center of the patella, it shows that the orientation of the femoral coordinate system affects the description of the patellar medial-lateral translation.

This study has shown the effect of using different coordinate systems on reporting the patellar translation. Choosing a femoral reference that is more in line with the plane of the circular path of motion and the trochlear groove in the coronal plane diminishes the reported subsequent lateral translation of the patella. Once the frame of reference had been aligned to the trochlear axis, there was minimum medial-lateral translation of the patella.

Correspondence should be addressed to Mr K Deep, Consultant Orthopaedic Surgeon, Golden Jubilee National Hospital NHS Trust, Beardmore Street, Clydebank, Glasgow G81 4HX, Scotland. Email: caosuk@gmail.com