header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

CONSTRAINT PROFILE AND POLYETHYLENE STRESSES OF THREE MODERN TOTAL ELBOW ARTHROPLASTIES

International Society for Technology in Arthroplasty (ISTA) meeting, 32nd Annual Congress, Toronto, Canada, October 2019. Part 1 of 2.



Abstract

Introduction

The interaction between the mobile components of total elbow replacements (TER) provides additional constraint to the elbow motion. Semi-constrained TER depend on a mechanical linkage to avoid dislocation and have greater constraint than unconstrained TER that rely primarily in soft tissue for joint stability. Greater constraint increases the load transfer to the implant interfaces and the stresses in the polyethylene components. Both of these phenomena are detrimental to the longevity of TER, as they may result in implant loosening and increased damage to the polyethylene components, respectively[1]. The objective of this work was to compare the constraint profile in varus-valgus and internal-external rotation and the polyethylene stresses under loads from a common daily activity between two semi-constrained TER, Coonrad/Morrey (Zimmer-Biomet) and Discovery® (DJO), and an unconstrained TER, TEMA (LimaCorporate).

Methods

We developed finite element (FE) models of the three TER mechanisms. To reduce computational cost, we did not include the humeral and ulnar stems. Materials were linear-elastic for the metallic components (ETi6Al4V=114.3 GPa, ECoCr=210 GPa, v=0.33) and linear elastic-plastic for the polyethylene components (E=618 MPa, v=0.46; SY=22 MPa; SU=230.6 MPa; εU=1.5 mm/mm). The models were meshed with linear tetrahedral elements of sizes 0.4–0.6 mm. We assumed a friction coefficient of 0.02 between metal and polyethylene. In all simulations, the ulnar component was fixed and the humeral component loaded. We computed the constraint profiles in full extension by simulating each mechanism from 8° varus to 8° valgus and from 8° internal to 8° external rotation. All other degrees-of-freedom except for flexion extension were unconstrained. Then, we identified the instant during feeding that generated the highest moments at the elbow[2], and we applied the joint forces and moments to each TER to evaluate the stresses in the polyethylene. To validate the FE results, we experimentally evaluated the constraint of the design with highest polyethylene stresses in pure internal-external rotation and compared the results against those from a FE model that reproduced the experimental setup (Fig.1-a).

Results

For each design, the constraint profiles in varus-valgus (Fig.2-a) were similar to internal-external rotation (Fig.2-b). All designs showed a lax zone in which the mechanisms rotated freely and an engagement zone in which the mobile components contacted, resulting in load transfer. The laxity of the Coonrad/Morrey and the Discovery® was similar and lower than that of the TEMA. After engagement, the stiffness of the TEMA was less than that of the Discovery® and the Coonrad/Morrey. The TEMA showed the lowest polyethylene stresses of all three designs under demanding loads during feeding. Only Discovery® and Coonrad/Morrey had zones reaching permanent deformation (Fig.3). For the Coonrad/Morrey, with the highest polyethylene stresses, the experimental and computational constraint profiles were similar (Fig.1-b).

Discussion

The TEMA unconstrained design transferred less moment than semi-constrained designs, reducing the burden on the implant interfaces. Moreover, the TEMA design had lower stresses in the polyethylene components due to the combination of less constraint and a lack of sharp edges on the articular surfaces.

For any figures or tables, please contact the authors directly.