header advert
Results 1 - 82 of 82
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_9 | Pages 9 - 9
1 Jun 2021
Greene A Verstraete M Roche C Conditt M Youderian A Parsons M Jones R Flurin P Wright T Zuckerman J
Full Access

INTRODUCTION

Determining proper joint tension in reverse total shoulder arthroplasty (rTSA) can be a challenging task for shoulder surgeons. Often, this is a subjective metric learned by feel during fellowship training with no real quantitative measures of what proper tension encompasses. Tension too high can potentially lead to scapular stress fractures and limitation of range of motion (ROM), whereas tension too low may lead to instability. New technologies that detect joint load intraoperatively create the opportunity to observe rTSA joint reaction forces in a clinical setting for the first time. The purpose of this study was to observe the differences in rTSA loads in cases that utilized two different humeral liner sizes.

METHODS

Ten different surgeons performed a total of 37 rTSA cases with the same implant system. During the procedure, each surgeon reconstructed the rTSA implants to his or her own preferred tension. A wireless load sensing humeral liner trial (VERASENSE for Equinoxe, OrthoSensor, Dania Beach, FL) was used in lieu of a traditional plastic humeral liner trial to provide real-time load data to the operating surgeon during the procedure. Two humeral liner trial sizes were offered in 38mm and 42mm curvatures and were selected each case based on surgeon preference. To ensure consistent measurements between surgeons, a standardized ROM assessment consisting of four dynamic maneuvers (maximum internal to external rotation at 0°, 45°, and 90° of abduction, and a maximum flexion/extension maneuver) and three static maneuvers (arm overhead, across the body, and behind the back) was completed in each case. Deidentified load data in lbf was collected and sorted based on which size liner was selected. Differences in means for minimum and maximum load values for the four dynamic maneuvers and differences in means for the three static maneuvers were calculated using 2-tailed unpaired t-tests.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 7 - 7
1 Feb 2021
Glenday J Gonzalez FQ Wright T Lipman J Sculco P Vigdorchik J
Full Access

Introduction

Varus alignment in total knee replacement (TKR) results in a larger portion of the joint load carried by the medial compartment.[1] Increased burden on the medial compartment could negatively impact the implant fixation, especially for cementless TKR that requires bone ingrowth. Our aim was to quantify the effect varus alignment on the bone-implant interaction of cementless tibial baseplates. To this end, we evaluated the bone-implant micromotion and the amount of bone at risk of failure.[2,3]

Methods

Finite element models (Fig.1) were developed from pre-operative CT scans of the tibiae of 11 female patients with osteoarthritis (age: 58–77 years). We sought to compare two loading conditions from Smith et al.;[1] these corresponded to a mechanically aligned knee and a knee with 4° of varus. Consequently, we virtually implanted each model with a two-peg cementless baseplate following two tibial alignment strategies: mechanical alignment (i.e., perpendicular to the tibial mechanical axis) and 2° tibial varus alignment (the femoral resection accounts for additional 2° varus). The baseplate was modeled as solid titanium (E=114.3 GPa; v=0.33). The pegs and a 1.2 mm layer on the bone-contact surface were modeled as 3D-printed porous titanium (E=1.1 GPa; v=0.3). Bone material properties were non-homogeneous, determined from the CT scans using relationships specific to the proximal tibia.[2,4] The bone-implant interface was modelled as frictional with friction coefficients for solid and porous titanium of 0.6 and 1.1, respectively. The tibia was fixed 77 mm distal to the resection. For mechanical alignment, instrumented TKR loads previously measured in vivo[5] were applied to the top of the baseplate throughout level gait in 2% intervals (Fig.1a). For varus alignment, the varus/valgus moment was modified to match the ratio of medial-lateral force distribution from Smith et al.[1] (Fig.1b).


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 57 - 57
1 Feb 2021
Elmasry S Chalmers B Sculco P Kahlenberg C Mayman D Wright T Westrich G Cross M Imhauser C
Full Access

Introduction

Surgeons commonly resect additional distal femur during primary total knee arthroplasty (TKA) to correct a flexion contracture to restore range of motion and knee function. However, the effect of joint line elevation on the resulting TKA kinematics including frontal plane laxity is unclear. Thus, our goal was to quantify the effect of additional distal femoral resection on passive extension and mid-flexion laxity.

Methods

Six computational knee models with capsular and collateral ligament properties specific to TKA were developed and implanted with a contemporary posterior-stabilized TKA. A 10° flexion contracture was modeled by imposing capsular contracture as determined by simulating a common clinical exam of knee extension and accounting for the length and weight of each limb segment from which the models were derived (Figure 1). Distal femoral resections of 2 mm and 4 mm were simulated for each model. The knees were then extended by applying the measured knee moments to quantify the amount of knee extension. The output data were compared with a previous cadaveric study using a two-sample two-tailed t-test (p<0.05) [1]. Subsequently, varus and valgus torques of ±10 Nm were applied as the knee was flexed from 0° to 90° at the baseline, and after distal resections of 2 mm, and 4 mm. Coronal laxity, defined as the sum of varus and valgus angulation in response to the applied varus and valgus torques, was measured at 30° and 45°of flexion, and the flexion angle was identified where the increase in laxity was the greatest with respect to baseline.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 17 - 17
1 Feb 2020
Fattori A Negro ND Gunsallus K Lipman J Hotchkiss R Figgie M Wright T Pressacco M
Full Access

Introduction

Total Elbow Arthroplasty (TEA) is recognized as an effective treatment solution for patients with rheumatoid arthritis or for traumatic conditions. Current total elbow devices can be divided into linked or unlinked design. The first design usually presents a linking element (i.e. an axle) to link together the ulnar and humeral components to stabilize the joint; the second one does not present any linkage and the stability is provided by both intrinsic design constraints and the soft tissues. Convertible modular solutions allow for an intraoperative decision to link or unlink the prosthesis; the modular connections introduce however additional risks in terms of both mechanical strength and potential fatigue and fretting phenomena that may arise not only due to low demand activities loads, but also high demand (HD) ones that could be even more detrimental. The aim of this study was to assess the strength of the modular connection between the axle and the ulnar component in a novel convertible elbow prosthesis design under simulated HD and activities of daily living (ADLs) loading.

Methods

A novel convertible total elbow prosthesis (LimaCorporate, IT) comprising both ulnar and humeral components that can be linked together by means of an axle, was used. Both typical ADLs and HD torques to be applied to the axle were determined based on finite element analysis (FEA); the boundary load conditions for the FEA were determined based on kinematics analysis on real patients in previous studies. The FEA resultant moment acting on the axle junction during typical ADLs (i.e. feeding with 7.2lbs weight in hand) was 3.2Nm while for HD loads (i.e. sit to stand) was 5.7 Nm. In the experimental setup, 5 axle specimens coupled with 5 ulnar bodies through a tapered connection (5 Nm assembly torque) were fixed to a torque actuator (MTS Bionix) and submerged in a saline solution (9g/l). A moment of 3.2 Nm was applied to the axle for 5M cycles through a fixture to test it under ADLs loading. After 5M cycles, the axles were analyzed with regards to fretting behavior and then re-assembled to test them against HD loading by applying 5.7 Nm for 200K cycles (corresponding to 20 years function).


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 121 - 121
1 Feb 2020
Steineman B Bitar R Sturnick D Hoffman J Deland J Demetracopoulos C Wright T
Full Access

INTRODUCTION

Proper ligament engagement is an important topic of discussion for total knee arthroplasty; however, its importance to total ankle arthroplasty (TAA) is uncertain. Ligaments are often lengthened or repaired in order to achieve balance in TAA without an understanding of changes in clinical outcomes. Unconstrained designs increase ankle laxity,1 but little is known about ligament changes with constrained designs or throughout functional activity. To better understand the importance of ligament engagement, we first investigated the changes in distance between ligament insertions throughout stance with different TAA designs. We hypothesize that the distance between ligaments spanning the ankle joint would increase in specimens following TAA throughout stance.

METHODS

A validated method of measuring individual bone kinematics was performed on pilot specimens pre- and post-TAA using a six-degree-of-freedom robotic simulator with extrinsic muscle actuators and motion capture cameras (Figure 1).2 Reflective markers attached to surgical pins and radiopaque beads were rigidly fixed to the tibia, fibula, talus, calcaneus, and navicular for each specimen. TAAs were performed by a fellowship-trained foot and ankle surgeon on two specimens with separate designs implanted (Cadence & Salto Talaris; Integra LifeSciences; Plainsboro, NJ). Each specimen was CT-scanned after robotic simulations of stance pre- and post-TAA. Specimens were then dissected before a 3D-coordinate measuring device was used to digitize the ligament insertions and beads. Ligament insertions were registered onto the bone geometries within CT images using the digitized beads. Individual bone kinematics measured from motion capture were then used to record the point-to-point distance between centers of the ligament insertions throughout stance.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 77 - 77
1 Feb 2020
Roche C Friedman R Simovitch R Flurin P Wright T Zuckerman J Routman H
Full Access

Introduction

Acromial and scapular fractures are a rare but difficult complication with reverse total shoulder arthroplasty (rTSA), with an incidence rate reported from 1–10%. The risk factors associated with these fractures types is largely unknown. The goal of this study is to analyze the clinical outcomes, demographic and comorbidity data, and implant sizing and surgical technique information from 4125 patients who received a primary rTSA with one specific prosthesis (Equinoxe, Exactech, Inc) and were sorted based on the radiographic documentation of an acromial and/or scapula fracture (ASF) to identify factors associated with this complication.

Methods

4125 patients (2652F/1441M/32 unspecified; mean age: 72.5yrs) were treated with primary rTSA by 23 orthopaedic surgeons. Revision and fracture reverse arthroplasty cases were excluded. The radiographic presence of each fracture was documented and classified using the Levy classification method. 61 patients were identified as having ASF, 10 patients had fractures of the Type 1, 32 patients had Type 2, and 18 patients had Type 3 fractures according to Levy's classification. One fracture was not classifiable. Pre-op and post-op outcome scoring, ROM as well as demographic, comorbidity, implant, and surgical technique information were evaluated for these 61 patients and compared to the larger cohort of patients to identify any associations. A two-tailed, unpaired t-test identified differences (p<0.05).


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 91 - 91
1 Feb 2020
Baral E Purcel R Wright T Westrich G
Full Access

Introduction

Long term data on the survivorship of cemented total knee arthroplasty (TKA) has demonstrated excellent outcomes; however, with younger, more active patients, surgeons have a renewed interest in improved biologic fixation obtained from highly porous, cementless implants. Early designs of cementless total knees systems were fraught with high rates of failure for aseptic loosening, particularly on the tibial component. Prior studies have assessed the bone ingrowth extent for tibial tray designs reporting near 30% extent of bone ingrowth (1,2). While these analyses were performed on implants that demonstrated unacceptably high rates of clinical failure, a paucity of data exists on the extent on bone ingrowth in contemporary implant designs with newer methods for manufacturing the porous surfaces. We sought to evaluate the extent of attached bone on retrieved cementless tibial trays to determine if patient demographics, device factors, or radiographic results correlate to the extent of bone ingrowth in these contemporary designs.

Methods

Using our IRB approved retrieval database, 17 porous tibial trays were identified and separated into groups based on manufacturer: Zimmer Natural Knee (1), Zimmer NexGen (10), Stryker Triathlon (4) and Biomet Vanguard Regenerex (2). Differences in manufacturing methods for porous material designs were recorded. Patient demographics and reason for revision are described in Table 1. Radiographs were used to measure tibiofemoral alignment and the tibial mechanical axis alignment. Components were assessed using visual light microscopy and Photoshop to map bone ingrowth extent across the porous surface. ImageJ was used to threshold and calculate values for bone, scratched metal, and available surface for bone ingrowth (Fig. 1). Percent extent was determined as the bone ingrowth compared to the surface area excluding any scratched regions from explantation. Statistics were performed among tray designs as well as between the lateral and medial pegs, if designs had pegs available for bony ingrowth.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 76 - 76
1 Feb 2020
Roche C Simovitch R Flurin P Wright T Zuckerman J Routman H
Full Access

Introduction

Machine learning is a relatively novel method to orthopaedics which can be used to evaluate complex associations and patterns in outcomes and healthcare data. The purpose of this study is to utilize 3 different supervised machine learning algorithms to evaluate outcomes from a multi-center international database of a single shoulder prosthesis to evaluate the accuracy of each model to predict post-operative outcomes of both aTSA and rTSA.

Methods

Data from a multi-center international database consisting of 6485 patients who received primary total shoulder arthroplasty using a single shoulder prosthesis (Equinoxe, Exactech, Inc) were analyzed from 19,796 patient visits in this study. Specifically, demographic, comorbidity, implant type and implant size, surgical technique, pre-operative PROMs and ROM measures, post-operative PROMs and ROM measures, pre-operative and post-operative radiographic data, and also adverse event and complication data were obtained for 2367 primary aTSA patients from 8042 visits at an average follow-up of 22 months and 4118 primary rTSA from 11,754 visits at an average follow-up of 16 months were analyzed to create a predictive model using 3 different supervised machine learning techniques: 1) linear regression, 2) random forest, and 3) XGBoost. Each of these 3 different machine learning techniques evaluated the pre-operative parameters and created a predictive model which targeted the post-operative composite score, which was a 100 point score consisting of 50% post-operative composite outcome score (calculated from 33.3% ASES + 33.3% UCLA + 33.3% Constant) and 50% post-operative composite ROM score (calculated from S curves weighted by 70% active forward flexion + 15% internal rotation score + 15% active external rotation). 3 additional predictive models were created to control for the time required for patient improvement after surgery, to do this, each primary aTSA and primary rTSA cohort was subdivided to only include patient data follow-up visits >20 months after surgery, this yielded 1317 primary aTSA patients from 2962 visits at an average follow-up of 50 months and 1593 primary rTSA from 3144 visits at an average follow-up of 42 months. Each of these 6 predictive models were trained using a random selection of 80% of each cohort, then each model predicted the outcomes of the remaining 20% of the data based upon the demographic, comorbidity, implant type and implant size, surgical technique, pre-operative PROMs and ROM measures inputs of each 20% cohort. The error of all 6 predictive models was calculated from the root mean square error (RMSE) between the actual and predicted post-op composite score. The accuracy of each model was determined by subtracting the percent difference of each RMSE value from the average composite score associated with each cohort.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 136 - 136
1 Feb 2020
Greene A Parsons I Jones R Youderian A Byram I Papandrea R Cheung E Wright T Zuckerman J Flurin P
Full Access

INTRODUCTION

3D preoperative planning software for anatomic and reverse total shoulder arthroplasty (ATSA and RTSA) provides additional insight for surgeons regarding implant selection and placement. Interestingly, the advent of such software has brought previously unconsidered questions to light on the optimal way to plan a case. In this study, a survey of shoulder specialists from the American Shoulder and Elbow Society (ASES) was conducted to examine thought patterns in current glenoid implant selection and placement.

METHODS

172 ASES members completed an 18-question survey on their thought process for how they select and place a glenoid implant for both ATSA and RTSA procedures. Data was collected using a custom online Survey Monkey survey. Surgeon answers were split into three cohorts based on their responses to usage of 3D preoperative planning software: high users, seldom users, and non-users. Data was analyzed for each cohort to examine differences in thought patterns, implant selection, and implant placement.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 120 - 120
1 Feb 2020
Gonzalez FQ Fattori A Lipman J Negro ND Brial C Figgie M Hotchkiss R Pressacco M Wright T
Full Access

Introduction

The interaction between the mobile components of total elbow replacements (TER) provides additional constraint to the elbow motion. Semi-constrained TER depend on a mechanical linkage to avoid dislocation and have greater constraint than unconstrained TER that rely primarily in soft tissue for joint stability. Greater constraint increases the load transfer to the implant interfaces and the stresses in the polyethylene components. Both of these phenomena are detrimental to the longevity of TER, as they may result in implant loosening and increased damage to the polyethylene components, respectively[1]. The objective of this work was to compare the constraint profile in varus-valgus and internal-external rotation and the polyethylene stresses under loads from a common daily activity between two semi-constrained TER, Coonrad/Morrey (Zimmer-Biomet) and Discovery® (DJO), and an unconstrained TER, TEMA (LimaCorporate).

Methods

We developed finite element (FE) models of the three TER mechanisms. To reduce computational cost, we did not include the humeral and ulnar stems. Materials were linear-elastic for the metallic components (ETi6Al4V=114.3 GPa, ECoCr=210 GPa, v=0.33) and linear elastic-plastic for the polyethylene components (E=618 MPa, v=0.46; SY=22 MPa; SU=230.6 MPa; εU=1.5 mm/mm). The models were meshed with linear tetrahedral elements of sizes 0.4–0.6 mm. We assumed a friction coefficient of 0.02 between metal and polyethylene. In all simulations, the ulnar component was fixed and the humeral component loaded. We computed the constraint profiles in full extension by simulating each mechanism from 8° varus to 8° valgus and from 8° internal to 8° external rotation. All other degrees-of-freedom except for flexion extension were unconstrained. Then, we identified the instant during feeding that generated the highest moments at the elbow[2], and we applied the joint forces and moments to each TER to evaluate the stresses in the polyethylene. To validate the FE results, we experimentally evaluated the constraint of the design with highest polyethylene stresses in pure internal-external rotation and compared the results against those from a FE model that reproduced the experimental setup (Fig.1-a).


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 131 - 131
1 Feb 2020
Greene A Parsons I Jones R Youderian A Byram I Papandrea R Cheung E Wright T Zuckerman J Flurin P
Full Access

INTRODUCTION

The advent of CT based 3D preoperative planning software for reverse total shoulder arthroplasty (RTSA) provides surgeons with more data than ever before to prepare for a case. Interestingly, as the usage of such software has increased, further questions have appeared over the optimal way to plan and place a glenoid implant for RTSA. In this study, a survey of shoulder specialists from the American Shoulder and Elbow Society (ASES) was conducted to examine thought patterns in current RTSA implant selection and placement.

METHODS

172 ASES members completed an 18-question survey on their thought process for how they select and place a RTSA glenoid implant. Data was collected using a custom online Survey Monkey survey. Surgeon answers were split into two cohorts based on number of arthroplasties performed per year: between 0–75 was considered low volume (LV), and between 75–200+ was considered high volume (HV). Data was analyzed for each cohort to examine differences in thought patterns, implant selection, and implant placement.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 134 - 134
1 Feb 2020
Greene A Parsons I Jones R Youderian A Byram I Papandrea R Cheung E Wright T Zuckerman J Flurin P
Full Access

INTRODUCTION

3D preoperative planning software for anatomic total shoulder arthroplasty (ATSA) provides surgeons with increased ability to visualize complex joint relationships and deformities. Interestingly, the advent of such software has seemed to create less of a consensus on the optimal way to plan an ATSA rather than more. In this study, a survey of shoulder specialists from the American Shoulder and Elbow Society (ASES) was conducted to examine thought patterns in current ATSA implant selection and placement.

METHODS

172 ASES members completed an 18-question survey on their thought process for how they select and place an ATSA glenoid implant. Data was collected using a custom online Survey Monkey survey. Surgeon answers were split into two cohorts based on number of arthroplasties performed per year: between 0–75 was considered low volume (LV), and between 75–200+ was considered high volume (HV). Data was analyzed for each cohort to examine differences in thought patterns, implant selection, and implant placement.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 23 - 23
1 Apr 2019
Greene A Hamilton M Polakovic S Mohajer N Youderian A Wright T Parsons I Saadi P Cheung E Jones R
Full Access

INTRODUCTION

Variability in placement of total shoulder arthroplasty (TSA) glenoid implants has led to the increased use of 3D CT preoperative planning software. Computer assisted surgery (CAS) offers the potential of improved accuracy in TSA while following a preoperative plan, as well as the flexibility for intraoperative adjustment during the procedure. This study compares the accuracy of implantation of reverse total shoulder arthroplasty (rTSA) glenoid implants using a CAS TSA system verses traditional non-navigated techniques in 30 cadaveric shoulders relative to a preoperative plan from 3D CT software.

METHODS

High resolution 1mm slice thickness CT scans were obtained on 30 cadaveric shoulders from 15 matched pair specimens. Each scan was segmented and the digital models were incorporated into a preoperative planning software. Five fellowship trained orthopedic shoulder specialists used this software to virtually place a rTSA glenoid implant as they deemed best fit in six cadavers each. The specimens were randomized with respect to side and split into a cohort utilizing the CAS system and a cohort utilizing conventional instrumentation, for a total of three shoulders per cohort per surgeon. A BaSO4 PEEK surrogate implant identical in geometry to the metal implant used in the preoperative plan was used in every specimen, to maintain high CT resolution while minimizing CT artifact. The surgeons were instructed to implant the rTSA implants as close to their preoperative plans as possible for both cohorts. In the CAS cohort, each surgeon used the system to register the native cadaveric bones to each respective CT, perform the TSA procedure, and implant the surrogate rTSA implant. The surgeons then performed the TSA procedure on the opposing side of the matched pair using conventional instrumentation.

Postoperatively, CT scans were repeated on each specimen and segmented to extract the digital models. The pre- and postoperative scapulae models were aligned using a best fit match algorithm, and variance between the virtual planned position of the implant and the executed surgical position of the implant was calculated [Fig 1].


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 113 - 113
1 Apr 2019
Verstraete M Conditt M Wright T Zuckerman J Youderian A Parsons I Jones R Decerce J Goodchild G Greene A Roche C
Full Access

Introduction & Aims

Over the last decade, sensor technology has proven its benefits in total knee arthroplasty, allowing the quantitative assessment of tension in the medial and lateral compartment of the tibiofemoral joint through the range of motion (VERASENSE, OrthoSensor Inc, FL, USA). In reversal total shoulder arthroplasty, it is well understood that stability is primarily controlled by the active and passive structures surrounding the articulating surfaces. At current, assessing the tension in these stabilizing structures remains however highly subjective and relies on the surgeons’ feel and experience. In an attempt to quantify this feel and address instability as a dominant cause for revision surgery, this paper introduces an intra-articular load sensor for reverse total shoulder arthroplasty (RTSA).

Method

Using the capacitive load sensing technology embedded in instrumented tibial trays, a wireless, instrumented humeral trial has been developed. The wireless communication enables real-time display of the three-dimensional load vector and load magnitude in the glenohumeral joint during component trialing in RTSA. In an in-vitro setting, this sensor was used in two reverse total shoulder arthroplasties. The resulting load vectors were captured through the range of motion while the joint was artificially tightened by adding shims to the humeral tray.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 63 - 63
1 Apr 2019
Greene A Cheung E Polakovic S Hamilton M Jones R Youderian A Wright T Saadi P Zuckerman J Flurin PH Parsons I
Full Access

INTRODUCTION

Preoperative planning software for anatomic total shoulder arthroplasty (ATSA) allows surgeons to virtually perform a reconstruction based off 3D models generated from CT scans of the glenohumeral joint. The purpose of this study was to examine the distribution of chosen glenoid implant as a function of glenoid wear severity, and to evaluate the inter-surgeon variability of optimal glenoid component placement in ATSA.

METHODS

CT scans from 45 patients with glenohumeral arthritis were planned by 8 fellowship trained shoulder arthroplasty specialists using a 3D preoperative planning software, planning each case for optimal implant selection and placement. The software provided three implant types: a standard non-augmented glenoid component, and an 8° and 16° posterior augment wedge glenoid component. The software interface allowed the surgeons to control version, inclination, rotation, depth, anterior- posterior and superior-inferior position of the glenoid components in 1mm and 1° increments, which were recorded and compared for final implant position in each case.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 64 - 64
1 Apr 2019
Greene A Cheung E Polakovic S Hamilton M Jones R Youderian A Wright T Saadi P Zuckerman J Flurin PH Parsons I
Full Access

INTRODUCTION

Preoperative planning software for reverse total shoulder arthroplasty (RTSA) allows surgeons to virtually perform a reconstruction based off 3D models generated from CT scans of the glenohumeral joint. While anatomical studies have defined the range of normal values for glenoid version and inclination, there is no clear consensus on glenoid component selection and position for RTSA. The purpose of this study was to examine the distribution of chosen glenoid implant as a function of glenoid wear severity, and to evaluate the inter-surgeon variability of optimal glenoid component placement in RTSA.

METHODS

CT scans from 45 patients with glenohumeral arthritis were planned by 8 fellowship trained shoulder arthroplasty specialists using a 3D preoperative planning software, planning each case for optimal implant selection and placement. The software provided four glenoid baseplate implant types: a standard non-augmented component, an 8° posterior augment wedged component, a 10° superior augment wedged component, and a combined 8° posterior and 10° superior wedged augment component. The software interface allowed the surgeons to control version, inclination, rotation, depth, anterior-posterior and superior-inferior position of the glenoid components in 1mm and 1° increments, which were recorded and compared for final implant position in each case.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 52 - 52
1 Apr 2019
Roche C Yegres J Stroud N VanDeven J Wright T Flurin PH Zuckerman J
Full Access

Introduction

Aseptic glenoid loosening is a common failure mode of reverse shoulder arthroplasty (rTSA). Achieving initial glenoid fixation can be a challenge for the orthopedic surgeon since rTSA is commonly used in elderly osteoporotic patients and is increasingly used in scapula with significant boney defects. Multiple rTSA baseplate designs are available in the marketplace, these prostheses offer between 2 and 6 screw options, with each screw hole accepting a locking and/or compression screw of varying lengths (between 15 to 50mm). Despite these multiple implant offerings, little guidance exists regarding the minimal screw length and/or minimum screw number necessary to achieve fixation. To this end, this study analyzes the effect of multiple screw lengths and multiple screw numbers on rTSA initial glenoid fixation when tested in a low density (15pcf) polyurethane bone substitute model.

Methods

This rTSA glenoid loosening test was conducted according to ASTM F 2028–17; we quantified glenoid fixation of a 38mm reverse shoulder (Equinoxe, Exactech, Inc) in a 15 pcf low density polyurethane block (Pacific Research, Inc) before and after cyclic testing of 750N for 10k cycles. To evaluate the effect of both screw fixation and screw number, glenoid baseplates were constructed using 2 and 4, 4.5×18mm diameter poly-axial locking compression screws (both n = 5) and 2 and 4, 4.5×46mm diameter poly-axial locking compression screws (both n = 5). A two-tailed unpaired student's t-test (p < 0.05) compared prosthesis displacements to evaluate each screw length (18 vs 46mm) and each screw number (2 vs 4).


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 15 - 15
1 Apr 2018
Walker D Kinney A Banks S Wright T
Full Access

Musculoskeletal modeling techniques simulate reverse total shoulder arthroplasty (RTSA) shoulders and how implant placement affects muscle moment arms. Yet, studies have not taken into account how muscle-length changes affect force-generating capacity postoperatively. We develop a patient-specific model for RTSA patients to predict muscle activation.

Patient-specific muscle parameters were estimated using an optimization scheme calibrating the model to isometric arm abduction data at 0°, 45°, and 90°. We compared predicted muscle activation to experimental electromyography recordings. A twelve-degree of freedom model with experimental measurements created patient-specific data estimating muscle parameters corresponding to strength. Optimization minimized the difference between measured and estimated joint moments and muscle activations, yielding parameters corresponding to subjects' strength that can predict muscle activation and lengths.

Model calibration was performed on RTSA patients' arm abduction data. Predicted muscle activation ranged between 3% and 70% of maximum. The maximum joint moment produced was 10 Nm. The model replicated measured moments accurately (R2 > 0.99). The optimized muscle parameters produced feasible muscle moments and activations for dynamic arm abduction when using data from isometric force trials. A normalized correlation was found between predicted and experimental muscle activation for dynamic abduction (r > 0.9); the moment generation to lift the arm was tracked (R2 = 0.99).

Statement of Clinical Significance: We developed a framework to predict patient-specific muscle parameters. Combined with patient-specific models incorporating joint configurations, kinematics, and bone anatomy, they can predict muscle activation in novel tasks and, e.g., predict how RTSA implant and surgical decisions may affect muscle function.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 16 - 16
1 Apr 2018
Walker D Kinney A Banks S Wright T
Full Access

Reverse Total shoulder arthroplasty (RTSA) has become an increasingly used solution to treat osteoarthritis and cuff tear arthropathy. Though successful there are still 10 to 65% complication rates reported for RTSA. Complication rates range over different reverse shoulder designs but a clear understanding of implant design parameters that cause complications is still lacking within the literature. In efforts to reduce complication rates (Implant fixation, range of motion, joint stiffness, and fracture) and improve clinical/functional outcomes having to do with proper muscle performance we have employed a computational approach to assess the sensitivity of muscle performance to changes in RTSA implant geometry and surgical placement. The goal of this study was to assess how changes in RTSA joint configuration affect deltoid performance.

An approach was developed from previous work to predict a patient's muscle performance. This approach was automated to assess changes in muscle performance over 1521 joint configurations for an RTSA subject. Patient-specific muscle moment arms, muscle lengths, muscle velocities, and muscle parameters served as inputs into the muscle prediction scheme. We systematically varied joint center locations over 1521 different perturbations from the in vivo measured surgical placement to determine muscle normalized operating region for the anterior, lateral and posterior aspects of the deltoid muscle. The joint center was varied according to previous published work from the RTSA subject's nominal surgical position ±4 mm in the anterior/posterior direction, ±12mm in the medial/lateral direction, and −10 mm to 14 mm in the superior/inferior direction (Walker 2015 et al. Table 2).

Overall muscle normalized operating length varied over 1521 different implant configurations for the RTSA subject. Ideal muscle normalized operating length variations were found to be in all the fundamental directions that the joint was varied. The anterior deltoid normalized operating length was found to be most sensitive with joint configurations changes in the anterior/posterior medial/lateral direction. It lateral deltoid normalized operating length was found to be most sensitive with joint configurations changes in the medial/lateral direction. It posterior deltoid normalized operating length was found to be most sensitive with joint configurations changes in the medial/lateral direction. Reserve actuation for all samples remained below 1 Nm. The most optimal deltoid normalized operating length was implemented by changing the joint configuration in the superior/inferior and medial/lateral directions.

Current shoulder models focus on predicting muscle moment arms. Although valuable it does not allow me for active understanding of how lengthening the muscle will affect its ability to generate force. Our study provides an understanding of how muscle lengthening will affect the force generating capacity of each of the heads of the deltoid. With this information improvements can be made to the surgical placement and design of RTSA to improve functional/clinical outcomes while minimizing complications.

For any figures or tables, please contact the authors directly.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 74 - 74
1 Jan 2018
Padgett D Mayman D Jerabek S Esposito C Wright T Berliner J
Full Access

Variation in pelvic tilt during postural changes may affect functional alignment. The primary objective of this study was to quantify the changes in lumbo-pelvic-femoral alignment from sitting to standing in patients undergoing THA. 144 patients were enrolled. Standing and sitting radiographs using the EOS imaging system were analyzed preoperatively and 1-year postoperatively. Pelvic incidence (PI), lumbar lordosis (LL), sacral slope (SS), proximal femoral angle (PFA) and spine/femoroacetabular flexion were determined.

38 patients had multilevel DDD (26%). Following THA, patients sat with increased anterior pelvic tilt demonstrated by a significant increase in sitting lumbar lordosis (28° preop vs 35° postop; p<0.01) and sacral slope (18° vs 23°; p<0.01). Following THA, patients flexed less through their spines (preop 26° vs postop 19°; p<0.01) and more through their hips (femoroacetabular flexion) (preop 60° vs postop 67°; p<0.01) to achieve sitting position. Patients with multilevel DDD sat with less spine flexion (normal 22° vs spine 13°; p<0.01), less change in sacral slope (more relative anterior tilt) (17° vs 9°; p<0.01), and more femoroacetabular flexion (64° vs 71°; p<0.01).

For the majority of patients after THA, a larger proportion of lumbo-pelvic-femoral flexion necessary to achieve a sitting position is derived from femoroacetabular flexion with an associated increase in anterior pelvic tilt and a decrease in lumbar spine flexion. These changes are more pronounced among patients with multilevel DDD. Surgeons may consider orienting the acetabular component with greater anteversion and inclination in patients identified preoperatively to have anterior pelvic tilt or significant DDD.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 28 - 28
1 Mar 2017
Sun H Choi D Lipman J Wright T
Full Access

Background

Patellofemoral complications have dwindled with contemporary total knee designs that market anatomic trochlear grooves that intend to preserve normal patella kinematics. While most reports of patellofemoral complications address patella and its replacement approach, they do not focus on shape of trochlear grooves in different prostheses [1]. The purpose of this study was to characterize 3D geometry of trochlear grooves of contemporary total knee designs (NexGen, Genesis II, Logic, and Attune) defined in terms of sulcus angle and medial-lateral offset with respect to midline of femoral component in coronal view and to compare to those of native femurs derived from 20 osteoarthritic patient CT scans.

Materials and Methods

Using 3D models of each implant and native femur, sulcus location and orientation were obtained by fitting a spline to connect sulcus points marked at 90°, 105°, 130°, and 145° of femoral flexion (Fig A). Implant reference plane orientations were established using inner facets of distal and posterior flanges. Reference planes of native femurs were defined using protocols developed by Eckhoff et al. [2] where coronal plane was defined using femoral posterior condyles and greater trochanter. In the coronal plane, a best fit line was used to measure sulcus angle and medial-lateral offset with respect to midline at the base of trochlear groove (Fig B).


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 74 - 74
1 Mar 2017
Walker D Kinney A Wright T Banks S
Full Access

Introduction

Current modeling techniques have been used to model the Reverse Total Shoulder Arthroplasty (RTSA) to account for the geometric changes implemented after RTSA [2,3]. Though these models have provided insight into the effects of geometric changes from RTSA these is still a limitation of understanding muscle function after RTSA on a patient-specific basis. The goal of this study sought to overcome this limitation by developing an approach to calibrate patient-specific muscle strength for an RTSA subject.

Methods

The approach was performed for both isometric 0° abduction and dynamic abduction. A 12 degree of freedom (DOF) model developed in our previous work was used in conjunction with our clinical data to create a set of patient-specific data (3 dimensional kinematics, muscle activations (), muscle moment arms, joint moments, muscle length, muscle velocity, tendon slack length (), optimal fiber length, peak isometric force)) that was used in a novel optimization scheme to estimate muscle parameters that correspond to the patient's muscle strength[4]. The optimization varied to minimize the difference between measured (“in vivo”) and predicted joint moments and measured (“in vivo”) and predicted muscle activations (). The predicted joint moments were constructed as a summation of muscle moments. The nested optimization was implemented within matlab (Mathworks). The optimization yields a set of muscle parameters that correspond to the subject's muscle strength. The abduction activity was optimized [4,5]. To validate the model we predicted dynamic joint moment and activation for the abduction activity (Figure 1).


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 122 - 122
1 Mar 2017
Roche C Greene A Wright T Flurin P Zuckerman J Grey S
Full Access

Introduction

The clinical impact of radiolucent glenoid lines is controversial, where the presence of a radiolucent glenoid lines has been suggested to be an indicator of clinical glenoid loosening. The goal of this database analysis is to quantify and compare the pre- and post-operative outcomes of 427 patients who received a primary aTSA with one specific prosthesis and were sorted based upon the radiographic presence of a radiolucent glenoid line at latest clinical followup.

Methods

427 patients (mean age: 67.0yrs) with an average follow-up of 49.4 months was treated with aTSA for OA by 14 fellowship trained orthopaedic surgeons. Of these 427 patients, 293 had a cemented keel glenoids (avg follow-up = 50.8 months) and 134 had a cemented pegged glenoids (avg follow-up = 48.7 months). Cemented peg and keel glenoid patients were analyzed separately and also combined into 1 cohort: 288 patients (158 female, avg: 68.7 yrs; 130 male, avg: 64.9 yrs) did not have a radiolucent glenoid line (avg follow-up = 46.9 months); whereas, 139 patients (83 female, avg: 68.5 yrs; 56 male, avg: 64.6 yrs) had a radiolucent glenoid line (avg follow-up = 54.4 months). Outcomes were scored using SST, UCLA, ASES, Constant, and SPADI metrics; active ROM also measured. A two-tailed, unpaired t-test identified differences (p<0.05) in pre-operative, post-operative, and pre-to-post improvements.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 123 - 123
1 Mar 2017
Roche C Greene A Flurin P Wright T Zuckerman J Jones R
Full Access

Introduction

Humeral radiolucent lines after anatomic TSA (aTSA) have been well described; however, little clinical consequences have been attributed to them. The recent emergence of shorter humeral stems has demonstrated higher incidences of humeral radiolucencies than has been reported historically with standard length components. This large scale database analysis quantifies and compares the clinical outcomes of aTSAs with and without radiolucent humeral lines using one specific prosthesis to determine their impact on clinical outcomes.

Methodology

This is a multicenter, retrospective, case controlled radiographic and clinical review. Preoperative and postoperative data was analyzed from 671 aTSA patients with a minimum of 2 years followup. 538 of these 671 aTSA patients had full radiographic followup (80.2%) and were included in this study; these patients had an average followup of 45.3 months). 459 patients had noncemented humeral stems; whereas, 79 patients had cemented humeral stems. Radiographs were reviewed at latest follow up for humeral radiolucent lines based on the technique described by Gruen et al. Patients were evaluated and scored pre-operatively and at latest follow-up using the SST, UCLA, ASES, Constant, and SPADI scoring metrics; ROM was also recorded. A Student's two-tailed, unpaired t-test was used to identify differences in pre-operative, post-operative, and improvement in results, where p<0.05 denoted a significant difference.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 54 - 54
1 Mar 2017
Nguyen T Amundsen S Choi D Koch C Wright T Padgett D
Full Access

Introduction

Contemporary total knee systems accommodate for differential sizing between femoral and tibial components to allow surgeons to control soft tissue balancing and optimize rotation. One method some manufacturers use to allow differential sizing involves maintaining coronal articular congruency with a single radius of curvature throughout sizes while clipping the medial-lateral width, called a single coronal geometry system. Registry data show a 20% higher revision rate when the tibial component is smaller than the femur (downsizing) in the DePuy PFC system, a single coronal system, possibly from increased stresses from edge loading or varying articular congruency. We examined a different single coronal geometry knee system, Smith & Nephew Genesis II, to determine if edge loading is present in downsized tibial components by measuring area and location of deviation of the polyethylene articular surface damage.

Methods

45 Genesis II posterior-stabilized polyethylene inserts (12 matched and 33 downsized tibial components) were CT scanned. 3D reconstructions were registered to corresponding pristine component reconstructions, and 3D deviation maps of the retrieved articular surfaces relative to the pristine surfaces were created.

Each map was exported as a point cloud to a custom MATLAB code to calculate the area and weighted center of deviation of the articular surfaces. An iterative k-means clustering algorithm was used to isolate regions of deviation, and a shrink-wrap algorithm was applied to calculate their areas. The area of deviation was calculated as the sum of all regions of deviation and was normalized to the area of the articular surface. The location of deviation was described using the weighted center of deviation and the location of maximum deviation on the articular surfaces relative to the center of the post (Fig. 1).

Pearson product moment correlations were conducted to examine the correlation between length of implantation (LOI) and the medial and lateral areas of deviation for all specimens, matched components, and downsized components.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 73 - 73
1 Mar 2017
Walker D Kinney A Wright T Banks S
Full Access

Reverse Total shoulder arthroplasty (RTSA) has become an increasingly used solution to treat osteoarthritis and cuff tear arthropathy. Though successful there are still 10 to 65% complication rates reported for RTSA. Complication rates range over different reverse shoulder designs but a clear understanding of implant design parameters that cause complications is still lacking within the literature. In efforts to reduce complication rates (Implant fixation, range of motion, joint stiffness, and fracture) and improve clinical/functional outcomes having to do with proper muscle performance we have employed a computational approach to assess the sensitivity of muscle performance to changes in RTSA implant geometry and surgical placement. The goal of this study was to assess how changes in RTSA joint configuration affect deltoid performance.

An approach was developed from previous work to predict a patient's muscle performance. This approach was automated to assess changes in muscle performance over 1521 joint configurations for an RTSA subject. Patient-specific muscle moment arms, muscle lengths, muscle velocities, and muscle parameters served as inputs into the muscle prediction scheme. We systematically varied joint center locations over 1521 different perturbations from the in vivo measured surgical placement to determine muscle activation and normalized operating region for the anterior, lateral and posterior aspects of the deltoid muscle. The joint center was varied from the RTSA subject's nominal surgical position ±4 mm in the anterior/posterior direction, ±12mm in the medial/lateral direction, and −10 mm to 14 mm in the superior/inferior direction.

Overall muscle activity varied over 1521 different implant configurations for the RTSA subject. For initial elevation the RTSA subject showed at least 25% deltoid activation sensitivity in each of the directions of joint configuration change(Figure 1). Posterior deltoid showed a maximal activation variation of 84% in the superior/inferior direction(Figure 1c). Deltoid activation variations lie primarily in the superior/inferior and anterior/posterior directions. An increasing trend was seen for the anterior, lateral and posterior deltoid outside of the discontinuity seen at 28°(Figure 1). Activation variations were compared to subject's experimental data. Reserve actuation for all samples remained below 4Nm(Figure 2). The most optimal deltoid normalized operating length was implemented by changing the joint configuration in the superior/inferior and medial/lateral directions(Figure 3).

Current shoulder models utilize cadaver information in their assessment of generic muscle strength. In adding to this literature we performed a sensitivity study to assess the effects of RTSA joint configurations on deltoid muscle performance in a single patient-specific model. For this patient we were able to assess the best joint configuration to improve the patients muscle function and ideally their clinical outcome. With this information improvements can be made to the surgical placement and design of RTSA on a patient-specific basis to improve functional/clinical outcomes while minimizing complications.

For any figures or tables, please contact authors directly (see Info & Metrics tab above).


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 78 - 78
1 Feb 2017
Koch C Esposito C O'Dea E Bates M Wright T Padgett D
Full Access

Introduction

Robotically-assisted unicondylar knee arthroplasty (UKA) is intended to improve the precision with which the components are implanted, but the impact of alignment using this technique on subsequent polyethylene surface damage has not been determined. Therefore, we examined retrieved ultra-high-molecular-weight polyethylene UKA tibial inserts from patients who had either robotic-assisted UKA or UKA performed using conventional manual techniques and compared differences in polyethylene damage with differences in implant component alignment between the two groups. We aimed to answer the following questions: (1) Does robotic guidance improve UKA component position compared to manually implanted UKA? (2) Is polyethylene damage or edge loading less severe in patients who had robotically aligned UKA components? (3) Is polyethylene damage or edge loading less severe in patients with properly aligned UKA components?

Methods

We collected 13 medial compartment, non-conforming, fixed bearing, polyethylene tibial inserts that had been implanted using a passive robotic-arm system and 21 similarly designed medial inserts that had been manually implanted using a conventional surgical technique. Pre-revision radiographs were used to determine the coronal and sagittal alignment of the tibial components. Retrieval analysis of the tibial articular surfaces included damage mapping and 3D laser scanning to determine the extent of polyethylene damage and whether damage was consistent with edge loading of the surface by the opposing femoral component.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 29 - 29
1 Feb 2017
Baral E Trivellas M Ricciardi B Esposito C Wright T Padgett D
Full Access

Introduction

Cementless acetabular components are commonly used in primary and revision total hip arthroplasty, and most designs have been successful despite differences in the porous coating structure. Components with 2D titanium fiber mesh coating (FM) have demonstrated high survivorships up to 97% at 20 years1. 3D tantalum porous coatings (TPC) have been introduced in an attempt to improve osseointegration and therefore implant fixation. Animal models showed good results with this new material one year after implantation2, and clinical and radiographic studies have demonstrated satisfactory outcomes3. However, few retrieval studies exist evaluating in vivo bone ingrowth into TPC components in humans. We compared bone ingrowth between well-fixed FM and TPC retrieved acetabular shells using backscatter scanning electron microscopy (BSEM).

Methods

16 retrieved, well-fixed, porous coated acetabulum components, 8 FM matched to 8 TPC by gender, BMI and age, all revised for reasons other than loosening and infection, were identified from our retrieval archive (Fig. 1). The mean time in-situ was 42 months for TPC and 172 for FM components. Components were cleaned, dehydrated, and embedded in PMMA. They were then sectioned, polished, and examined using BSEM. Cross-sectional slices were analyzed for percent bone ingrowth and percent depth of bone ingrowth (Fig. 2). Analysis was done using manual segmentation and grayscale thresholding to calculate areas of bone, metal, and void space. Percent bone ingrowth was determined by assessing the area of bone compared to the void space that had potential for bone ingrowth.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 100 - 100
1 Feb 2017
Lange J Koch C Wach A Wright T Hopper R Ho H Engh C Padgett D
Full Access

INTRODUCTION

Adverse local tissue reactions (ALTR) and elevated serum metal ion levels secondary to fretting and corrosion at head-neck junctions in modular total hip arthroplasty (THA) designs have raised concern in recent years. Factors implicated in these processes include trunnion geometry, head-trunnion material couple, femoral head diameter, head length, force of head impaction at the time of surgery, and length of implantation. Our understanding of fretting and corrosion in vivo is based largely on the analysis of retrieved prostheses explanted for reasons related to clinical failure. Little is known about the natural history of head-neck tapers in well-functioning total hip replacements. We identified ten well-functioning THA prostheses retrieved at autopsy. We sought to determine the pull-off strength required for disassembly and to characterize fretting and corrosion apparent at the head-neck junctions of THAs that had been functioning appropriately in vivo.

METHODS

Ten cobalt-chromium femoral stems and engaged cobalt-chromium femoral heads were retrieved at autopsy from 9 patients, after a mean length of implantation (LOI) of 11.3 ± 8 years (range 1.9–28.5). Trunnion design and material, femoral head material, size, and length, LOI, and patient sex were recorded (Table 1). Femoral heads were pulled off on a uniaxial load frame according to ASTM standards under displacement control at a rate of 0.05mm/s until the femoral head was fully disengaged from the trunnion. Mating surfaces were gently cleaned with 41% isopropyl alcohol to remove any extraneous debris. Femoral trunnions and head tapers were examined under a stereomicroscope by two independent graders to assess presence and severity of fretting and corrosion (method previously established). Trunnions and tapers were divided into 8 regions: anterior, medial, posterior, and lateral in both proximal and distal zones. Minimum possible damage score per hip was 32 (indicating pristine surfaces). The total possible score per hip was 128 (2 damage modes × 2 mating surfaces × 8 regions × max score of 4 per region).


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 126 - 126
1 Feb 2017
Lo D Lipman J Hotchkiss R Wright T
Full Access

Introduction

The first carpometacarpal (CMC) joint is the second most common joint of the hand affected by degenerative osteoarthritis (OA)1. Laxity of ligamentous stabilizers that attach the first metacarpal bone (MC1) and the trapezium bone (TZ), notably the volar anterior oblique ligament (AOL), has been associated with cartilage wear, joint space narrowing, osteophyte formation, and dorsal-radial CMC subluxation2. In addition, the proximal-volar end of the MC1 has a bony prominence known as the palmar lip (PL) that adds conformity to this double-saddle joint, and is thought to be a supplemental dorsal stabilizer. Currently, no study has looked at the changes to the 3D shape and relative positions of these structures with OA.

Methods

CT scans of patients with clinically diagnosed CMC OA (n=11, mean age 73 [60–97], 8 females) and CT scans of ‘normal’ patients with no documented history of CMC OA (n=11, mean age 37 [20–51], 6 females) were obtained with the hand in a prone position. 3D reconstructions of the MC1 and TZ bones were created, and each assigned a coordinate system3. The long axis of the MC1 and the proximal-distal axis of the TZ were established, and the location where they intersected the CMC articular surface was defined as their articular center points, X and O, respectively (Figure 1).

Using the TZ as a fixed reference, we calculated the relative position of X in the dorsal-ventral and radial-ulnar directions. A two sample t-test was performed to compare the normal and OA groups. In addition, the distal position of the PL relative to X was recorded.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 113 - 113
1 Feb 2017
Farmer K Wright T Banks S Higa M
Full Access

Introduction

Reverse total shoulder arthroplasty (RTSA) is a commonly performed operation for a variety of pathologies. Despite excellent short-term outcomes, complications are commonly encountered. Recurrent instability occurs in up to 31% of cases, often due to components placed with too little tension. Acromial stress fractures can occur in up to 7% of cases, often due to components placed in too much tension. Despite these concerns, there is little evidence evaluating the intraoperative tension and glenohumeral contact forces (GHCF) during RTSA. The purpose of this study was to measure the intraoperative GHCF during RTSA.

Methods

26 patients were enrolled after obtaining IRB approval. Inclusion criteria were patients undergoing primary RTSA. An instrumented strain gauge implant was designed to attach to an Exactech Equinoxe (Gainesville, FL) baseplate during RTSA. A specially designed trial glenosphere was then attached to the instrumented baseplate. Wires from the strain gauges were connected to a 24-bit analog input and placed outside the operative field to a computer that measure the forces. After joint reduction, GHCF were measured in neutral, passive flexion, passive abduction, passive scaption and passive external rotation (ER). Five patients were excluded due to wire calibration issues.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 93 - 93
1 Feb 2017
De Martino I Sculco P Meyers K Nocon A Wright T Sculco T
Full Access

Introduction

Successful cementless acetabular designs require sufficient initial stability between implant and bone (with interfacial motions <150 μm) and close opposition between the porous coating and the reamed bony surface of the acetabulum to obtaining bone ingrowth and secondary stability. While prior generations of cementless components showed good clinical results for long term fixation, modern designs continue to trend toward increased porosity and improved frictional characteristics to further enhance cup stability.

Objectives

We intend to experimentally assess the differences in initial stability between a hemispherical acetabular component with a highly porous trabecular tantalum fixation surface (Continuum® Acetabular System, Zimmer Inc, Warsaw, IN)(Fig 1) and a hemispherical component with the new highly porous Trabecular Titanium® surface (Delta TT, Lima Corporate, Italy)(Fig 2) manufactured by electron beam melting.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 70 - 70
1 Feb 2017
Choi D Hunt M Lo D Lipman J Wright T
Full Access

Osteoarthritic (OA) changes to the bone morphology of the proximal tibia may exhibit load transfer patterns during total knee arthroplasty not predicted in models based on normal tibias. Prior work highlighted increased bone density in transverse sections of OA knees in the proximal-most 10mm tibial cancellous bone. Little is known about coronal plane differences, which could help inform load transfer from the tibial plateau to the tibial metaphysis. Therefore, we compared the cancellous bone density in OA and cadaveric (non-OA) subjects along a common coronal plane.

This study included nine OA patients (five women, average age 59.1 ± 9.4 years) and 18 cadaver subjects (four women, average age 39.5 ± 14.4 years). Patients (eight with medial OA and one with lateral OA) received pre-operative CT scans as standard-of-care for a unicompartmental knee replacement. Cadavers were scanned at our institution and had no history of OA which was confirmed by gross inspection during dissection.

3D reconstructions of each proximal tibia were made and an ellipse was drawn on the medial and lateral plateau using a previously published method. A coronal section (Figure 1) to standardize the cohort was created using the medial ellipse center, lateral ellipse center, and the tibial shaft center 71.5mm from the tibial spine. On this section, profile lines were drawn from the medial and lateral ellipse centers, with data collected from the first subchondral bone pixel to a length of 20mm. The Hounsfield Units (HU) along each profile line was recorded for each tibia; a representative graphical distribution is shown in Figure 2. The Area Under the Curve (AUC) was calculated for the medial and lateral sides, which loosely described the stiffness profile through the region of interest. To determine differences between the medial and lateral subchondral bone density, the ratio AUC[medial] / AUC[lateral] was compared between the OA and cadaver cohorts using a two-sample t-test. Data from the sole lateral OA patient was mirror-imaged to be included in the OA cohort.

The majority of the OA patients appeared to have higher subchondral bone density on the affected side. Figure 3 compares the medial and laterals sides of each group using the AUC ratio method described above. For the cadaver group the AUC was 1.2 +/− 0.22, with a median of 1.1 [0.9 1.6], smaller than the mean AUC for the OA group, which was 1.4 +/− 0.39, with a median of 1.6 [0.93 2.1]. The p-value was 0.06.

The increased density observed in OA patients is consistent with asymmetric loading towards the affected plateau, resulting in localized remodeling of cancellous bone from the epiphysis to metaphysis. From the coronal plane, bone was often observed in OA patients bridging the medial plateau to the metaphyseal cortex. Although the cadaver subjects were normal from history and gross inspection, some subjects exhibited early bone density changes consistent with OA. Future work looks to review more OA scans, extend the work to the distal femur, and convert the HU values to bone elastic moduli for use in finite element modelling.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 143 - 143
1 Feb 2017
Greene A Hamilton M Polakovic S Andrews R Jones R Parsons I Saadi P Cheung E Flurin P Wright T
Full Access

INTRODUCTION

As computer navigated surgery continues to progress to the forefront of orthopedic care, the application of a navigated total shoulder arthroplasty has yet to appear. However, the accuracy of these systems is debated, as well as the dilemma of placing an accurate tool in an inaccurate hand. Often times a system's accuracy is claimed or validated based on postoperative imaging, but the true positioning is difficult to verify. In this study, a navigation system was used to preoperatively plan, guide, and implant surrogate shoulder glenoid implants and fiducials in nine cadaveric shoulders. A novel method to validate the position of these implants and accuracy of the system was performed using pre and post operative high resolution CT scans, in conjunction with barium sulfate impregnated PEEK surrogate implants.

METHODS

Nine cadaveric shoulders were CT scanned with .5mm slice thickness, and the digital models were incorporated into a preoperative planning software. Five orthopedic shoulder specialists used this software to virtually place aTSA and rTSA glenoid components in two cadavers each (one cadaver was omitted due to incomplete implantation), positioning the components as they best deemed fit. Using a navigation system, each surgeon registered the native cadaveric bone to each respective CT. Each surgeon then used the navigation system to guide him or her through the total shoulder replacement, and implant the barium sulfate impregnated PEEK surrogate implants. Four cylindrical PEEK fiducials were also implanted in each scapula to help triangulate the position of the surrogate implants. Previous efforts were attempted with stainless steel alloy fiducials, but position and image accuracy were limited by CT artifact. BaSO4 PEEK provided the highest resolution on a postoperative CT with as little artifact as possible. All PEEK fiducials and surrogate implants were registered by probing points and planes with the navigation system to capture the digital position. A high resolution post operative CT scan of each specimen was obtained, and variance between the executed surgical plan and PEEK fiducials was calculated.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 5 - 5
1 May 2016
Roche C Stroud N Palomino P Flurin P Wright T Zuckerman J DiPaola M
Full Access

Introduction

Achieving prosthesis fixation in patients with glenoid defects can be challenging, particularly when the bony defects are large. To that end, this study quantifies the impact of 2 different sizes of large anterior glenoid defects on reverse shoulder glenoid fixation in a composite scapula model using the recently approved ASTM F 2028–14 reverse shoulder glenoid loosening test method.

Methods

This rTSA glenoid loosening test was conducted according to ASTM F 2028–14; we quantified glenoid fixation of a 38mm reverse shoulder (Equinoxe, Exactech, Inc) in composite/dual density scapulae (Pacific Research, Inc) before and after cyclic testing of 750N for 10k cycles. Anterior defects of 8.5mm (31% of glenoid width and 21% of glenoid height; n=7) and 12.5mm (46% of glenoid width and 30% of glenoid height; n=7) were milled into the composite scapula along the S/I glenoid axis with the aid of a custom jig. The baseplate fixation in scapula with anterior glenoid defects was compared to that of scapula without an anterior glenoid defect (n = 7). For the non-defect scapula, initial fixation of the glenoid baseplates were achieved using 4, 4.5×30mm diameter poly-axial locking compression screws. To simulate a worst case condition in each anterior defect scapulae, no 4.5×30mm compression screw were used anteriorly, instead fixation was achieved with only 3 screws (one superior, one inferior, and one posterior). A one-tailed unpaired student's t-test (p < 0.05) compared prosthesis displacements relative to each scapula (anterior defect vs no-anterior defect).


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 113 - 113
1 May 2016
Walker D Kinney A Wright T Banks S
Full Access

Modern musculoskeletal modeling techniques have been used to simulate shoulders with reverse total shoulder arthroplasty and study how geometric changes resulting from implant placement affect shoulder muscle moment arms. These studies do not, however, take into account how changes in muscle length will affect the force generating capacity of muscles in their post-operative state. The goal of this study was to develop and calibrate a patient-specific shoulder model for subjects with RTSA in order to predict muscle activation during dynamic activities.

Patient-specific muscle parameters were estimated using a nested optimization scheme calibrating the model to isometric arm abduction data at 0°, 45° and 90°. The model was validated by comparing predicted muscle activation for dynamic abduction to experimental electromyography recordings. A twelve-degree of freedom model was used with experimental measurements to create a set of patient-specific data (three-dimensional kinematics, muscle activations, muscle moment arms, joint moments, muscle lengths, muscle velocities, tendon slack lengths, optimal fiber lengths and peak isometric forces) estimating muscle parameters corresponding to each patient's measured strength. The optimization varied muscle parameters to minimize the difference between measured and estimated joint moments and muscle activations for isometric abduction trials. This optimization yields a set of patient-specific muscle parameters corresponding to the subject's own muscle strength that can be used to predict muscle activation and muscle lengths for a range of dynamic activities.

The model calibration/optimization procedure was performed on arm abduction data for a subject with reverse total shoulder arthroplasty. Muscle activation predicted by the model ranged between 3% and 90% of maximum. The maximum joint moment produced was 20 Nm. The model replicated measured joint moments accurately (R2 > 0.99). The optimized muscle parameter set produced feasible muscle moments and muscle activations for dynamic arm abduction, when calibrated using data from isometric force trials.

Current modeling techniques for the upper extremity focus primarily on geometric changes and their effects on shoulder muscle moment arms. In an effort to create patient-specific models, we have developed a framework to predict subject-specific muscle parameters. These estimated muscle parameters, in combination with patient-specific models that incorporate the patient's joint configurations, kinematics and bone anatomy, provide a framework to predict dynamic muscle activation in novel tasks and, for example, predict how joint center changes with reverse total shoulder arthroplasty may affect muscle function.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 7 - 7
1 May 2016
Greene A Sajadi K Wright T Flurin P Zuckerman J Stroud N
Full Access

Introduction

Reverse Total Shoulder Arthroplasty (rTSA) is currently advised against in patient populations with movement disorders, due to potential premature failure of the implants from the use of walking assistive devices. The objective of this study is to measure the amount of displacement induced by the simulated loading of axillary crutches on a rTSA assembly in a laboratory mimicking immediate postoperative conditions.

Methods

8 reverse shoulder baseplate/glenosphere assemblies (Equinoxe, Exactech, Inc) were fixated to 15 lb/ft3 density rigid polyurethane bone substitute blocks. Displacement of the assemblies in the A/P and S/I axes was measured using digital displacement indicators by applying a physiologically relevant 357N shear load parallel to the face of the glenosphere, and a nominal 50N compressive axial load perpendicular to the glenosphere. Westerhoff et al. reported in vivo shoulder loads while ambulating with axillary crutches had a maximum resultant force of 170% times the patient's bodyweight with the arm at 45.25° of abduction1. This was recreated by applying a 1435.4N compressive load (Average bodyweight of 86.1kg*170%) to a humeral liner and reverse shoulder assembly in an Instron testing apparatus at 45.25° of abduction as shown in Figure 1. The glenosphere was rotated about the humeral component through the arc of the axillary crutch swing, from −5° of extension to 30° of flexion as shown in Figure 2 for 183,876 cycles2. The number of cycles was based on number of steps taken in a day from pedometer data reported by Tudor Locke et al. for patients with movement disorders, extrapolated out to a 6 week postoperative recovery period3. A Student's one-tailed, paired t-test was used to identify whether or not significant displacement occurred, where p<0.05 denoted a significant difference.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 115 - 115
1 May 2016
Walker D Kinney A Wright T Banks S
Full Access

Reverse total shoulder arthroplasty (RTSA) is an increasingly common treatment for osteoarthritic shoulders with irreparable rotator cuff tears. Although very successful in alleviating pain and restoring some function, there is little objective information relating geometric changes imposed by the reverse shoulder and arm function, particularly the moment generating capacity of the shoulder muscles. Recent modeling studies of reverse shoulders have shown significant variation in deltoid muscle moment arms over a typical range of humeral offset locations in shoulders with RTSA. The goal of this study was to investigate the sensitivity of muscle moment arms as a function of varying the joint center and humeral offset in three representative RTSA subjects that spanned the anatomical range from our previous study cohort. We hypothesized there may exist a more beneficial joint implant placement, measured by muscle moment arms, compared to the actual surgical implant configuration.

A 12 degree of freedom, subject-specific model was used to represent the shoulders of three patients with RTSA for whom fluoroscopic measurements of scapular and humeral kinematics during abduction had been obtained. The computer model used subject-specific in vivo abduction kinematics and systematically varied humeral offset locations over 1521 different perturbations from the surgical placement to determine moment arms for the anterior, lateral and posterior aspects of the deltoid muscle. The humeral offset was varied from its surgical position ±4 mm in the anterior/posterior direction, ±12mm in the medial/lateral direction, and −10 mm to 14 mm in the superior/inferior direction.

The anterior deltoid moment arm varied up to 20 mm with humeral offset and center of rotation variations, primarily in the medial/lateral and superior/inferior directions. Similarly, the lateral deltoid moment arm demonstrated variations up to 20 mm, primarily with humeral offset changes in the medial/lateral and anterior/posterior directions. The posterior deltoid moment arm varied up to 15mm, primarily in early abduction, and was most sensitive to changes of the humeral offset in the superior/inferior direction.

The goal of this study was to assess the sensitivity of the deltoid muscle moment arms as a function of joint configuration for existing RTSA subjects. High variations were found for all three deltoid components. Variation over the entire abduction arc was greatest in the anterior and lateral deltoid, while the posterior deltoid moment arm was mostly sensitive to humeral offset changes early in the abduction arc. Moment arm changes of 15–20 mm represent a significant amount of the total deltoid moment arm. This means there is an opportunity to dramatically change the deltoid moment arms through surgical placement of the joint center of rotation and humeral stem. Computational models of the shoulder may help surgeons optimize subject-specific placement of RTSA implants to provide the best possible muscle function, and assist implant designers to configure devices for the best overall performance.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 119 - 119
1 May 2016
Walker D Kinney A Wright T Banks S
Full Access

Reverse Total shoulder arthroplasty (RTSA) has become an increasingly used solution to treat osteoarthritis and cuff tear arthropathy. Though successful there are still 10 to 65% complication rates reported for RTSA. Complication rates range over different reverse shoulder designs but a clear understanding of implant design parameters that cause complications is still lacking within the literature. In efforts to reduce complication rates (Implant fixation, range of motion, joint stiffness, and fracture) and improve clinical/functional outcomes having to do with proper muscle performance we have employed a computational approach to assess the sensitivity of muscle performance to changes in RTSA implant geometry and surgical placement. The goal of this study was to assess how changes in RTSA joint configuration affect deltoid performance.

An approach was developed from previous work to predict a patient's muscle performance. This approach was automated to assess changes in muscle performance over 1521 joint configurations for an RTSA subject. Patient-specific muscle moment arms, muscle lengths, muscle velocities, and muscle parameters served as inputs into the muscle prediction scheme. We systematically varied joint center locations over 1521 different perturbations from the in vivo measured surgical placement to determine muscle activation and normalized operating region for the anterior, lateral and posterior aspects of the deltoid muscle. The joint center was varied from the RTSA subject's nominal surgical position ±4 mm in the anterior/posterior direction, ±12mm in the medial/lateral direction, and −10 mm to 14 mm in the superior/inferior direction.

Overall muscle activity varied over 1521 different implant configurations for the RTSA subject. For initial elevation the RTSA subject showed at least 25% deltoid activation sensitivity in each of the directions of joint configuration change(Figure 1A–C). Posterior deltoid showed a maximal activation variation of 84% in the superior/inferior direction(Figure 1C). Deltoid activation variations lie primarily in the superior/inferior and anterior/posterior directions(Figure 1). An increasing trend was seen for the anterior, lateral and posterior deltoid outside of the discontinuity seen at 28°(Figur 1A–C). Activation variations were compared to subject's experimental data (Figure 1). Reserve actuation for all samples remained below 4Nm. The most optimal deltoid normalized operating length was implemented by changing the joint configuration in the superior/inferior and medial/lateral directions.

Current shoulder models utilize cadaver information in their assessment of generic muscle strength. In adding to this literature we performed a sensitivity study to assess the effects of RTSA joint configurations on deltoid muscle performance. With this information improvements can be made to the surgical placement and design of RTSA to improve functional/clinical outcomes while minimizing complications.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 135 - 135
1 May 2016
Kia M Imhauser C Warth L Lipman J Westrich G Cross M Mayman D Pearle A Wright T
Full Access

Introduction

Medial unicompartmental knee arthroplasty (UKA) restores mechanical alignment and reduces lateral subluxation of the tibia. However, medial compartment translation remains abnormal compared to the native knee in mid-flexion Intra-operative adjustment of implant thickness can modulate ligament tension and may improve knee kinematics. However, the relationship between insert thickness, ligament loads, and knee kinematics is not well understood. Therefore, we used a computational model to assess the sensitivity of knee kinematics, and cruciate and collateral ligament forces to tibial component thickness with fixed bearing medial UKA.

Methods

A computational model of the knee with subject-specific bone geometries, articular cartilage, and menisci was developed using multibody dynamics software (Fig 1a). The ligaments were represented with multiple non-linear, tension-only force elements, and incorporated mean structural properties. The 3D geometries of the femoral and tibial components of the Stryker Triathlon fixed-bearing UKA were captured using a laser scanner. An arthroplasty surgeon aligned the femoral and tibial components to the articular surfaces within the model (Fig 1b). The intact and UKA models were passively flexed from 0 to 90° under a 10 N compressive load. The tibial polyethylene insert was modeled by the orthopaedic surgeon to create a “balanced” knee. The modeled polyethylene insert thickness was then increased by 2 mm and decreased 2mm (in increments of 1mm) to simulate over- and under-stuffing, respectively. Outcomes were anterior-posterior (AP) translation of the femur on the tibia in the medial compartment, and forces seen by the ACL and MCL during mid-flexion (from 30 to 60° flexion). The mean differences between the intact knee model and all other experimental conditions for each outcome were calculated across mid-flexion.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 6 - 6
1 May 2016
Greene A Twiss T Wright T Flurin P Zuckerman J Stroud N
Full Access

Introduction

The General Social Survey estimates that 19 million Americans shoot firearms, with 10% of this population being over the age of 65. More reverse total shoulder arthroplasty (rTSA) are seeking to return to physical activity after surgery, but the effects of shooting a firearm on the fixation of a rTSA implant are unknown. This study will seek to examine the recoil effect of a firearm on a rTSA baseplate fixation, by recording the forces absorbed by a shooter and applying these forces to a rTSA implant assembly in laboratory conditions.

Methods

A total of 5 shooters over a range of heights and bodyweights fired a single action 12 gauge shotgun with 3 ounce slugs 5 times each. An accelerometer was rigidly fixated to the barrel of the firearm to record impulse values upon firing. 8 reverse shoulder baseplate/glenosphere assemblies (Equinoxe, Exactech, Inc) were fixated to 15 lb/ft3 density rigid polyurethane bone substitute blocks for drop tower testing. Displacement was measured before and after testing using digital displacement indicators by applying a physiologically relevant 357N shear load parallel to the face of the glenosphere, and a nominal 50N compressive axial load perpendicular to the glenosphere as shown in Figure 1. Measurements were taken for the S/I axis, and the sample was rotated 90 degrees for the A/P axis. The glenosphere/baseplate assemblies were loaded in a drop tower apparatus at 0° of abduction and 90° flexion to replicate the orientation of the joint seen while shooting. The drop tower utilized a 1.079kg weight set at 8” with a rubber impulse specific materil between the weight and impactor to reproduce the highest average impulse seen in shooting. A total of 50 drops were performed, to simulate two rounds of trap shooting at 25 shots each. A Student's one-tailed, paired t-test was used to identify whether or not significant loosening occurred, where p<0.05 denoted a significant difference.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 134 - 134
1 May 2016
Esposito C Liu T Burket J Wright T
Full Access

Introduction

Highly crosslinked ultrahigh-molecular-weight polyethylene (XLPE) reduces wear and osteolysis in total hip arthroplasty, but it is unclear if XLPE will provide the same clinical benefit in total knee arthroplasty (TKA). Adhesive and abrasive wear generally dominate in polyethylene acetabular components, whereas fatigue wear is an important wear mechanism in polyethylene TKA tibial inserts. The wear resistance of XLPE depends on the crosslink density of the material, which may decrease during in vivo mechanical loading, leading to more wear and increased oxidation. To examine this possibility, we measured crosslink density and oxidation levels in loaded and unloaded locations of retrieved tibial inserts to evaluate the short-term performance of XLPE material in TKA.

Materials and Methods

Forty retrieved XLPE tibial inserts (23 remelted, 17 annealed) retrieved after a mean time of 18 ± 14 months were visibly inspected to identify loaded (burnished) and unloaded (unburnished) locations on the plateaus of each insert using a previously published damage mapping method. For each insert, four cubes (3 mm3) were cut from loaded and unloaded surface and subsurface locations (Fig. 1). Swell ratio testing was done according to ASTM F2214 to calculate crosslink density of the cubes. With a microtome, 200 μm sections were taken adjacent to the cubes and oxidation was assessed with Fourier transform infrared spectroscopy following ASTM F2102 (Fig. 2). Surface oxidation was measured in the sections adjacent the surface cubes and subsurface oxidation was measured in sections adjacent to the subsurface cubes. The effects of location (surface vs. subsurface in the loaded and unloaded regions) and thermal treatment (annealed vs. remelted) on crosslink density and oxidation were assessed with repeated measures generalized estimating equations (GEEs), with the implant treated as the repeated factor. Results are presented as means and 95% confidence intervals and the level of significance was α=0.05.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 114 - 114
1 May 2016
Walker D Struk A Matsuki K Wright T Banks S
Full Access

Background

Though many advantages of reverse total shoulder arthroplasty (RTSA) have been demonstrated, a variety of complications indicate there is much to learn about how RTSA modifies normal shoulder function. This study assesses how RTSA affects deltoid muscle moment arms post-surgery using a subject-specific computational model driven by in vivo kinematic data.

Methods

A subject-specific 12 degree-of-freedom (DOF) musculoskeletal model was used to analyze the shoulders of 26 subjects (14 RTSA, 12 Normal). The model was modified from the work of Holzbaur et al. to directly input 6 DOF humerus and scapula kinematics obtained using fluoroscopy.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 4 - 4
1 May 2016
Roche C Flurin P Grey S Wright T Zuckerman J
Full Access

Introduction

Posterior glenoid wear is common with glenohumeral osteoarthritis. To correct posterior wear, surgeons may eccentrically ream the anterior glenoid to restore version. However, eccentric reaming undermines prosthesis support by removing unworn anterior glenoid bone, compromises cement fixation by increasing the likelihood of peg perforation, and medializes the joint line which has implications on joint stability. To conserve bone and preserve the joint line when correcting glenoid version, manufacturers have developed posterior augment glenoids for aTSA and rTSA applications. This clinical study quantifies outcomes achieved using posteriorly augmented aTSA/rTSA glenoid implants in patients with severe posterior glenoid wear at 2 years minimum follow-up.

Methods

47 patients (mean age: 68.7yrs) with 2 years minimum follow-up were treated by 5 fellowship trained orthopaedic surgeons using either 8° posteriorly augmented aTSA/rTSA glenoid components in patients with severe posterior glenoid wear. 24 aTSA patients received posteriorly augmented glenoids (65.8 yrs; 7F/17M) for OA and 23 rTSA patients received posteriorly augmented glenoids (71.8 yrs; 9F/14M) for treatment of CTA and OA. Outcomes were scored using SST, UCLA, ASES, Constant, and SPADI metrics; active abduction, forward flexion, and external rotation were also measured to quantify function. Average follow-up was 27.5 months (aTSA 29.4; rTSA 25.5). A two-tailed, unpaired t-test identified differences (p<0.05) in pre-operative, post-operative, and pre-to-post improvements.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 7 - 7
1 May 2016
Roche C Simovitch R Flurin P Wright T Johnson D Najmabadi Y Zuckerman J
Full Access

Introduction

A better understanding of the rate of improvement associated with aTSA and rTSA is critical to establish accurate patient expectations for treatment to reduce pain and restore function; more realistic patient expectations pre-operatively may lead to greater patient satisfaction post-operatively. To this end, this study quantifies the rate of improvement in outcomes of aTSA and rTSA using 5 different scoring metrics for 1641 patients with one platform shoulder arthroplasty system.

Methods

1641 patients (mean age: 69.3yrs) were treated by 14 orthopaedic surgeons using one platform shoulder system (Exactech, Inc). 729 patients received aTSA (65.3yrs; 384F/345M) for treatment of degenerative arthritis and 912 patients received rTSA (72.5yrs; 593F/319M) for treatment of CTA/RCT/OA. Each patient was scored pre-operatively and at various follow-up intervals (3 months, 6months, annually, etc) using the SST, UCLA, ASES, Constant, and SPADI metrics; active abduction, active forward flexion, and active/passive external rotation were also measured. 4439 total follow-up reports were analyzed (1851 and 2588 rTSA). Improvements in outcome using each metric score were calculated and normalized on a 100 point scale. The rate of improvement was analyzed using a 40 point moving filter treadline and with a 3rd order polynomial treadline over the entire range of follow-up.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 8 - 8
1 May 2016
Roche C Flurin P Crosby L Wright T Zuckerman J
Full Access

Introduction

The clinical impact of scapular notching is controversial. Some reports suggest it has no impact while others have demonstrated it does negatively impact clinical outcomes. The goal of this clinical study is to analyze the pre- and post-operative outcomes of 415 patients who received rTSA with one specific prosthesis (Equinoxe; Exactech, Inc).

Methods

415 patients (mean age: 72.2yrs) with 2 years minimum follow-up were treated with rTSA for CTA, RCT, and OA by 8 fellowship trained orthopaedic surgeons. 363 patients were deemed to not have a scapular notch by the implanting surgeon at latest follow-up (72.1 yrs; 221F/131M) whereas 52 patients were deemed to have a scapular notch at latest follow-up (73.3 yrs; 33F/19M). Outcomes were scored using SST, UCLA, ASES, Constant, and SPADI metrics; active abduction, forward flexion, and internal/external rotation were also measured to quantify function. Average follow-up was 38.1 months (No Notch: 37.2; Notch: 44.4). A two-tailed, unpaired t-test identified differences (p<0.05) in pre-operative, post-operative, and pre-to-post improvements.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 9 - 9
1 May 2016
Roche C Flurin P Grey S Wright T Zuckerman J Jones R
Full Access

Introduction

Due to the predictability of outcomes achieved with reverse shoulder arthroplasty (rTSA), rTSA is increasingly being used in patients where glenoid fixation is compromised due to presence of glenoid wear. There are various methods to achieve glenoid fixation in patients with glenoid wear, including the use of bone grafting behind the glenoid baseplate or the use of augmented glenoid baseplates. This clinical study quantifies clinical outcomes achieved using both techniques in patients with severe glenoid wear at 2 years minimum follow-up.

Methods

80 patients (mean age: 71.6yrs) with 2 years minimum follow-up were treated by 7 fellowship trained orthopaedic surgeons using rTSA with bone graft behind the baseplate or rTSA with an augmented glenoid baseplate in patients with severe posterior glenoid wear. 39 rTSA patients (14 female, avg: 73.1 yrs; 25 male, avg: 71.5 yrs) received an augmented glenoid (cohort composed of 24 patients with an 8° posterior augment baseplate and 15 patients with a 10° superior augment baseplate) for treatment of CTA, RCT, and OA with a medially eroded scapula. 41 rTSA patients (27 female, avg: 73.0 yrs; 14 male, avg: 66.9 yrs) received glenoid bone graft (cohort composed of 5 patients with allograft and 36 patients with autograft) for treatment of CTA, RCT, and OA with a medially eroded scapula. Outcomes were scored using SST, UCLA, ASES, Constant, and SPADI metrics; active abduction, forward flexion, and internal/external rotation were also measured to quantify function. Average follow-up was 31.2 months (augment 28.3; graft 34.1). A two-tailed, unpaired t-test identified differences (p<0.05) in pre-operative, post-operative, and pre-to-post improvements.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 123 - 123
1 Jan 2016
Esposito C Gladnick B Lee Y Lyman S Wright T Mayman DJ Padgett DE
Full Access

Introduction

Acetabular component position is considered a major factor affecting the etiology of hip dislocation. The ‘Lewinnek safe zone’ has been the most widely accepted range for component position to avoid hip dislocation, but recent studies suggest that this safe zone is outdated. We used a large prospective institutional registry to ask: 1) is there a ‘safe zone’ for acetabular component position, as measured on an anteroposterior radiograph, within which the risk of hip dislocation is low?, and 2) do other patient and implant factors affect the risk of hip dislocation?

Materials and Methods

From 2007 to 2012, 19,449 patients (22,097 hip procedures) were recorded in an IRB approved prospective total joint replacement registry. All patients who underwent primary THA were prospectively enrolled, of which 9,107 patients consented to participate in the registry. An adverse event survey (80% compliance) was used to identify patients who reported a dislocation event in the six months after hip replacement surgery. Postoperative AP radiographs of hips that dislocated were matched with AP radiographs of stable hips, and acetabular position was measured using Ein Bild Röntgen Analyse software. Dislocators in radiographic zones (± 5°, ± 10°, ± 15° boundaries) were counted for every 1° of anteversion and inclination angles.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 107 - 107
1 Jan 2016
Walker D Struk A Wright T Banks S
Full Access

Reverse total shoulder arthroplasty (RTSA) has had rapidly increasingly utilization since its approval for U.S. use in 2004. RTSA accounted for 11% of extremity market procedure growth in 201. Although RTSA is widely used, there remain significant challenges in determining the location and configuration of implants to achieve optimal clinical and functional results. The goal of this study was to measure the 3D position of the shoulder joint center, relative to the center of the native glenoid face, in 16 subjects with RTSA of three different implant designs, and in 12 healthy young shoulders.

CT scans of 12 healthy and 16 pre-operative shoulders were segmented to create 3D models of the scapula and humerus. A standardized bone coordinate system was defined for each bone (Figure 1). For healthy shoulders, the location of the humeral head center was measured relative to the glenoid face center. For the RTSA shoulders, a two-step measurement was required. First, 3D models of the pre-operative bones were reconstructed and oriented in the same manner as for healthy shoulders. Second, 3D model-image registration was used to determine the post-operative implant positioning relative to the bones. The 3D position and orientation of the implants and bones were determined in a sequence of six fluoroscopic images of the arm during abduction, and the mean implant-to-bone relationships were used to determine the surgical positioning of the implants (Figure 2). The RTSA center of rotation was defined as the offset from the center of the implant glenosphere to the center of the native glenoid face.

The center of rotation in RTSA shoulders varied over a much greater range than the native shoulders (Table 1 (Figure 3)). Lateral offset of the joint center in RTSA shoulders was at least 6 mm smaller than the smallest joint center offset in the healthy shoulders. The center of rotation in RTSA shoulders was significantly more inferior than in healthy shoulders. The range of anterior/posterior placement of the rotation center for RTSA shoulders was bounded by the range for normal shoulders.

How to best position RTSA implants for optimal patient outcomes remains a topic of great debate and research interest. We found that the 3D joint center position can vary over a supraphysiologic range in shoulders with RTSA, and that this variation is primarily in the coronal plane. By relating these geometric variations to muscle, shoulder and clinical function, we hope to establish methods and strategies for predictably obtaining the best clinical and functional outcomes for RTSA patients on a per-subject basis.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 125 - 125
1 Jan 2016
Moussa M Esposito C Elpers M Wright T Padgett DE
Full Access

Introduction

Wear-related osteolysis continues to be a concern in the long-term outcome and survivorship of total hip arthroplasty (THA) and there continues to be an emphasis on bearing materials that exhibit improved wear profiles. Oxidized zirconium metal (Oxinium®, Smith & Nephew) was developed to reduce the amount of polyethylene wear as compared to cobalt chromium femoral heads, without the risk of brittle fracture seen with older generation ceramics. There are a limited number of retrieval studies evaluating the performance of Oxinium in THA. The aims of this study were 1) to visually assess damage on the surface of a large number of retrieved Oxinium femoral heads, 2) to measure surface roughness of scratches on the surfaces of Oxinium femoral heads, and 3) to use scanning electron microscopy (SEM) to assess the integrity of the oxidized zirconium surface in damaged areas. BIOLOX delta (CeramTec), a ceramic alternative to Oxinium, was included in this study for comparison.

Methods

From 2006 to 2013, 59 retrieved Oxinium femoral heads in THAs were collected after an average time to revision surgery of 1.64 years. The mean patient age was 61.9 years, with 32 males and 27 females. Reasons for revision surgery were recurrent dislocation (24), femoral component loosening or subsidence (13), infection (9), acetabular loosening (4), periprosthethic fracture (4), acetabular malposition (2), heterotopic ossification (2), and 1 case of leg length discrepancy. The diameters of the femoral heads were 28 mm (9), 32 mm (22), 36mm (26) and 40mm (2).

Three observers visually graded surface damage on all femoral heads according to the following criteria: 1) no scratches, 2) minimal damage with one to two scratches, 3) significant damage with multiple scratches. We measured the surface roughness of retrieved Oxinium and BIOLOX delta femoral heads with an interferomic profiler, and SEM to evaluate the extent of surface effacement.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 105 - 105
1 Jan 2016
Walker D Kinney A Struk A Fregly B Wright T Banks S
Full Access

Reverse total shoulder arthroplasty (RTSA) is increasingly used in the United States since approval by the FDA in 2003. RTSA relieves pain and restores mobility in arthritic rotator cuff deficient shoulders. Though many advantages of RTSA have been demonstrated, there still are a variety of complications (implant loosening, shoulder impingement, infection, frozen shoulder) making apparent much still is to be learned how RTSA modifies normal shoulder function. The goal of this study was to assess how RTSA affects deltoid muscle moment generating capacity post-surgery using a subject-specific computational model driven by in vivo kinematic data.

A subject-specific 12 degree-of-freedom (DOF) musculoskeletal model was used to analyze the shoulders of 27 subjects (14-RTSA, 12-Normal). The model was modified from the work of Holzbaur et al. to directly input 6 DOF humerus and scapula kinematics obtained using fluoroscopy. Model geometry was scaled according to each subject's skeletal dimensions. In vivo abduction kinematics for each subject were input to their subject-specific model and muscle moment arms for the anterior, lateral and posterior aspects of the deltoid were measured over the arc of motion.

Similar patterns of muscle moment arm changes were observed for normal and RTSA shoulders. The moment arm of the anterior deltoid was positive with the arm at the side and decreased monotonically, crossing zero (the point at which the muscle fibers pass across the joint center) between 50°–60° glenohumeral abduction (Figure 1a). The average moment arm of the lateral deltoid was constant and positive in normal shoulders, but showed a decreasing trend with abduction in RTSA shoulders (Figure 1b). The posterior deltoid moment arm was negative with the arm at the side, and increased monotonically to a positive value with increasing glenohumeral abduction (Figure 1c). Subject-specific moment arm values for RTSA shoulders were highly variable compared to normal shoulders. 2-way repeated measures ANOVA showed significant differences between RTSA and normal shoulders for all three aspects of the deltoid moment arm, where the moment arms in RTSA shoulders were smaller in magnitude.

Shoulder functional capacity is a product of the moment generating ability of the shoulder muscles which, in turn, are a function of the muscle moment arms and muscle forces. Placement of implant components during RTSA can directly affect the geometric relationship between the humerus and scapula and, therefore, the muscle moment arms in the RTSA shoulder. Our results show RTSA shoulders maintain the same muscle moment arm patterns as healthy shoulders, but they show much greater inter-subject variation and smaller moment arm magnitudes. These observations show directly how RTSA configuration and implant placement affect deltoid moment arms, and provide an objective basis for determining optimal implant configuration and surgical placement to maximize RTSA function in a patient-specific manner.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 106 - 106
1 Jan 2016
Walker D Kinney A Struk A Fregly B Wright T Banks S
Full Access

Reverse total shoulder arthroplasty (RTSA) is an increasingly common treatment for osteoarthritic shoulders with irreparable rotator cuff tears. Although very successful in alleviating pain and restoring some function there is little objective information relating geometric changes imposed by the reverse shoulder and the moment generating capacity of the shoulder muscles. Recent modeling studies of reverse shoulders have shown significant variation in deltoid muscle moment arms over varied joint centers for shoulders with RTSA. The goal of this study was to investigate the sensitivity of muscle moment arms as a function of varying the joint center in one representative RTSA subject. We hypothesized there may exist a more beneficial joint implant placement, measured by muscle moment arms, compared to the actual surgical implant placement.

A 12 degree of freedom, subject-specific model was used to represent the shoulder of a patient with RTSA for whom fluoroscopic measurements of scapular and humeral kinematics during abduction had been obtained. The computer model used these abduction kinematics and systematically varied joint center locations over 1521 different perturbations from the surgical placement to determine moment arms for the anterior, lateral and posterior aspects of the deltoid muscle. The joint center was varied from its surgical position ±4 mm in the anterior/posterior direction, 0–24 mm in the medial/lateral direction, and −10 mm to 14 mm in the superior/inferior direction.

The anterior deltoid moment arm varied up to 16mm with center of rotations variations, primarily in the medial/lateral and superior/inferior directions (Figure 2, Table 1(Figure 1)). Similarly, the lateral deltoid moment arm demonstrated variations up to 13 mm, primarily with joint center changes in the anterior/posterior and superior/inferior directions. The posterior deltoid moment arm varied up to 10mm, primarily in early abduction, and was most sensitive to changes of the joint center in demonstrated a sensitivity of 6 mm corresponding to variations in the superior/inferior directions (Figure 2).

The goal of this study was to assess the sensitivity of the deltoid muscle moment arms as a function of joint configuration for an existing RTSA subject. High variations were found for all three deltoid components. Variation over the entire abduction arc was greatest in the anterior and lateral deltoid, while the posterior deltoid moment arm was mostly sensitive to joint center changes early in the abduction arc. Moment arm changes of 10–16mm represent a significant amount of the total deltoid moment arm. This means there is an opportunity to dramatically change the deltoid moments arms through surgical placement of the joint center of rotation. Computational models of the shoulder may help surgeons optimize subject-specific placement of RTSA implants to provide the best possible muscle function, and assist implant designers to configure devices for the best overall performance.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 108 - 108
1 Jan 2016
Walker D Kinney A Fregly B Wright T Banks S
Full Access

Current modeling techniques have been used to model the Reverse Total Shoulder Arthroplasty (RTSA) to account for the geometric changes implemented after RTSA. Though these models have provided insight into the effects of geometric changes from RTSA these is still a limitation of understanding muscle function after RTSA on a patient-specific basis. The goal of this study sought to overcome this limitation by developing an approach to calibrate patient-specific muscle strength for an RTSA subject.

The approach was performed for both isometric 0° abduction and dynamic abduction. A 12 degree of freedom (DOF) model developed in our previous work was used in conjunction with our clinical data to create a set of patient-specific data (3 dimensional kinematics, muscle activations, muscle moment arms, joint moments, muscle length, muscle velocity, tendon slack length, optimal fiber length, peak isometric force)) that was used in a novel optimization scheme to estimate muscle parameters that correspond to the patient's muscle strength[4]. The optimization varied to minimize the difference between measured(“in vivo”) and predicted joint moments and measured (“in vivo”) and predicted muscle activations. The predicted joint moments were constructed as a summation of muscle moments. The nested optimization was implemented within matlab (Mathworks). The optimization yields a set of muscle parameters that correspond to the subject's muscle strength. The abduction activity was optimized.

The maximum activation for the muscles within the model ranged between .03–2.4 (Figure 1). The maximum joint moment produced was 11 newton-meters. The joint moments were reproduced to an value of 1. Muscle parameters were calculated for both isometric and dynamic abduction (Figure 2). The muscle parameters produced provided a feasible solution to reproduce the joint moments seen “in vivo” (Figure 3).

Current modeling techniques of the upper extremity focus primarily on geometry. In efforts to create patient-specific models we have developed a framework to predict subject-specific strength characteristics. In order to fully understand muscle function we need muscle parameters that correspond to the subject's strength. This effort in conjunction with patient-specific models that incorporate the patient's joint configurations, kinematics and bone anatomy hopes to provide a framework to gain insight into muscle tensioning effects after RTSA. With this framework improvements can be made to the surgical implementation and design of RTSA to improve surgical outcomes.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 59 - 59
1 Jan 2016
Bryant T Stevens C Bentley B Farmrer K Wright T
Full Access

Background

Glenoid component aseptic loosening is the most common source of total shoulder arthroplasty (TSA) revision. In an attempt to strengthen cemented glenoid component fixation, divergent pegged glenoids were designed. Divergent peg creation was intended to increase cement purchase and provide resistance to component rocking.

Methods

Thirty-four patients who underwent divergent peg TSA had data collected prospectively. The data from these patients was retrospectively reviewed, primarily for radiographic evidence of glenoid component loosening. The endpoint was defined as the need for revision secondary to glenoid loosening. Secondary outcome measures such as SPADI (shoulder pain and disability index), active forward elevation, abduction, internal rotation, and external rotation were also collected. Data was obtained preoperatively and at the following postoperative intervals: 3 months, 6 months, and yearly. The last available postoperative radiographs were also reviewed and graded on a modified Franklin glenoid lucency scale described by Lazarus et al.


Bone & Joint Research
Vol. 4, Issue 2 | Pages 11 - 16
1 Feb 2015
C. Wyatt M Wright T Locker J Stout K Chapple C Theis JC

Objectives

Effective analgesia after total knee arthroplasty (TKA) improves patient satisfaction, mobility and expedites discharge. This study assessed whether continuous femoral nerve infusion (CFNI) was superior to a single-shot femoral nerve block in primary TKA surgery completed under subarachnoid blockade including morphine.

Methods

We performed an adequately powered, prospective, randomised, placebo-controlled trial comparing CFNI of 0.125% bupivacaine versus normal saline following a single-shot femoral nerve block and subarachnoid anaesthesia with intrathecal morphine for primary TKA. Patients were randomised to either treatment (CFNI 0 ml to 10 ml/h 0.125% bupivacaine) or placebo (CFNI 0 ml to 10 ml/h normal saline). Both groups received a single-shot femoral nerve block (0.25% 20 ml bupivacaine) prior to placement of femoral nerve catheter and subarachnoid anaesthesia with intrathecal morphine. All patients had a standardised analgesic protocol. The primary end point was post-operative visual analogue scale (VAS) pain score over 72 hours post-surgery. Secondary outcomes were morphine equivalent dose, range of movement, side effects, and length of stay.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 353 - 353
1 Jul 2014
Hamilton M Diep P Roche C Flurin P Wright T Zuckerman J Routman H
Full Access

Summary Statement

Reverse shoulder design philosophy can impact external rotation moment arms. Lateralizing the humerus can increase the external rotator moment arms relative to normal anatomy.

Introduction

The design of reverse shoulders continues to evolve. These devices are unique in that they are not meant to reproduce the healthy anatomy. The reversal of the fulcurm in these devices impacts every muscle that surrounds the joint. This study is focused on analyzing the moment arms for the rotator cuff muscles involved in internal and external rotation for a number of reverse shoulder design philosophies.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 302 - 302
1 Dec 2013
Nam D Elpers M Boydston-White S Ast M Padgett DE Wright T
Full Access

Introduction:

Concerns remain regarding both the toughness of alumina, and stability of zirconia ceramics in total hip arthroplasty (THA). A zirconia-toughened alumina (ZTA) bearing has been introduced, in which yttria-stabilized, zirconia polycrystals are uniformly distributed in an alumina matrix. The goal is to combine the wear resistance of alumina with the toughness of zirconia. Zirconia's toughness is attributed to a tetragonal to monoclinic (t-m) phase transformation that occurs in response to a crack, hindering its propagation; however, it might decrease material stability. The purposes of this study were to investigate the degree and position of metal transfer, and the occurrence of t-m phase transformation using Raman spectroscopy, in a series of retrieved, ZTA femoral heads.

Materials and Methods:

Twenty-seven ZTA femoral heads were reviewed as part of an IRB-approved implant retrieval program. All acetabular liners were composed of highly cross-linked polyethylene. The length of implantation, age, body mass index (BMI), sex, and reason for revision were recorded.

Two independent graders assessed each femoral head for metal transfer over three regions (apex, equator, and below equator), using a previously validated grading system (Figure 1). The female trunnion of each head was graded in two regions: the deep and superficial 50% (Figure 2).

Raman spectra were collected with a confocal Raman imaging system (alpha300 R, WITec, Knoxville, TN) operating a 488 nm laser, using a microscope objective of 20X. Three scans were taken in each of the aforementioned regions of the femoral head surface. Scans were also performed in regions of visible wear or metal transfer.

Interobserver correlation coefficients for the measurement of metal transfer between the two graders were determined. One-way ANOVAs were used to compare differences of metal transfer between the 3 surface regions (p < 0.05 = significant).


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 103 - 103
1 Dec 2013
Stevens C King J Struk A Wright T
Full Access

Background:

The use of reverse total shoulder arthroplasty (RTSA) has been increasing around the world. However, because of concerns over lack of internal rotation with the reverse prosthesis and the resultant difficulties with activities of daily living (ADLs), many have recommended against performing bilateral RTSA.

Methods:

We performed a retrospective review of prospectively obtained clinical data on 15 consecutive patients (30 shoulders) that underwent staged bilateral primary RTSA for the diagnosis of cuff tear arthropathy (CTA) between 2004 and 2012. All operations were performed by a single surgeon. The mean follow-up was 29.6 months from the second RTSA (range 12–65 months). The mean age of the patients at the time of the first operation was 72.9 years (range 63–79 years), and the mean duration between arthroplasties was 21.6 months (range 8–50 months). Patients were evaluated preoperatively and postoperatively at 2 weeks, 6 weeks, 3 months, 6 months, 1 year, and yearly with standardized clinical exams and outcome measures questionnaires including Constant, ASES, UCLA, Simple Shoulder Test, SPADI, and SF-12 scores.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 376 - 376
1 Dec 2013
King J Struk A Farmrer K Wright T
Full Access

Purpose:

While the use of press-fit humeral components has been accepted in total shoulder arthroplasty, few studies focus on the outcomes after uncemented reverse total shoulder arthroplasty. The purpose of this study is to compare the radiographic and functional results of uncemented and cemented humeral fixation in reverse total shoulder arthroplasty.

Materials/Methods:

A retrospective review was performed identifying all patients that underwent reverse total shoulder arthroplasty (RTSA) between May 2007 and December 2010. Medical records and a prospective research database were reviewed for demographic, operative, and clinical information. Inclusion criteria were a primary reverse total shoulder arthroplasty from one manufacturer with a grit-blasted humeral metaphyseal stem and minimum follow-up of 2 years. Exclusion criteria included shoulder arthroplasty for fractures, fracture sequelae, or inflammatory arthropathy. Antibiotics were not routinely added to the cement. The radiographic and functional outcomes were compared between the uncemented and cemented groups. Statistical analysis was performed using the Fisher Exact test to compare the dichotomous variables between the groups. The functional outcome data between the groups was calculated using the two-tailed Wilcoxon Rank Sum test.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 595 - 595
1 Dec 2013
Choi D Wright T
Full Access

Retrieval analysis has been valuable in the assessment of in-vivo surface damage of orthopedic devices. Historically, subjective techniques were used to grade damage on the implant's surface. Microscopy improved the ability to localize and quantify damage, but cannot measure volumetric wear due to this damage. Laser scanning provides volumetric wear, but lacks image data. Recent techniques superimpose image data on laser scan data (photorendering) and combine the strengths of both methods. Our goal is to use such methods to improve our damage assessment and potentially correlate this assessment to volumetric wear.

This project focused on two areas: image-stitching and photorendering. Image-stitching registers multiple images into large-scale high-resolution composites. Six total disc replacement components were imaged with a digital microscope (Moticam 2, Motic). Three sets were taken of each component: a single template at 10x zoom (1×1), a 4-image composite at 18x zoom (2×2), and a 9-image composite at 18x zoom (3×3). The 2×2 and 3×3 sets were image-stitched to resemble their template counterpart. Measurement error was defined using common pixels identified between the composite and template images for comparison with a semi-automated feature detection algorithm (Figure 1).

For photorendering, a pilot study was performed on a single retrieved tibial bearing. The component was imaged with a digital microscope (VHX-2000, Keyence) under a 3D image-stitching setting, providing a high-resolution photo embedded with height values. MATLAB was used to convert the image into a photo-rendered point cloud approximating the surfaces. The component was then laser scanned, creating a 3D point cloud with resolution 0.127 mm. The photo-rendered point cloud data was registered to the laser scan data using an iterative closest point algorithm (Geomagic Studio, Geomagic).

An analysis of all composite images showed a mean error of 0.221 mm. Figure 2 compares regions of images for the template, 2×2, and 3×3 composites. Zooming in shows the effect of the increased resolution contained in the composite. The 2×2 and 3×3 composites had mean errors of 0.231 mm and 0.209 mm, respectively; these were not significantly different. Comparisons among image types showed that components with less features exhibited larger errors during image-stitching. Figure 3 shows images resulting from each step of the photorendering process. The final image of the figure shows a qualitative result of our ability to photorender the tibial bearing surface of the component.

While combining microscopy and laser scan data works anecdotally, further analyses must be performed to assure the robustness of the technique. The digital microscope's embedded image-stitching software is limited in its maximum field of view; we look to extend this by taking multiple scans and using in-house software to generate a composite of a whole implant. The improved resolution provided by microscopy offer an opportunity to automate damage assessment, yielding damage mapped images which can also be overlaid on laser scan data. This may provide a means to better quantify observed damage and yield meaningful correlations with volumetric loss due to wear.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 504 - 504
1 Dec 2013
Roche C Stroud N DiPaola M Flurin PH Zuckerman J Wright T
Full Access

Introduction

Initial fixation of noncemented implants is critical to achieve a stable bone/implant interface during the first few months after surgery to potentiate bone in-growth and avoid aseptic loosening. Numerous reverse shoulder glenoid implant designs have been conceived in an attempt to improve implant performance and decrease the rate of aseptic glenoid loosening, commonly reported to be 5%. Design variations include: baseplate profile, baseplate size, backside geometry, center of rotation, surface finish and coatings, fixation screw diameters, number of fixation screw options, and type of screw fixation. However, little comparative biomechanical data exist to substantiate one design consideration over another. To that end, this study quantified glenoid fixation before and after cyclic loading of simulated abduction of 6 different reverse shoulder glenoid designs when secured to a low density polyurethane bone substitute block.

Methods

A displacement test quantified fixation of 6 different reverse shoulder designs: 38 mm Equinoxe standard offset (EQ), 38 mm Equinoxe lateral offset (EQL), 36 mm Depuy Delta III (DRS), 36 mm Zimmer, (ZRS), 32 mm neutral DJO RSP (DJO), and a 36 mm Tornier BIO-RSA (BIO), secured to a 0.24 g/cm3 polyurethane block as a shear (357 N) and compressive (50 N) load was applied before and after cyclic loading. (Figure 1) Glenoid displacement was measured relative to the block using dial indicators in the directions of the applied loads along the superior/inferior axis. A cyclic test rotated each glenosphere (n = 7 for each design) about a 55° arc of abduction at 0.5 Hz for 10k cycles as 750N was constantly applied. (Figure 2) Each implant was cycled using a 145° humeral liner of the appropriate diameter to ensure each device is subjected to the same shear load. A two-tailed unpaired student's t-test was used to compare pre- and post-cyclic mean displacements between designs; p < 0.05 denotes significance.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 574 - 574
1 Dec 2013
Walker D Struk A Wright T Banks S
Full Access

Background:

An upper extremity model of the shoulder was developed from the Stanford upper extremity model (Holzbaur 2005) in this study to assess the muscle lengthening changes that occur as a function of kinematics for reverse total shoulder athroplasty (RTSA). This study assesses muscle moment arm changes as a function of scapulohumeral rhythm (SHR) during abduction for RTSA subjects. The purpose of the study was to calculate the effect of RTSA SHR on the deltoid moment arm over the abduction activity.

Methods:

The model was parameterized as a six degree of freedom model in which the scapula and humeral rotational degrees of freedom were prescribed from fluoroscopy. The model had 15 muscle actuators representing the muscles that span the shoulder girdle. The model was then uniformly scaled according to reflective markers from motion capture studies. An average SHR was calculated for the normal and RTSA cohort set. The SHR averages were then used to drive the motion of the scapula and the humerus. Lastly 3-dimensional kinematics for the scapula and humerus from 3d-2d fluoroscopic image registration techniques were used to drive the motion of model. Deltoid muscle moment arm was calculated.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 207 - 207
1 Dec 2013
Roche C Flurin PH Marczuk Y Wright T Zuckerman J
Full Access

Introduction

Both anatomic (aTSA) and reverse (rTSA) total shoulder arthroplasty are the standard of care for various end-stage degenerative conditions of the glenohumeral joint. Osteoarthritis (OA) is the most common indication for aTSA while Rotator Cuff Tear Arthropathy (CTA) is the most common indication for rTSA. Worldwide, the usage of both aTSA and rTSA has increased significantly due in part, to the predictability of acceptable outcomes achieved with each prosthesis type. The aim of this study is to quantify outcomes using 5 different metrics and compare results achieved for each indication using one platform total shoulder arthroplasty system which utilizes the same humeral component and instrumentation to perform both aTSA or rTSA.

Methods

200 patients (70.9 ± 7.3 yrs) were treated by two orthopaedic surgeons using either aTSA or rTSA. 73 patients received aTSA (67.4 ± 8.0 yrs) for treatment of OA (PHF: 64 patients; YM: 9 patients) and 127 patients received a rTSA (72.9 ± 6.1 yrs) for treatment of CTA (PHF: 53 patients; YM: 74 patients). These patients were scored pre-operatively and at latest follow-up using the SST, UCLA, ASES, Constant, and SPADI metrics; active abduction, forward flexion, and external rotation were also measured. The average follow-up for all patients was 31.4 ± 9.7 months (aTSA: 32.5 ± 12.1 months; rTSA: 30.8 ± 8.0 months). A Student's two-tailed, unpaired t-test was used to identify differences in pre-operative, post-operative, and pre-to-post-operative improvements in results, where p < 0.05 denoted a significant difference.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 192 - 192
1 Dec 2013
Walker D Struk A Wright T Banks S
Full Access

Background:

Little is known about scapular kinematics in patients with reverse total shoulder arthroplasty (RTSA). Understanding how RTSA affects shoulder function may help refine its design, use, and rehabilitation strategies. The purpose of this study was to quantify motion in the reverse shoulder. The scapulohumeral rhythm (SHR) of the RTSA shoulder was calculated using 3d-2d image registration techniques. SHR was compared to normal subjects in literature to asses kinematic changes post RTSA.

Methods:

26 subjects were recruited for an institutional review board approved study. Subjects who were ≥ 6 months post unilateral RTSA. Subjects were prompted to do abduction in the coronal plane with and without a 3 lb. weight. Three dimensional to two dimensional image registration techniques were used to derive orientation and position measurements for the humerus and scapula from dynamic x-ray. Tukey Honest differences statistics were used to assess significance differences between groups.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 248 - 248
1 Dec 2013
Stevens C Clark J Murphy M Bryant T Wright T
Full Access

Purpose:

The reverse total shoulder arthroplasty (RTSA) was approved for use by the United States FDA in 2004. Since its introduction, its popularity for treating a number of shoulder conditions has grown considerably. However, many patients inquire about the potential to return to playing recreational golf, and at present there are no published data about how the RTSA prosthesis affects the golf swing. The purpose of this study is to evaluate the biomechanics of the golf swing in patients with RTSA, as well as the postoperative changes in handicap, driving distance, and holes played/week.

Methods:

A review of patient records for those that had an RTSA placed between June 2004 and December 2008 was performed. These patients were sent a questionnaire inquiring about details of golfing before and after RTSA. Patients who were still golfing after implantation of the RTSA prosthesis were selected for six-camera motion analysis testing of their golf swing. Computer analysis program was used to calculate parameters to biomechanically describe the golf swing.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 347 - 347
1 Dec 2013
Higa M Chang C Roche C Struk A Farmrer K Wright T Banks S
Full Access

Introduction

Persistent problems and relatively high complication rates with reverse total shoulder arthroplasty (RTSA) are reported (1, 2). It is assumed that some of these complications are affected by improper intraoperative soft tissue tension. Achieving proper intraoperative soft tissue tension is an obvious surgical goal. However, intraoperative soft tissue tension measurements and methods for RTSA have not been reported. One way to quantify soft tissue tension is to measure intraoperative joint forces using an instrumented prosthesis. Hence, we have developed an instrumented RTSA to measure shoulder joint forces intraoperatively. The goal of this study was to measure intraoperative shoulder joint forces during RTSA.

Materials and Methods

The instrumented shoulder prosthesis measures the contact force vector between the glenosphere and humeral tray. This force sensor is a custom instrumented trial implant that can be used with an existing RTSA system (EQUINOXE, Exactech Inc, Gainesville, FL) just as a standard trial implant is used. Four uniaxial foil strain gauges (QFLG-02-11-3LJB, Tokyo Sokki Kenkyujo Co., Ltd., JP) are instrumented inside the sensor. Using a calibration matrix, the three force components were calculated from four strain gauge outputs (3).

Sixteen patients who underwent RTSA took part in this IRB approved study. All patients were greater than 50 years of age and willing to review and sign the study informed consent form. After obtaining informed consent for surgery, a standard deltopectoral approach to the shoulder was performed. The instrumented trial prostheses were assembled on the glenoid baseplate instead of a standard glenosphere. After the joint was reduced, joint forces were recorded during cyclic rotation, flexion, scapular plane movement (scaption), and adduction of the shoulder. Strain gauge outputs were recorded during these movements as well as the neutral position just before movements. Mean values of forces with each motion were compared by one-way analysis of variance (ANOVA). A multiple comparisons test was subsequently performed to examine differences between motions.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 208 - 208
1 Dec 2013
Wright T Lipman J
Full Access

Introduction

The design and manufacture of patient specific implants at Hospital for Special Surgery (HSS) was started in the fall of 1976. The first implant designed and manufactured was an extra large total knee. This effort expanded to include all arthroplasty devices including hips, knees, shoulders and elbows along with fracture fixation devices. In the 1980s, the hospital was designing and manufacturing over 100 custom implants per year. This reduced significantly in the 1990s due to the introduction of modular total knee replacements. In 1996, HSS ceased manufacture due to rising costs and a greater regulatory burden. However, implants are still designed at HSS with manufacturing outsourced to commercial companies. Since 1976, the hospital has designed over 2500 implants.

Patient Population

Currently, we design implants for ∼30 cases per year, hips, knees, and upper extremity devices (mainly elbow). We've seen an increase in acetabular revision cases over the last few years and now design about 10 revision acetabular components each year.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 593 - 593
1 Dec 2013
Wright T Conrad B Struk A
Full Access

Introduction:

The subscapularis muscle experiences significant strain as it accommodates common movements of the shoulder. Little is known about what happens with this obligatory strain once the subscapularis insertion is disrupted and repaired in the course of shoulder arthroplasty. Subscapularis failure is a serious known complication after shoulder arthroplasty. It is not known what the effect of increasing the thickness of the shoulder head will have on subscapularis strain. It is our hypothesis that the use of large or expanded humeral heads during shoulder replacement will cause increased tension in the repaired subscapularis. The primary purpose of this study was to identify the optimal manner to perform a passive range of motion (PROM) program without invoking a significant increase in strain in the repaired subscapularis. The secondary purpose was to determine the impact of varying the thickness of the humeral head on subscapularis strain using the same PROM protocol.

Methods:

Eight fresh-frozen, forequarter cadaver (four female, four male) specimens were obtained following IRB approval. An extended deltopectoral incision was performed so that the subscapularis insertion site could be well visualized. PROM exercises with the following motions were evaluated: external rotation, abduction, flexion and scaption. An optical motion analysis system was used to measure strain in the subscapularis. The same measurement protocol was repeated after performing a subscapularis osteotomy and after placement of an anatomic hemiarthroplasty of three different thicknesses (short, tall, expanded).


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 249 - 249
1 Dec 2013
Stevens C Bryant T Conrad B Struk A Wright T
Full Access

Introduction:

External rotation (ER) of the shoulder is a commonly used clinical measurement to assess the glenohumeral joint; however, the position in which these measurements are obtained varies between clinicians. The purpose of this study was to compare the following: ER in the upright & supine positions, motion capture & goniometric values of ER, active & passive ER, ER in the right & left shoulders, and ER in male & female subjects.

Methods:

Eighteen subjects (mean age 25.4 yrs) with ‘normal’ shoulders (by screening questionnaire) were enrolled in the study and subject to triplicate measurements of active and passive ER of both shoulders with a goniometer and a 12 camera, high speed optical motion analysis system in both the upright and supine positions. ANOVA was used to compare variables and linear regression used to correlate the goniometer & optical motion capture measurements.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 164 - 164
1 Dec 2013
Roche C Diep P Grey S Flurin PH Zuckerman J Wright T
Full Access

Introduction

Posterior glenoid wear is common in glenohumeral osteoarthritis. Tightening of the subscapularis causes posterior humeral head subluxation and a posterior load concentration on the glenoid. The reduced contact area causes glenoid wear and potentially posterior instability. To correct posterior wear and restore glenoid version, surgeons may eccentrically ream the anterior glenoid to re-center the humeral head. However, eccentric reaming undermines prosthesis support by removing unworn anterior glenoid bone, compromises cement fixation by increasing the likelihood of peg perforation, and medializes the joint line which has implications on joint stability. To conserve bone and preserve the joint line when correcting glenoid version, manufacturers have developed posterior augment glenoids. This study quantifies the change in rotator cuff muscle length (relative to a nonworn/normal shoulder) resulting from three sizes of posterior glenoid defects using 2 different glenoids/reaming methods: 1) eccentric reaming using a standard (nonaugmented) glenoid and 2) off-axis reaming using an 8, 12, and 16° posterior augment glenoid.

Methods

A 3-D computer model was developed in Unigraphics (Siemens, Inc) to simulate internal/external rotation and quantify rotator cuff muscle length when correcting glenoid version in three sizes of posterior glenoid defects using posterior augmented and non-augmented glenoid implants. Each glenoid was implanted in a 3-D digitized scapula and humerus (Pacific Research, Inc); 3 sizes (small, medium, and large) of posterior glenoid defects were created in the scapula by posteriorly shifting the humeral head and medially translating the humeral head into the scapula in 1.5 mm increments. Five muscles were simulated as three lines from origin to insertion except for the subscapularis which was wrapped. After simulated implantation in each size glenoid defect, the humerus was internally/externally rotated from 0 to 40° with the humerus at the side. Muscle lengths were measured as the average length of the three lines simulating each muscle at each degree of rotation and compared to that at the corresponding arm position for the normal shoulder without defect to quantify the percentage change in muscle length for each configuration.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 592 - 592
1 Dec 2013
Wright T Gunsallus K Lipman J Hotchkiss R Figgie MP
Full Access

Implant designs for hip and knee arthroplasty have undergone a continual improvement process, but development of implants for total elbow arthroplasty (TEA) have lagged behind despite the marked mechanical burden placed on these implants. TEA is not as durable with failure rates approaching thirty percent at five years. The Coonrad-Morrey (Zimmer, Warsaw, IN), a linked design, remains the standard-bearer, employing polyethylene bushings through which a metal axle passes. A common failure mode is bushing wear and deformation, causing decreased joint function as the bushing-axle constraint decreases and osteolysis secondary to release of large volumes of wear debris.

Improving upon this poor performance requires determining which factors most influence failure, so that failure can be avoided through design improvements. The approach integrates clinical observations of failed TEAs with implant retrieval analysis, followed by measurements of loads across the elbow for use in stress analyses to assess the performance of previous designs, and, finally, new design approaches to improve performance.

Examination of the clinical failures of more than seventy Coonrad-Morrey TEAs revealed patterns of decreased constraint and stem loosening. Implant retrieval analysis from more than thirty of these cases showed excessive bushing deformation and wear and burnishing of the fixation stems consistent with varus moments across the joint.

To determine loads across the elbow, motion analysis data were collected from eight TEA patients performing various activities of daily living. The kinematic data were input into a computational model to calculate contact forces on the total elbow replacement. The motion that produced the maximum contact force was a feeding motion with the humerus in 90° of abduction. For this motion, the joint reaction forces and moments at the point of maximum contact were determined from a computational model.

We applied these loads to numerical models of the articulating bushings and axle of the Coonrad-Morrey to examine polyethylene strains as measures of damage and wear. Strain patterns in response to the large varus moment applied to the elbow during feeding activities showed extensive plastic deformation in the locations at which deformation and wear damage were observed in our retrieved implants (Fig. 1).

Finally, we examined a new semi-constrained design concept intended to meet two goals: transfer contact loads away from the center of the joint, thus allowing contact to provide a larger internal moment to resist the large external varus moment; and reduce polyethylene strains by utilizing curved contacting surfaces on both the axle and the bushings (Fig. 2). After a sensitivity analysis to determine optimal dimensional choices (e.g., bushing and axle radii), we compared the resulting polyethylene strains between the Coonrad-Morrey and new design at locations that experienced the largest strains (Fig. 3). Substantial decreases were achieved, suggesting far less deformation and wear, which should relate to marked improvements in performance.

Currently, we are incorporating this new design concept, along with alterations in stem design achieved from examination of load transfer at the fixation interfaces based on the same loading conditions, to achieve an implant system intended to improve the performance of TEA.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 573 - 573
1 Dec 2013
Walker D Struk A Wright T Banks S
Full Access

Background:

Little validation has been done to compare the principle of using the contralateral side as compared to and age and gender matched control. This study seeks to assess the validity of using the contralateral shoulder as the control as opposed to an age- gender- matched control. This study will give insight as to whether the contralateral side is a viable control as compared to a normal age and gender matched control. The study showed that the use of the contralateral shoulder was not a viable normal control.

Methods:

50 subjects were recruited for an institutional review board approved study. We studied 33 subjects who were ≥ 6 months post unilateral RSTA and 17 subjects who comprised our normal age- and gender-matched control group. The activity of the contralateral shoulder for each RTSA subject was recorded. All subjects were prompted to elevate their arm to perform abduction, flexion, and external rotation activities in both weighted and un-weighted configurations. Electromyography activation of the anterior, lateral, and posterior aspects of the deltoid and the upper trapezius muscles were recorded bilaterally using bipolar surface electrodes. Motion capture using passive reflective markers was used to quantify three-dimensional motions of both shoulders.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 472 - 472
1 Dec 2013
Padgett DE Stoner K Nassif N Nawabi D Wright T Elpers M
Full Access

Introduction:

Large diameter metal on metal total hip arthroplasty (MOM THA) have shorter lengths of implantation due to increased failure caused by wear either at the articulating surface as well as the taper-trunnion interface. Taper-trunnion wear may be worse in large diameter MOM THA due the increased torque at the taper-trunnion interface. However little has been done to understand how differences in taper-trunnion geometry and trunnion engagement effects wear. The purpose of this study was to (1) measure the differences in taper geometry and trunnion engagement on the head-taper of 11/13, 12/14, and Type 1 taper designs and (2) to determine if taper geometry affects fretting, corrosion, and wear at the taper interface.

Methods:

We identified 54 MOM THA primary revision implants with head diameters greater than 36 mm from our retrieval archive. Patients' charts were queried for demographic information and pre-revision radiographs were measured for cup inclination and cup anteversion. To measure taper geometry and wear the head tapers were imaged using Redlux©. The point clouds obtained from this were analyzed in Geomagic©. Taper angles and contact length where the trunnion engaged with the female taper of the head-tapers were measured. The diameter of the taper at the most distal visual area of trunnion engagement was also measured. Best fit cones were fit to the unworn regions to approximate the pristine surface. Differences between the raw data and the unworn surface were measured and volumetric wear rates were calculated. Fretting and corrosion of the head-taper was graded using the Goldberg Scoring.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 12 | Pages 1666 - 1669
1 Dec 2012
Gulotta LV Choi D Marinello P Wright T Cordasco FA Craig EV Warren RF

Reverse total shoulder replacement (RTSR) depends on adequate deltoid function for a successful outcome. However, the anterior deltoid and/or axillary nerve may be damaged due to prior procedures or injury. The purpose of this study was to determine the compensatory muscle forces required for scapular plane elevation following RTSR when the anterior deltoid is deficient. The soft tissues were removed from six cadaver shoulders, except for tendon attachments. After implantation of the RTSR, the shoulders were mounted on a custom-made shoulder simulator to determine the mean force in each muscle required to achieve 30° and 60° of scapular plane elevation. Two conditions were tested: 1) Control with an absent supraspinatus and infraspinatus; and 2) Control with anterior deltoid deficiency. Anterior deltoid deficiency resulted in a mean increase of 195% in subscapularis force at 30° when compared with the control (p = 0.02). At 60°, the subscapularis force increased a mean of 82% (p < 0.001) and the middle deltoid force increased a mean of 26% (p = 0.04).

Scapular plane elevation may still be possible following an RTSR in the setting of anterior deltoid deficiency. When the anterior deltoid is deficient, there is a compensatory increase in the force required by the subscapularis and middle deltoid. Attempts to preserve the subscapularis, if present, might maximise post-operative function.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 349 - 349
1 Sep 2012
Heyse T Chen D Kelly N Boettner F Wright T Haas S
Full Access

Introduction

Oxidized zirconium (OxZr) is used as a ceramic surface for femoral components in total knee arthroplasty (TKA). The aim of this study was to investigate its performance by examining retrieved femoral components and their corresponding PE inserts in matched comparison with conventional chrome/cobalt/molybdenum alloy (CrCoMo).

Methods

11 retrieved posterior stabilized (PS) TKA with an OxZr femoral component were included. From a cohort of 56 retrieved TKA with CrCoMo femoral components, pairs were matched according to duration of implantation, patient age, reason for revision, and BMI. The retrieved tibial polyethylene (PE) inserts were analyzed for wear using the Hood classification. Femoral components were optically viewed at 8–32x magnification and screened for scratching, pitting, delamination, and striation. Profilometry was performed to measure surface roughness of the OxZr components using a non-contact white light profiler.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_III | Pages 85 - 85
1 Feb 2012
Clarke A Wright T Downs-Wheeler M Smith G
Full Access

The purpose of this study was to determine the normal angle of rotation of the axis of each finger using digital image analysis, whether the rotation of the digits is symmetrical in the two hands of an individual, and the reliability of this method.

Standardised digital photographic images were taken of thirty healthy volunteers. The palm of each hand was placed on a flat bench top with their fingers held in extension and adducted, to give an end-on image of all four fingers. Three independent observers analysed the images using Adobe Photoshop software. The rotational angle of each finger was defined as the angle created by a straight line connecting the radial and ulnar border of the nail plate and the bench top horizon.

The three observers showed Inter-Rater Reliability of 92%. The mean angles of rotation were: Index 13°, Middle 10°, Ring 5°, Little 12°. The differences in angle of rotation of the index and middle finger between the left and right hand were statistically significant (p=0.003, and p=0.002 respectively), demonstrating asymmetry between the two sides. The differences in angle of rotation of the ring and little finger of the left and right hand were not significantly significant (p= 0.312 and p=0.716 respectively).

In conclusion, symmetry was seen in the little and ring but not in the index and middle fingers. Digital image analysis provides a non-invasive and reproducible method of quantifying the rotation of normal fingers and may be of use as a diagnostic tool in the assessment and management of hand injuries.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 463 - 463
1 Nov 2011
Walker D Cleppe H Sahajpal D Wright T Banks S
Full Access

Reverse shoulder arthroplasty (RSA) is increasingly utilized to restore shoulder function in patients with osteoarthritis and rotator cuff deficiency. There is currently little known about shoulder function after RSA or if differences in surgical technique or implant design affect shoulder performance. The purpose of this study was to quantify scapulohumeral rhythm in patients with RSA during loaded and unloaded shoulder abduction.

Eleven patients with RSA performed shoulder abduction (elevation and lowering) with and without a handheld 3kg weight during fluoroscopic imaging. Three RSA designs were included. We used model-image registration techniques to determine the 3D position and orientation of the implants. Cubic curves were fit to the humeral elevation as a function of the scapular elevation over the entire motion. The slope of this curve was used to determine the scapulohumeral rhythm (SHR).

For abduction above 40°, shoulders with RSA exhibited an average SHR of 1.5:1.

There was no significant difference in SHR between shoulder abduction with and without 3kg handheld weights (1.6±0.2 unweighted vs. 1.4±0.1 weighted), nor was there a significant difference between elevation and lowering. SHR was highly variable for abduction less than 40°, with SHR ranging from a low of 1 to greater than 10. For these very small groups, there was no apparent pattern of differences between implant designs having differing degrees of lateral offset.

At arm elevation angles less than 40°, SHR in RSA shoulders is highly variable and the mean SHR (2–5) with RSA appears higher than SHR in normal shoulders (2–3).

At higher elevation angles, SHR in shoulders with RSA (1.5–1.8) is much more consistent and appears lower than SHR in normal shoulders (2–4). With the small subject cohort, it was not possible to demonstrate differences between subjects with different implant designs. Ongoing analysis of reverse shoulder function with larger cohort sizes will allow us to refine our observations and determine if there are differences in shoulder function due to implant design, preoperative condition and rehabilitation protocols.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 514 - 515
1 Oct 2010
Fraitzl C Buly R Castellani L Moya L Wright T
Full Access

Introduction: The S-ROM® modular hip system (DePuy, Warsaw, IN) has a cementless femoral component made of titanium alloy with a distally fluted and slotted stem. The stem mates with a sleeve that is implanted in the proximal femur. No reports exist in the literature of intraoperative difficulties in disengaging the sleeve-stem interface. Induced by the impossibility of intraop-eratively disconnecting the sleeve-stem interface in one patient leading to unintended revision of a well-fixed sleeve, we asked whether in vivo evidence for fretting or mechanically-assisted crevice corrosion of the mating surfaces could be found in retrieved components and whether its appearance is influenced by factors such as length of implantation.

Methods: The sleeve-stem combinations were retrieved from 1998 to 2008 as part of our IRB-approved implant retrieval system. Twenty-two sleeve-stem interfaces of S-ROM® femoral components were located in our retrieval collection. Seven sleeve-stem combinations were still mated when retrieved; 2 were disengaged by hammering the sleeve away from the stem, the remaining 5 had to be cut longitudinally with a diamond saw to disengage the sleeve from the stem. All disengaged sleeves were also cut to expose their inner surfaces. The surfaces of the taper region and the corresponding inner surfaces of the split sleeves were inspected macroscopically and assigned to the following groups: severe corrosion; moderate surface changes; and few or no evidence of surface changes. Microscopic examination was used to grade fretting and corrosion using an established subjective scale (Goldberg et al., 2002). The surface of the taper and the sleeve was divided into 12 regions each and every region was evaluated separately. The mean score of all 24 regions was calculated and opposed to the implantation time of the respective femoral component. Statistical analysis of correlation between the mean score and implantation length was performed using the Pearson product moment correlation. Additionally, the surface of the taper regions of 6 specimens underwent detailed analysis with SEM and EDAX.

Results: In 3 of 22 sleeve-stem interfaces severe corrosion accounting for at least 80% of the surface area was detected. Furthermore, ten sleeve-stem interfaces showed moderate surface changes. Nine sleeve-stem interfaces showed few or no surface changes. There was no correlation between presence of corrosion and implantation length (r=0.13; p=0.56).

Conclusion: In 3 of 22 retrieved sleeve-stem interfaces severe corrosion was found at the stem-sleeve interface. Though apparently not the rule, failure to disengage the stem from the sleeve undermines an important advantage of this type of modularity in total hip replacement and suggests that alternative procedures should be anticipated when planning for revision surgery of such (or a similar) modular femoral component.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 78 - 78
1 Mar 2010
Willie B Yang X Kelly N Wright T van der Meulen M Bostrom M
Full Access

The influence of controlled mechanical loading on osseointegration was investigated using an in vivo device implanted in the distal lateral femur of five male rabbits. Compressive loads (1 MPa, 1 Hz, 50 cycles/day, 4 weeks) were applied to a porous coated titanium cylindrical implant (5mm diameter, 2mm width, 75% porosity, 350ìm average pore diameter) and the underlying cancellous bone.. The contralateral limb served as an unloaded control. MicroCT scans at 28 μm resolution were taken of a 4 × 4mm cylindrical region of interest that included cancellous bone below the implant. A scanning electron microscope with a backscattered electron (BSE) detector was used to quantify the percent bone ingrowth and periprosthetic bone in undecalcified sections through the same region of interest. A mixed effects model was used to account for the correlation of the outcome measures within rabbits.. The percent bone ingrowth was significantly greater in the loaded limb (19 +/− 4%) compared to the unloaded control limb (16 +/− 4%, p=0.016) as measured by BSE imaging. The underlying cancellous periprosthetic tissue bone volume fraction was not different between the loaded (0.26 +/− 0.06) and unloaded control limb (0.27 +/− 0.07, p=0.81) by microCT. BSE imaging also showed no difference in the percent area of periprosthetic bone (27 +/− 10% loaded vs. 23 +/− 10% unloaded, p=0.25). Cyclic mechanical loading significantly enhanced bone ingrowth into a titanium porous coated surface compared to the unloaded controls.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 350 - 350
1 Sep 2005
Walter W Walter W Wright T Clabeaux J Sculco T Charriere E
Full Access

Introduction and Aims: Retroacetabular osteolysis is a common cause of failure of hip replacements. Polyethylene wear particles from the joint are often present in osteolytic lesions. We investigate three theories that describe how fluid and debris could be pumped from the joint space through the holes in the shell to the retroacetabular bone.

Method: We report three experiments that investigate this question. We performed an in vivo study where we measured pressures in the hip joint and in the osteolytic lesion while cyclically loading the hip in 10 patients. We performed a series of biomechanical studies, where we model diaphragm pumping and piston pumping of the polyethylene liner within the metal shell in the laboratory. We also carried out a finite element analysis showing how loading of the hip affects the size of an osteolytic lesion and the pressure of fluid within an osteolytic lesion.

Results: In the in vivo study, loading of the hip produced a pressure increase in each of the four contained osteolytic lesions (mean 68mmHg), but not in the six uncontained osteolytic lesions. This pressure rise was independent of hip joint pressure, demonstrating that there is a pumping mechanism in the artificial hip joint that is independent of hip joint pressure. In the diaphragm pumping experiment, the pressure produced by the non-congruent liners (4030 ±1250mmHg) was six times the pressure produced by the congruent liners (670 ±240mmHg). In the piston pumping experiment, the pressure produced by the pistoning liners (5140 ±330mmHg) was eight times the pressure produced without pistoning (650 ±300mmHg). FEA demonstrates that loading of the hip may reduce the volume and, therefore, increase pressure in a contained osteolytic lesion.

Conclusion: The prosthetic hip contains a complex system of pumps transporting fluid and particles and generating pressures. The importance of each pumping mechanism varies with patient activity and with implant design features. These pumping mechanisms may contribute to the pathogenesis of osteolysis.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_I | Pages 15 - 15
1 Jan 2004
Wright T Maher S Furman B
Full Access

Improving the wear resistance of polyethylene is considered paramount to improving knee implant longevity. Consequently, a range of polymer fabrication techniques have evolved in the quest for a highly wear resistant material. The objective of this study was to explore the wear performance of polyethylene as fabricated in a variety of ways.

The following materials were prepared, sterilised, artificially aged, and machined into wear specimens (n = 4 for each material): Compression molded GUR1050 with three levels of cross-linking (120 kGy, 65 kGy, and 0 kGy irradiation – control); ram extruded GUR4150 high modulus material; compression molded GUR4150 low modulus material; and HSS/PolySolidur/Hoechst reference polyethylene. Using a custom designed joint articular wear simulator, samples were loaded for 2 million cycles at a frequency of 0.5 Hz under loads of 2.1 kN. Tests were stopped every 250 000 cycles; and wear surfaces were examined microscopically for surface damage (pitting, cracking, delamination).

After 2 million loading cycles the following specimens were pitted and delaminated: 2 GUR1050 control samples, 3 GUR4150 high modulus specimens, and all 4 reference polyethylene specimens. Burnishing, but no pitting, was seen in all GUR1050 elevated cross-linked polyethylene specimens, and in all GUR4150 low modulus specimens.

The materials tested in this study represent a broad range of fabrication techniques. Differences in starting resin cannot fully account for the differences in wear behaviour seen between the groups; as damage was not limited to one resin group. The cross-linked specimens were melt-annealed, prior to cross-linking. It is possible that this processing step, and not the actual cross-linking, contributed to the improved wear performance of this group. However, of most interest is the comparable wear performance of GUR1050 cross-linked polyethylene and GUR4150 low modulus polyethylene suggesting that cross-linking polyethylene is not the only route towards obtaining a polyethylene with superior wear characteristics.


The Journal of Bone & Joint Surgery British Volume
Vol. 75-B, Issue 5 | Pages 804 - 807
1 Sep 1993
Wright T Miller G Vander Griend R Wheeler D Dell P

Nine patients with nonunited humeral shaft fractures were treated by open reduction and internal fixation with an intramedullary fibular bone graft and a compression plate. Fixation of the screws was enhanced by passing them through the fibula as well as the two humeral cortices (quadricortical fixation). Eight of the nine fractures united at an average of 3.5 months. Tests on cadaver bones showed that quadricortical fixation was as strong as methylmethacrylate augmentation and significantly better than bicortical fixation.