header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

THE 3D-PATHOANATOMY OF THE PREARTHRITIC KNEE- A CALL FOR A BETTER UNDERSTANDING



Abstract

When navigating patellofemoral/unicompartmental knee surgery, the surgeon makes assumptions based upon algorithms developed for total knee arthroplasty. In this study we set out to show how variable the normal knee is. Minor anatomical variations in the shape of our knee may make a big difference in terms of orientation and joint wear patterns. Tibial patho-morphology has been described as a factor that predisposes to medial compartment osteoarthritis of the knee (anteromedial-OA), yet this is limited to 2D analysis. We aimed to describe the 3D morphology of both the tibial and femoral components of the medial compartment of the knee. We hypothesized that morphological differences do exist between normal knees and those predisposed to osteoarthritis.

A total of 20 normal (group A) and 20 pre-OA knees (group B) were included. Group A consisted of contra lateral knees of young patients (< 55 years) awaiting hip surgery and group B of asymptomatic contra lateral knees of patients awaiting unicompartmental knee arthroplasty (UKA). Using 3D reconstructions from CT scans, we analyzed the tibiofemoral joint, which consists of the femoral condyles and the tibial plateau. The femur was aligned to the transcondylar and anatomical axes. The medial femoral extension facet (MFEF) was modeled as a segment of a sphere. The offsets between the MFEF centre and the medial femoral flexion facet centre were measured. The MFEF radius and the MFEF 2D arc angle in the sagittal plane were also measured. The tibias were aligned for flexion-extension and varus-valgus to a flat portion of the flexion facet (flexion facet plane), which lie’s roughly perpendicular to the tibial mechanical axis. To control for axial rotation, the anatomical tibial axis was used. A model of analysis was developed by rotating several increments towards and away from the midline to obtain several sagittal section images. For each sagittal section the medial tibial extension facet (MTEF) slope angle, its length, and the medial tibial submeniscal plane (MTSP) angle and length were analyzed. The relative length proportions of the MTEF, medial tibial flexion facet and MTSP were also measured.

The MFEF was larger and more offset in pre-OA knees. Pre-OA knees also had a significantly larger MFEF arc angle than normals (p< 0.05). The MTEF appeared similar between normal and pre-OA knees. The submeniscal plane was highly variable between subjects but on average horizontally inclined (median 0o, range −15–14o) and formed a crescent shape anteriorly. There was no significant difference in tibial measured parameters between normal and pre-OA tibias (p> 0.05). The method showed good reproducibility using intraclass correlation coefficient (ICC value> 0.9) and Bland-Altman plot analysis.

This study gives the CAOS surgeon some interesting insights into the anatomical variation of the normal knee. We have found evidence of a predisposing patho-morphology to medial-OA in the femoral condyle, but not the tibia. There is evidence of an enlarged flatter extension facet on the medial femoral condyle in the pre-OA knees, with no significant difference in the geometry of the medial tibial plateau, which is now reliably defined based upon a flexion plateau frame of reference.

Correspondence should be addressed to Mr K Deep, Consultant Orthopaedic Surgeon, Golden Jubilee National Hospital NHS Trust, Beardmore Street, Clydebank, Glasgow G81 4HX, Scotland. Email: caosuk@gmail.com