header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

HOW SENSITIVE IS DELTOID PERFORMANCE TO JOINT CENTRE AND HUMERAL OFFSET CHANGES WITH REVERSE TOTAL SHOULDER ARTHROPLASTY?

The International Society for Technology in Arthroplasty (ISTA), 30th Annual Congress, Seoul, South Korea, September 2017. Part 1 of 2.



Abstract

Reverse Total shoulder arthroplasty (RTSA) has become an increasingly used solution to treat osteoarthritis and cuff tear arthropathy. Though successful there are still 10 to 65% complication rates reported for RTSA. Complication rates range over different reverse shoulder designs but a clear understanding of implant design parameters that cause complications is still lacking within the literature. In efforts to reduce complication rates (Implant fixation, range of motion, joint stiffness, and fracture) and improve clinical/functional outcomes having to do with proper muscle performance we have employed a computational approach to assess the sensitivity of muscle performance to changes in RTSA implant geometry and surgical placement. The goal of this study was to assess how changes in RTSA joint configuration affect deltoid performance.

An approach was developed from previous work to predict a patient's muscle performance. This approach was automated to assess changes in muscle performance over 1521 joint configurations for an RTSA subject. Patient-specific muscle moment arms, muscle lengths, muscle velocities, and muscle parameters served as inputs into the muscle prediction scheme. We systematically varied joint center locations over 1521 different perturbations from the in vivo measured surgical placement to determine muscle normalized operating region for the anterior, lateral and posterior aspects of the deltoid muscle. The joint center was varied according to previous published work from the RTSA subject's nominal surgical position ±4 mm in the anterior/posterior direction, ±12mm in the medial/lateral direction, and −10 mm to 14 mm in the superior/inferior direction (Walker 2015 et al. Table 2).

Overall muscle normalized operating length varied over 1521 different implant configurations for the RTSA subject. Ideal muscle normalized operating length variations were found to be in all the fundamental directions that the joint was varied. The anterior deltoid normalized operating length was found to be most sensitive with joint configurations changes in the anterior/posterior medial/lateral direction. It lateral deltoid normalized operating length was found to be most sensitive with joint configurations changes in the medial/lateral direction. It posterior deltoid normalized operating length was found to be most sensitive with joint configurations changes in the medial/lateral direction. Reserve actuation for all samples remained below 1 Nm. The most optimal deltoid normalized operating length was implemented by changing the joint configuration in the superior/inferior and medial/lateral directions.

Current shoulder models focus on predicting muscle moment arms. Although valuable it does not allow me for active understanding of how lengthening the muscle will affect its ability to generate force. Our study provides an understanding of how muscle lengthening will affect the force generating capacity of each of the heads of the deltoid. With this information improvements can be made to the surgical placement and design of RTSA to improve functional/clinical outcomes while minimizing complications.

For any figures or tables, please contact the authors directly.


Email: