header advert
Results 1 - 81 of 81
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 118 - 118
2 Jan 2024
Stroobant L Verstraete M Onsem S Victor J Chevalier A
Full Access

Numerous papers present in-vivo knee kinematics data following total knee arthroplasty (TKA) from fluoroscopic testing. Comparing data is challenging given the large number of factors that potentially affect the reported kinematics. This paper aims at understanding the effect of following three different factors: implant geometry, performed activity and analysis method.

A total of 30 patients who underwent TKA were included in this study. This group was subdivided in three equal groups: each group receiving a different type of posterior stabilized total knee prosthesis. During single-plane fluoroscopic analysis, each patient performed three activities: open chain flexion extension, closed chain squatting and chair-rising. The 2D fluoroscopic data were subsequently converted to 3D implant positions and used to evaluate the tibiofemoral contact points and landmark-based kinematic parameters.

Significantly different anteroposterior translations and internal-external rotations were observed between the considered implants. In the lateral compartment, these differences only appeared after post-cam engagement. Comparing the activities, a significant more posterior position was observed for both the medial and lateral compartment in the closed chain activities during mid-flexion. A strong and significant correlation was found between the contact-points and landmarks-based analyses method. However, large individual variations were also observed, yielding a difference of up to 25% in anteroposterior position between both methods.

In conclusion, all three evaluated factors significantly affect the obtained tibiofemoral kinematics. The individual implant design significantly affects the anteroposterior tibiofemoral position, internal-external rotation and timing of post-cam engagement. Both kinematics and post-cam engagement additionally depend on the activity investigated, with a more posterior position and associated higher patella lever arm for the closed chain activities. Attention should also be paid to the considered analysis method and associated kinematics definition: analyzing the tibiofemoral contact points potentially yields significantly different results compared to a landmark-based approach.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 50 - 50
2 Jan 2024
Van Oevelen A Duquesne K Peiffer M Victor J Audenaert E
Full Access

Intra-articular cartilage pressure distribution in the knee joint is critical in the understanding of osteoarthritis. Combining personalized statistical modeling of the morphological characteristics with discrete element modeling enables patient-specific predictions of the pressure on the tibial plateau. However, modeling of the meniscus during gait is complicated by the dynamic nature of the structure. Nevertheless, the position of the meniscus has a substantial impact on intra-articular stress distribution. Therefore, the focus of this presentation will be on how modeling of meniscal movement during knee flexion improves insight in general meniscal kinematics for the use in tibiofemoral stress distribution calculations.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 55 - 55
2 Jan 2024
Stroobant L Jacobs E Arnout N Van Onsem S Burssens A Victor J
Full Access

7–20 % of the patients with a total knee arthroplasty (TKA) are dissatisfied without an indication for revision. Therapeutic options for this patient population with mostly a lack of quadriceps strength are limited. The purpose of this study is to evaluate the effect of six weeks low load resistance training with blood flow restriction (BFR) on the clinical outcome in these unhappy TKA patients.

Thirty-one unhappy TKA patients (of the scheduled fifty patients) without mechanical failure were included in this prospective study since 2022. The patients participate in a supervised resistance training combined with BFR, two times a week during nine weeks. Patients were evaluated by the Knee Osteoarthritis Outcome Score (KOOS), Knee Society Score: satisfaction (KSSs) and the Pain Catastrophizing Scale (PCS). Functionality was tested using the Six Minute Walk Test (6MWT) and the 30-Second Chair Stand Test (30CST). Follow-up took place at six weeks, three months and six months after the start.

Six weeks training with BFR provided statistically significant improvements in all the KOOS subscales compared to the baseline, especially for symptoms (55.1 (±15.4) versus 48.0 (±16.5); p<0.001), activities in daily living (50.3 (±21.1) versus 43.7 (±17.2); p<0.00) and quality of life (24.6 (±18.5) versus 17.3 (±13.0); p<0.001). The PCS reduced from 27.4 (±11.0) to 23.2 (±11.4) at six weeks (p<0.01), whereas the KSSs increased from 11.8 (±6.5) to 14.9 (±7.6) (p=0.021). Both the 6MWT and the 30CST improved statistically significant from respectively 319.7 (±15.0) to 341.6m (±106.5) (p<0.01) and 8.6 (±3.9) to 9.3 times (±4.5) (p<0.01).

Blood flow restriction appears to enhance the quality of life and functional performance of unhappy TKA patients. Based on these preliminary results, BFR seems to be a promising and valuable alternative for these TKA patients with limited therapeutic options.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 12 - 12
17 Apr 2023
Van Oevelen A Burssens A Krähenbühl N Barg A Audenaert E Hintermann B Victor J
Full Access

Several emerging reports suggest an important involvement of the hindfoot alignment in the outcome of knee osteotomy. At present, studies lack a comprehensive overview. Therefore, we aimed to systematically review all biomechanical and clinical studies investigating the role of the hindfoot alignment in the setting of osteotomies around the knee.

A systematic literature search was conducted on multiple databases combining “knee osteotomy” and “hindfoot/ankle alignment” search terms. Articles were screened and included according to the PRISMA guidelines. A quality assessment was conducted using the Quality Appraisal for Cadaveric Studies (QUACS) - and modified methodologic index for non-randomized studies (MINORS) scales.

Three cadaveric, fourteen retrospective cohort and two case-control studies were eligible for review. Biomechanical hindfoot characteristics were positively affected (n=4), except in rigid subtalar joint (n=1) or talar tilt (n=1) deformity. Patient symptoms and/or radiographic alignment at the level of the hindfoot did also improve after knee osteotomy (n=13), except in case of a small pre-operative lateral distal tibia- and hip knee ankle (HKA) angulation or in case of a large HKA correction (>14.5°). Additionally, a pre-existent hindfoot deformity (>15.9°) was associated with undercorrection of lower limb alignment following knee osteotomy. The mean QUACS score was 61.3% (range: 46–69%) and mean MINORS score was 9.2 out of 16 (range 6–12) for non-comparative and 16.5 out of 24 (range 15–18) for comparative studies.

Osteotomies performed to correct knee deformity have also an impact on biomechanical and clinical outcomes of the hindfoot. In general, these are reported to be beneficial, but several parameters were identified that are associated with newly onset – or deterioration of hindfoot symptoms following knee osteotomy. Further prospective studies are warranted to assess how diagnostic and therapeutic algorithms based on the identified criteria could be implemented to optimize the overall outcome of knee osteotomy.

Remark: Aline Van Oevelen and Arne Burssens contributed equally to this work


Bone & Joint Research
Vol. 12, Issue 4 | Pages 285 - 293
17 Apr 2023
Chevalier A Vermue H Pringels L Herregodts S Duquesne K Victor J Loccufier M

Aims

The goal was to evaluate tibiofemoral knee joint kinematics during stair descent, by simulating the full stair descent motion in vitro. The knee joint kinematics were evaluated for two types of knee implants: bi-cruciate retaining and bi-cruciate stabilized. It was hypothesized that the bi-cruciate retaining implant better approximates native kinematics.

Methods

The in vitro study included 20 specimens which were tested during a full stair descent with physiological muscle forces in a dynamic knee rig. Laxity envelopes were measured by applying external loading conditions in varus/valgus and internal/external direction.


The Bone & Joint Journal
Vol. 105-B, Issue 2 | Pages 101 - 101
1 Feb 2023
MacDessi SJ Oussedik S Abdel MP Victor J Pagnano MW Haddad FS


The Bone & Joint Journal
Vol. 105-B, Issue 2 | Pages 102 - 108
1 Feb 2023
MacDessi SJ Oussedik S Abdel MP Victor J Pagnano MW Haddad FS

Orthopaedic surgeons are currently faced with an overwhelming number of choices surrounding total knee arthroplasty (TKA), not only with the latest technologies and prostheses, but also fundamental decisions on alignment philosophies. From ‘mechanical’ to ‘adjusted mechanical’ to ‘restricted kinematic’ to ‘unrestricted kinematic’ — and how constitutional alignment relates to these — there is potential for ambiguity when thinking about and discussing such concepts. This annotation summarizes the various alignment strategies currently employed in TKA. It provides a clear framework and consistent language that will assist surgeons to compare confidently and contrast the concepts, while also discussing the latest opinions about alignment in TKA. Finally, it provides suggestions for applying consistent nomenclature to future research, especially as we explore the implications of 3D alignment patterns on patient outcomes.

Cite this article: Bone Joint J 2023;105-B(2):102–108.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_9 | Pages 7 - 7
1 Jun 2021
Herregodts S Verhaeghe M Gijsels S Herregodts J De Baets P Victor J
Full Access

Introduction

Robot systems have been successfully introduced to improve the accuracy and reduce severe iatrogenic soft tissue damage in knee arthroplasty. Unfortunately to perform complete a complete bone cut, the cutting tool has to slightly pass the edge of the bone. In the posterior zones were retractor protection is impossible this will lead to contact between the cutting tool and the soft tissue envelope. Therefore, complete soft tissue preservation cannot be guaranteed with the current commercial systems.

Methods

This study presents an alternative robotic controlled cutting technique to perform the bone resections during TKA by milling a slot with a long slender high-speed milling tool. The system is composed by a long milling tool driven by a high-speed motor and a protector covering the end of the cutter. The protector is rigidly connected to the motor by the support structure next to the mill, which moves behind the mill in the slot created by the cutter. The protector at the end of the cutter has four functions: providing mechanical support for the mill, preventing soft tissue to come into contact with the cutter, sensing the edge of the bone to accurately follow the shape of the bone and releasing the attached soft tissue. The edge of the bone is sensed by force feedback and with the help of a probing motion the adaptive algorithm enables the protector to follow the edge of the bone closely by compensating for small segmentation and registration errors. A pilot test to evaluate the concept was performed on three fresh frozen knees. The flatness of the resection, the iatrogenic soft tissue damage, the cutting time and the efficiency of the bone contour following algorithm was measured.


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 87 - 97
1 Jan 2021
Burssens A De Roos D Barg A Welck MJ Krähenbühl N Saltzman CL Victor J

Aims

Patients with a deformity of the hindfoot present a particular challenge when performing total knee arthroplasty (TKA). The literature contains little information about the relationship between TKA and hindfoot alignment. This systematic review aimed to determine from both clinical and radiological studies whether TKA would alter a preoperative hindfoot deformity and whether the outcome of TKA is affected by the presence of a postoperative hindfoot deformity.

Methods

A systematic literature search was performed in the databases PubMed, EMBASE, Cochrane Library, and Web of Science. Search terms consisted of “total knee arthroplasty/replacement” combined with “hindfoot/ankle alignment”. Inclusion criteria were all English language studies analyzing the association between TKA and the alignment of the hindfoot, including the clinical or radiological outcomes. Exclusion criteria consisted of TKA performed with a concomitant extra-articular osteotomy and case reports or expert opinions. An assessment of quality was conducted using the modified Methodological Index for Non-Randomized Studies (MINORS). The review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines and registered in the PROSPERO database (CRD42019106980).


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1324 - 1330
3 Oct 2020
Herregodts S Verhaeghe M Paridaens R Herregodts J Vermue H Arnout N De Baets P Victor J

Aims

Inadvertent soft tissue damage caused by the oscillating saw during total knee arthroplasty (TKA) occurs when the sawblade passes beyond the bony boundaries into the soft tissue. The primary objective of this study is to assess the risk of inadvertent soft tissue damage during jig-based TKA by evaluating the excursion of the oscillating saw past the bony boundaries. The second objective is the investigation of the relation between this excursion and the surgeon’s experience level.

Methods

A conventional jig-based TKA procedure with medial parapatellar approach was performed on 12 cadaveric knees by three experienced surgeons and three residents. During the proximal tibial resection, the motion of the oscillating saw with respect to the tibia was recorded. The distance of the outer point of this cutting portion to the edge of the bone was defined as the excursion of the oscillating saw. The excursion of the sawblade was evaluated in six zones containing the following structures: medial collateral ligament (MCL), posteromedial corner (PMC), iliotibial band (ITB), lateral collateral ligament (LCL), popliteus tendon (PopT), and neurovascular bundle (NVB).


The Bone & Joint Journal
Vol. 102-B, Issue 4 | Pages 407 - 413
1 Apr 2020
Vermue H Lambrechts J Tampere T Arnout N Auvinet E Victor J

The application of robotics in the operating theatre for knee arthroplasty remains controversial. As with all new technology, the introduction of new systems might be associated with a learning curve. However, guidelines on how to assess the introduction of robotics in the operating theatre are lacking. This systematic review aims to evaluate the current evidence on the learning curve of robot-assisted knee arthroplasty. An extensive literature search of PubMed, Medline, Embase, Web of Science, and Cochrane Library was conducted. Randomized controlled trials, comparative studies, and cohort studies were included. Outcomes assessed included: time required for surgery, stress levels of the surgical team, complications in regard to surgical experience level or time needed for surgery, size prediction of preoperative templating, and alignment according to the number of knee arthroplasties performed. A total of 11 studies met the inclusion criteria. Most were of medium to low quality. The operating time of robot-assisted total knee arthroplasty (TKA) and unicompartmental knee arthroplasty (UKA) is associated with a learning curve of between six to 20 cases and six to 36 cases respectively. Surgical team stress levels show a learning curve of seven cases in TKA and six cases for UKA. Experience with the robotic systems did not influence implant positioning, preoperative planning, and postoperative complications. Robot-assisted TKA and UKA is associated with a learning curve regarding operating time and surgical team stress levels. Future evaluation of robotics in the operating theatre should include detailed measurement of the various aspects of the total operating time, including total robotic time and time needed for preoperative planning. The prior experience of the surgical team should also be evaluated and reported.

Cite this article: Bone Joint J 2020;102-B(4):407–413.


The Bone & Joint Journal
Vol. 102-B, Issue 3 | Pages 276 - 279
1 Mar 2020
Oussedik S Abdel MP Victor J Pagnano MW Haddad FS

Dissatisfaction following total knee arthroplasty is a well-documented phenomenon. Although many factors have been implicated, including modifiable and nonmodifiable patient factors, emphasis over the past decade has been on implant alignment and stability as both a cause of, and a solution to, this problem. Several alignment targets have evolved with a proliferation of techniques following the introduction of computer and robotic-assisted surgery. Mechanical alignment targets may achieve mechanically-sound alignment while ignoring the soft tissue envelope; kinematic alignment respects the soft tissue envelope while ignoring the mechanical environment. Functional alignment is proposed as a hybrid technique to allow mechanically-sound, soft tissue-friendly alignment targets to be identified and achieved.

Cite this article: Bone Joint J 2020;102-B(3):276–279.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 53 - 53
1 Apr 2019
Van Onsem S Verstraete M Verrewaere D Van Der Straeten C Victor J
Full Access

Background

Under- or oversizing of either component of a total knee implant can lead to early component loosening, instability, soft tissue irritation or overstuffing of joint gaps. All of these complications may cause postoperative persistent pain or stiffness. While survival of primary TKA's is excellent, recent studies show that patient satisfaction is worse. Up to 20% of the patients are not satisfied with the outcome as and residual pain is still a frequent occurrence.

The goal of this study was therefore to evaluate if the sizing of the femoral component, as measured on a 3D-reconstructed projection, is related to patient reported outcome measures.

From our prospectively collected TKA outcome database, all patients with a preoperative CT and a postoperative X-ray of their operated knee were included in this study. Of these 43 patients, 26 (60,5%) were women and 17 (39,5%) were men. The mean age (+/−SD) was 74,6 +/− 9 years.

Methods

CT scans were acquired. All patients underwent TKA surgery in a single institution by one surgical team using the same bi- cruciate substituting total knee (Journey II BCS, Smith&Nephew, Memphis, USA). Using a recently released X-ray module in Mimics (Materialise NV, Leuven, Belgium), this module allows to align the post-operative bi-planar x-rays with the 3D- reconstructed pre-operative distal femur and to determine the 3D position of the bone and implant models using the CAD- file of the implant. This new technique was validated at our department and was found to have a sub-degree, sub-millimeter accuracy. Eleven zones of interest were defined. On the medial and the lateral condyle, the extension, mid-flexion and deep flexion facet were determined. Corresponding trochlear zones were defined and two zones were defined to evaluate the mediolateral width. In order to compare different sizes, elastic deforming mesh matching algorithms were implemented to transfer the selected surfaces from one implant to another. The orthogonal distances from the implant to the nearest bone were calculated. Positive values represent a protruding (oversized) femoral component, negative values an undersized femoral component. The figure shows the marked zones on the femoral implant. The KOOS subscores and KSS Satisfaction subscore were evaluated.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 55 - 55
1 Apr 2019
Van Onsem S Verstraete M Van Der Straeten C Victor J
Full Access

Background

Kinematic patterns in total knee arthroplasty (TKA) can vary considerably from the native knee. No study has shown a relation between a given kinematic pattern and patient satisfaction yet.

Questions

The purpose of this study was to test whether the kinematical pattern, and more specifically the anteroposterior translation during (1) open kinetic chain flexion-extension, (2) closed kinetic chain chair rising and (3) squatting, is related to the level of patient satisfaction after TKA.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 14 - 14
1 Nov 2018
Demey P Vluggen E Burssens A Leenders T Buedts K Victor J
Full Access

Hindfoot disorders are complex 3D deformities. Current literature has assessed their influence on the full leg alignment, but the superposition of the hindfoot on plain radiographs resulted in different measurement errors. Therefore, the aim of this study is to assess the hindfoot alignment on Weight-Bearing CT (WBCT) and its influence on the radiographic Hip-Knee-Ankle (HKA) angle. A retrospective analysis was performed on a study population of 109 patients (mean age of 53 years ± 14,49) with a varus or valgus hindfoot deformity. The hindfoot angle (HA) was measured on the WBCT while the HKA angle, and the anatomical tibia axis angle towards the vertical (TAX) were analysed on the Full Leg radiographs. The mean HA in the valgus hindfoot group was 9,19°±7.94, in the varus hindfoot group −7,29°±6.09. The mean TAX was 3,32°±2.17 in the group with a valgus hindfoot and 1,89°±2.63 in the group with a varus hindfoot, which showed to be statistically different (p<0.05). The mean HKA Angle was −1,35°±2.73 in the valgus hindfoot group and 0,4°±2.89 in the varus hindfoot group, which showed to be statistically different (p<0.05). This study demonstrates a higher varus in both the HKA and TAX in valgus hindfoot and a higher tibia valgus in varus hindfoot. This contradicts the previous assumption that a varus hindfoot is associated with a varus knee or vice versa. In clinical practice, these findings contribute to a better understanding of deformity corrections of both the hindfoot and the knee.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 15 - 15
1 Nov 2018
Van Oevelen A van Ovost E E De Mits S Bodere I Leenders T Clockaerts S Victor J Burssens A
Full Access

An adult acquired flatfoot deformity (AAFD) is a complex 3D deformity. Surgical correction consists of a medial calcaneal osteotomy (MCO) but shows limitations due to the current 2D assessment. Therefore, the aim is to determine the influence of an MCO on the longitudinal foot arch assessed by 2D and 3D weightbearing CT (WBCT). Seventeen patients with a mean age of 44,5 years (range 18–66 yrs) were retrospectively included. MCO was indicated in a stage II AAFD (N=15) and a post-traumatic valgus deformity (N=2). Pre- and post-operative imaging was obtained from a WBCT. The height of the longitudinal foot arch was measured as the distance from the navicular tuberositas to the floor (Navicular Height, NH) on 2D CT images (NH2D) and computed on 3D CT data (NH3D). Additionally, 3D assessment could compute the degree of exorotation (α) of the navicular bone towards the vertical axis. The mean pre-operative NH2D and NH3D were respectively 29.57mm ± 7.59 and 28.34mm ± 6.51. These showed to be statistically different from the mean post-operative NH2D and NH3D, respectively 31.62mm ± 6.69 and 31.67mm ± 6.47 (p < 0,001). A statistical difference was also found when comparing the mean degree of exorotation in pre- and post-operative, respectively: αpre=14.08° ± 4,92 and the αpost=19,88° ± 3.50 (p < 0,001). This study demonstrates a significant correction of the longitudinal foot arch after a MCO. The novelty is attributed to the accurate degree of rotation assessment using WBCT. This information could be assistive to optimise a pre-operative planning.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 4 - 4
1 Nov 2018
De Roos D Van den Bossche T Burssens A Victor J
Full Access

Patients with a hindfoot deformity impose a particular challenge when performing a total knee arthroplasty (TKA). This could be attributed to the lack of insights concerning the outcome towards the hindfoot alignment. Our objective was to perform a systematic review of the literature to investigate the influence of TKA on hindfoot alignment and vice-versa. In accordance with the Methodological Index For Non-Randomized Studies (MINORS) statement standards, we performed a systematic review. Electronic databases Pubmed, EMBASE, Web of Science, Google Scholar and Cochrane Library were searched to identify capable studies studying the influence between TKA and hindfoot malalignment. We indentified four prospective cohort studies, seven retrospective cohort studies and one case-control study. All twelve articles addressed the influence of TKA on hindfoot alignment. Seven out of nine studies which noticed an improvement of hindfoot alignment after TKA, found a significant improvement (p<0.05). Aditionally three of these studies reported a significant improvement only in valgus hindfeet (p<0.05). On the topic of hindfoot alignment influencing TKA, we identified two studies. These studies reported an impact of hindfoot alignment on the weightbearing and described that 87% of hindfeet remained in valgus alignment after TKA. Available data suggests that alignment in valgus hindfeet can improve after TKA, though long term results are not present. Contrary to last, improvement of hindfoot alignment is not expected in varus hindfeet. Furthermore hindfoot alignment deformity may cause a reduction of the long term survival of the knee prosthesis and therefore should be taken in to account.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 78 - 78
1 Apr 2018
Peiffer M Burssens A Verstraete M Boey H Clockaerts S Leenders T Victor J
Full Access

Background

A calcaneal medial osteotomy (CMO) is a surgical procedure frequently performed to correct a valgus alignment of the hindfoot. However currently little is known on its accurate influence on hindfoot alignment (HA).

Aim

To assess the influence of a CMO on HA in both 2D and 3D measurements using weightbearing CT (WBCT).


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 47 - 47
1 Dec 2017
Verstraete M Van Onsem S Victor J
Full Access

INTRODUCTION

Thorough understanding and feedback of the post-operative implant position relative to the pre-operative anatomy is missing in today's clinical practice. However, three dimensional insights in the local under or oversizing of the implant can provide important feedback to the surgeon. For the knee for instance, to identify a shift in the sagittal joint line that potentially links to mid-flexion instability or to identify zones at risk for soft tissue impingement.

Despite a proven inferior outcome, clinical post-operative implant evaluation remains primarily based on bi-planar, static 2D x-rays rather than 3D imaging. Along with the cost, a possible reason is the increased radiation dose and/or metal artifact scatter in computed tomography (CT) and/or magnetic resonance imaging (MRI). These detrimental effects are now avoided by using recently released x-ray processing software. This technique uses standard-of-care post-operative x-rays in combination with a pre-operative CT and 3D file of the implant to determine the implant position relative to the pre-operative situation. The accuracy of this new technique is evaluated in this paper using patient cases. Therefore, the obtained implant position is benchmarked against post-operative CT scans.

MATERIALS & METHODS

Retrospectively, 19 patients were selected who underwent total knee arthroplasty and received pre- and post-operative CT of their diseased knee. The CT scans were performed with a pixel size of 0.39 mm and slice spacing of 0.60 mm (Somatom, Siemens, München, Germany). All patients underwent TKA surgery using the same bi-cruciate substituting total knee (Journey II, Smith&Nephew, Memphis, USA). Following surgery, standard bi-planar standing x-rays of the operated knee was additionally performed as standard of care. To evaluate the implant position relative to the pre-operative situation, the 3D implants are first positioned on the post-operative CT slices. Using Mimics (Materialise NV, Leuven, Belgium), the pre-operative bone was subsequently automatically matched onto the post-operative scan to identify the implant location relative to the reconstructed pre-operative bone. This has been independently repeated by three observers to assess the inter-observer variability. Second, the post-operative bi-planar x-rays are combined with the reconstructed pre-operative bone and 3D file of the implant. This combination is performed using the 2D-to-3D conversion integrated in the recently launched X-ray module of Mimics. This module uses a contour based registration method to determine the implant and bone position using the post-operative x-rays. For both reconstruction methods, the implant position has been evaluated in six degrees of freedom using an automated Matlab routine; resulting in three translations and three rotations.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 48 - 48
1 Dec 2017
Verstraete M Arnout N De Baets P Vancouillie T Van Hoof T Victor J
Full Access

INTRODUCTION

To assess and compare the effect of new orthopedic surgical procedures, in vitro evaluation remains critical during the pre-clinical validation. Focusing on reconstruction surgery, the ability to restore normal kinematics and stability is thereby of primary importance. Therefore, several simulators have been developed to study the kinematics and create controlled boundary conditions.

To simultaneously capture the kinematics in six degrees of freedom as outlined by Grood & Suntay, markers are often rigidly connected to the moving bone segments. The position of these markers can subsequently be tracked while their position relative to the bones is determined using computed tomography (CT) of the test specimen with the markers attached. Although this method serves as golden standard, it clearly lacks real-time feedback. Therefore, this paper presents the validation of a newly developed real-time framework to assess knee kinematics at the time of testing.

MATERIALS & METHODS

A total of five cadaveric fresh frozen lower limb specimens have been used to quantitatively assess the difference between the golden standard, CT based, method and the newly developed real-time method. A schematic of the data flow for both methods. Prior to testing, both methods require a CT scan of the full lower limb. During the tests, the proximal femur and distal tibia are necessarily resected to fit the knees in the test setup, thus also removing the anatomical landmarks needed to evaluate their mechanical axis. Subsequently, a set of three passive markers are rigidly attached to the femur and tibia, referred to as M3F and M3T respectively. For the CT based method, the marker positions are captured during the tests and a second CT scan is eventually performed to link the marker positions to the knee anatomy. Using in-house developed software, this allowed to offline evaluate the knee kinematics in six degrees of freedom by combining both CT datasets with the tracked marker positions. For the newly developed real-time method, a calibration procedure is first performed. This calibration aims to link the position of the 3D reconstructed bone and landmarks with the attached markers. A set of bone surface points is therefore registered. These surface points are obtained by tracking the position of a pen while touching the bone surface. The pen's position is thereby tracked by three rigidly attached markers, denoted M3P. The position of the pen tip is subsequently calculated from the known pen geometry. The iterative closest point (ICP) algorithm is then used to match the 3D reconstructed bone to the registered surface points. Two types of 3D reconstructions have therefore been considered. First, the original reconstructions were used, obtained from the CT data. Second, a modified reconstruction was used. This modification accounted for the finite radius (r = 1.0 mm) of the registration pen, by shifting the surface nodes 1.0 mm along the direction of the outer surface normal. During the tests, the positions of the femur and tibia markers are tracked and streamed in real-time to an in-house developed, Matlab based software framework (MathWorks Inc., Natick, Massachussets, USA). This software framework simultaneously calculates the bone positions and knee kinematics in six degrees of freedom, displaying this information to the surgeons and operators. To assess the accuracy, all knee specimens have been subjected to passive flexion-extension movement ranging from 0 to 120 degrees of flexion. For each degree of freedom, the average root mean square (RMS) difference between both measurement methods has been evaluated during this movement. In addition, the distribution of the registered surface points has been assessed along the principal directions of the uniformly meshed 3D reconstructions (average mesh size of 1.0 mm).


The Bone & Joint Journal
Vol. 99-B, Issue 7 | Pages 894 - 903
1 Jul 2017
Bonnin MP Saffarini M Nover L van der Maas J Haeberle C Hannink G Victor J

Aims

The morphometry of the distal femur was largely studied to improve bone-implant fit in total knee arthroplasty (TKA), but little is known about the asymmetry of the posterior condyles. This study aimed to investigate the dimensions of the posterior condyles and the influence of externally rotating the femoral component on potential prosthetic overhang or under-coverage.

Patients and Methods

We analysed the shape of 110 arthritic knees at the time of primary TKA using pre-operative CT scans. The height and width of each condyle were measured at the posterior femoral cut in neutral position, and in 3º and 5º of external rotation, using both central and medial referencing systems. We compared the morphological characteristics with those of 14 TKA models.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 81 - 81
1 May 2017
Bonnin M de Kok A Verstraete M Van Hoof T Van der Straten C Victor J
Full Access

Background

The goal of this study was (1) to investigate the relationships between the bony contours of the knee and the popliteus tendon before and after TKA and (2) to analyse the influence of implant sizing. Our hypothesis was that an apparently well-sized prosthesis, will modify the position or the tracking of popliteus tendon.

Methods

4 fresh frozen cadavers were selected. The popliteus tendon was injected with contrast dye and a CT-scan was performed from full extension to full flexion with increments of 20°. Afterwards a total knee arthroplasty (TKA) was performed. Each cadaver received either a normal-sized, oversized, undersized or mobile bearing prosthesis. After TKA the limb was scanned again using the same protocol as before. 3D-reconstructions were created using Materialise Mimics software. These 3D-models were then imported into custom made Matlab software to measure and compare the deviation of the popliteus tendon before and after TKA.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 34 - 34
1 May 2017
Verstraete M De Coninck S Smis J De Baets P Victor J
Full Access

Background

A new knee simulator has been developed at Ghent University. This simulator provides the unique opportunity of evaluating the knee kinematics during activities of daily living. The simulator therefore controls the position of the ankle in the sagittal plane while keeping the hip at a fixed position. This approach provides full kinematic freedom to the knee. To evaluate and validate the performance of the simulator, the development of and comparison with a numerical simulation model is discussed in this paper.

Methods

Both a two and three dimensional simulation model have been developed using the AnyBody Modelling System (AMS). In the two dimensional model, the knee joint is represented by a hinge. Similarly, the ankle and hip joint are represented by a hinge joint and a variable amplitude quadriceps and hamstrings force is applied. In line with this simulation model, a hinge model was created that could be mounted in the UGent knee simulator to evaluate the performance of the simulated model. The hinge model thereby performs a cyclic motion under varying simulated muscle loads while recording the ankle reaction forces. In addition to the two dimensional model, a three dimensional model has been developed. More specifically, a model is built of a sawbone leg holding a posterior stabilised single radius total knee implant. The physical sawbone model contains simplified medial and lateral collateral ligaments. In line with the boundary conditions of the UGent knee simulator, the simulated hip contains a single rotational degree of freedom and the ankle holds four degrees of freedom (three rotations, single translation). In the simulations, the knee is modelled using the force-dependent kinematics (FDK) method built in the AMS. This leaves the knee with six degrees of freedom that are controlled by the ligament tension in combination with the applied quadriceps load and shape of the implant. The physical sawbone model goes through five cycles in the UGent simulator using while recording the kinematics of the femur and tibia using a set of markers rigidly attached to the femur and tibia bone. The position of the implant with respect to the markers was evaluated by CT-scanning the sawbone model.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 112 - 112
1 Apr 2017
Herregodts S De Baets P Victor J Verstraete M
Full Access

Background

Biomechanical joint contact pressure distribution measurements have proven to be a very valuable tool in orthopaedic research to investigate the influence of surgical techniques such as total knee arthroplasty (TKA) on the human knee joint. Quantification of the in vitro tibiofemoral and patellofemoral contact pressure distribution before and after the intervention are an important measure to evaluate the impact of the surgery. The K scan pressure sensor from Tekscan (South Boston USA) is a commonly reported device for these in vitro pressure measurements. Despite the large interest in the sensor, the effective measurement accuracy for in vitro biomechanical joint contact measurement still remains a big question and therefore the reliability of these measurements should be questioned.

Methods

Reliable contact pressure measurements can only be done if the sensor behaviour is fully understood. Therefore, a tailored multi-axial testing machine has been designed to profoundly investigate and characterise the sensor behaviour. This test setup is unique through its ability to apply a predefined tangential force or sliding velocity to the sensor's interface next to a normal force. Dynamic effects occurring in knee joint motion can thus be simulated while evaluating the effect on the contact pressure measurements.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 111 - 111
1 Apr 2017
Van Onsem S Lambrecht D Verstraete M Van Der Straeten C Victor J
Full Access

Introduction

Better functional outcomes, lower pain and better stability have been reported with knee designs which restore physiological knee kinematics. Also the ability of the TKA design to properly restore the physiological femoral rollback during knee flexion, has shown to be correlated with better restoration of the flexor/extensor mechanism, which is fundamental to the function of the human knee. The purpose of the study is to compare the kinematics of three different TKA designs, by evaluating knee motion during Activities of Daily Living. The second goal is to see if there is a correlation between the TKA kinematics and the patient reported outcomes.

Methods

Ten patients of each design, who are at least 6 months after their Total Knee Replacement, will be included in this study. Seven satisfied and 3 dissatisfied patients will be selected for each design. In this study 5 different movements will be analysed: flexion/extension; Sitting on and rising from a chair, Stair climbing, descending stairs, Flexion and extension open chain and squatting. These movements will be captured with a fluoroscope. The 2D images that are obtained, will be matched with the 3D implants. This 3D image will be processed with custom-made software to be able to analyse the movement. Tibio-femoral contact points of the medial and lateral condyles, tibio-femoral axial rotation, determination of the pivot-point will be analysed and described. After this analysis, a correlation between the kinematics and the KOOS and KSS will be investigated.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 29 - 29
1 Apr 2017
Verstraete M Van Onsem S Stevens C Herregodts S Arnout N Victor J
Full Access

Background

In-vitro testing of knee joints remains vital in the understanding of knee surgery and arthroplasty. However, based on the design philosophy of the original Oxford knee simulator, this in-vitro testing has mainly focused on squatting motion. As the activities of daily living might drastically differ from this type of motion, both from a kinematic and kinetic point of view, a new knee simulator is required that allows studying more random motion patterns. This paper describes a novel knee simulator that overcomes the limitations of traditional Oxford simulators, providing both kinematic and kinetic freedom with respect to the applied boundary conditions.

Methods

This novel test simulator keeps the hip at a fixed position, only providing a single rotational degree of freedom (DOF) in the sagittal plane. In addition, the ankle holds four DOF, including all rotational DOF and the translation along the medio-lateral axis. Combining these boundary conditions leaves five independent DOF to the knee; the knee flexion angle is actively controlled through the positioning of the ankle joint in the antero-posterior and proximal-distal direction. The specimens' quadriceps muscle is actively controlled, the medial and lateral hamstrings are passively loaded. To validate the performance of this simulator, two fresh frozen specimens have been tested during normal squatting and cycling. Their kinematic patterns have been compared to relevant literature data.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 134 - 134
1 Mar 2017
Salvadore G Meere P Verstraete M Victor J Walker P
Full Access

INTRODUCTION

During TKA surgery, the usual goal is to achieve equal balancing between the lateral and medial side, which can be achieved by ligament releases or “pie crusting”. However little is known regarding a relationship between the balancing forces on the medial and lateral plateaus during TKA surgery, and the varus and valgus and rotational laxities when the TKA components are inserted. It seems preferable that the laxity after TKA is the same as for the normal intact knee. Hence the first aim of this study was to compare the laxity envelope of a native knee, with the same knee after TKA surgery. The second aim was to examine the relationship between the Varus-Valgus (VV) laxity and the contact forces on the tibial plateau.

METHODS

A special rig that reproduced surgical conditions and fit onto an operating table was designed (Figure 1) (Verstraete et al. 2015). The rig allows application of a constant varus/valgus moment, and an internal-external (IE) torque. A series of heel push tests under these loading conditions were performed on 12 non-arthritic half semibodies hip-to-toe cadaveric specimens. Five were used for method development. To measure laxities, the flexion angle, the VV and the IE angle were measured using a navigation system. After testing the native knee, a TKA was performed using the Journey II BCS implant, the navigation assuring correct alignments. Soft tissue balancing was achieved by measuring compressive forces on the lateral and medial condyles with an instrumented tibial trial (Orthosensor, Dania Beach, Florida). At completion of the procedure, the laxity tests were repeated for VV and IE rotation and the contact forces on the tibial plateau were recorded, for the full range of flexion.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 64 - 64
1 Mar 2017
Van Onsem S Van Der Straeten C Arnout N Deprez P Van Damme G Victor J
Full Access

Background

Total knee arthroplasty (TKA) is a proven and cost-effective treatment for osteoarthritis. Despite the good to excellent long-term results, some patients remain dissatisfied. Our study aimed at establishing a predictive model to aid patient selection and decision-making in TKA.

Methods

Using data from our prospective arthroplasty outcome database, 113 patients were included. Pre- and postoperatively, the patients completed 107 questions in 5 questionnaires: KOOS, OKS, PCS, EQ-5D and KSS. First, outcome parameters were compared between the satisfied and dissatisfied group. Secondly, we developed a new prediction tool using regression analysis. Each outcome score was analysed with simple regression. Subsequently, the predictive weight of individual questions was evaluated applying multiple linear regression. Finally, 10 questions were retained to construct a new prediction tool.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 71 - 71
1 Mar 2017
Verstraete M Meere P Salvadore G Victor J Walker P
Full Access

Introduction

A correct balancing of the knee following TKA surgery is believed to minimize instability and improve patient satisfaction. In that respect, trial components containing force sensors can be used. These force sensors provide insight in the medial/lateral force ratio as well as absolute contact forces. Although this method finds clinical application already, the target values for both the force magnitude and ratio under surgical conditions remain uncertain.

Methods

A total of eight non-arthritic cadaveric knees have been tested mimicking surgical conditions. Therefore, the specimens are mounted in a custom knee simulator (Verstraete et al., 2015). This simulator allows to test full lower limb specimens, providing kinematic freedom throughout the range of motion. Knee flexion is obtained by lifting the femur (thigh pull). Knee kinematics are simultaneously recorded by means of a navigation system and based on the mechanical axis of the femur and tibia.

In addition, the load transferred through the medial and lateral compartment of the knee is monitored. Therefore, a 2.4 mm thick sawing blade is used to machine a slot in the tibia perpendicular to the mechanical axis, at the location of the tibial cut in TKA surgery. A complete disconnection was thereby assured between the tibial plateau and the distal tibia. To fill the created gap, custom 3D printed shims were inserted (Fig. 1). Through their specific geometry, these shims create a load deviation between two pressure pads (Tekscan type 4011 sensor) seated on the medial and lateral side. Following the insertion of the shims, the knee was closed before performing the kinematic and kinetic tests.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 49 - 49
1 Feb 2017
Bonnin M Saffarini M Victor J
Full Access

Purpose

Analysis of the morphology of the distal femur, and by extension of the femoral components in total knee arthroplasty (TKA), has been related to the aspect ratio, which represents the width of the femur. Little is known about variations in trapezoidicity (i.e whether the femur is more rectangular or more trapezoidal). This study aimed to quantify additional morphological characteristics of the distal femur and identify anatomical features associated with higher risks of over- or under-sizing of components in TKA.

Method

We analyzed the shape of 114 arthritic knees at the time of primary TKA using the pre-operative CT scans. The maximum AP dimension was measured. The mediolateral dimensions were measured on the theoretical distal resection slice at three levels: the posterior region (MLP), the central region (MLC) and the anterior region (MLA) (Fig 1). The ‘aspect’ ratio (MLC/AP) ratio quantified how wide or narrow the shape is. The ‘trapezoidicity’ ratio (MLP/MLA) ratio quantified how rectangular or trapezoidal the shape is. We also quantified the medial and lateral ‘narrowing angles’ in the anterior and central zones (α and β) (Fig 2).

The post-operative prosthetic overhang was calculated from CT-scan.

We compared the morphological characteristics with those of twelve TKA models scanned using a three-dimensional optical scanning machine (ATOS II, GOM mbH, Braunschweig, Germany) and its photogrammetric analysis software (TRITOP, GOM mbH, Braunschweig, Germany).


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 53 - 53
1 Jan 2017
Verstraete M Meere P Salvadore G Victor J Walker P
Full Access

A correct ligament loading following TKA surgery is believed to minimize instability and improve patient satisfaction. The evaluation of the ligament stress or strain is however impractical in a surgical setting. Alternatively, tibial trial components containing force sensors have the potential to indirectly assess the ligament loading. These instrumented components quantify the medial and lateral forces in the tibiofemoral joint. Although this method finds clinical application already, the target values for both the force magnitude and medial / lateral force ratio under surgical conditions remain uncertain.

A total of eight non-arthritic cadaveric knees have been tested mimicking surgical conditions. Therefore, the specimens are mounted in a custom knee simulator. This simulator allows to test full lower limb specimens, providing kinematic freedom throughout the range of motion. Knee flexion is obtained by lifting the femur (thigh pull). Knee kinematics are simultaneously recorded by means of a navigation system and based on the mechanical axis of the femur and tibia.

In addition, the load transferred through the medial and lateral compartment of the knee is monitored. Therefore, a 2.4 mm thick sawing blade is used to machine a slot in the tibia perpendicular to the mechanical axis, at the location of the tibial cut in TKA surgery. A complete disconnection was thereby assured between the tibial plateau and the distal tibia. To fill the created gap, custom 3D printed shims were inserted. Through their specific geometry, these shims create a load deviation between two Tekscan pressure pads on the medial and lateral side. Following the insertion of the shims, the knee was closed before performing the kinematic and kinetic tests.

Seven specimens showed a limited varus throughout the range of motion (ranging from 1° to 7° varus). The other knee was in valgus (4° valgus). Amongst varus knees, the results were very consistent, indicating high loads in full extension. Subsequently, the loads decrease as the knee flexes and eventually vanishes on the lateral side. This leads to consistently high compartmental load ratios (medial load / total load) in flexion.

In full extension the screw-home mechanism results in increased loads, both medially and laterally. Upon flexion, the lateral loads disappear. This is attributed to slackening of the lateral collateral ligament, in turn linked to the femoral rollback and slope of the lateral compartment. The isometry of the medial collateral ligament contributes on the other hand to the near-constant load in the medial compartment. The above particularly applies for varus knees. The single valgus knee tested indicated a higher load transmission by the lateral compartment, potentially attributed to a contracture of the lateral structures.

With respect to TKA surgery, these findings are particularly relevant when considering anatomically designed implants. For those implants, this study concludes that a tighter medial compartment reflects that of healthy varus knees. Be aware however that in full extension, higher and up to equal loads can be acceptable for the medial and lateral compartment.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 98 - 98
1 Jan 2017
Bonnin M Saffarini M de KoK A Verstraete M Van Hoof T Van der Straten C Victor J
Full Access

To determine the mechanisms and extents of popliteus impingements before and after TKA and to investigate the influence of implant sizing. The hypotheses were that (i) popliteus impingements after TKA may occur at both the tibia and the femur and (ii) even with an apparently well-sized prosthesis, popliteal tracking during knee flexion is modified compared to the preoperative situation.

The location of the popliteus in three cadaver knees was measured using computed tomography (CT), before and after implantation of plastic TKA replicas, by injecting the tendon with radiopaque liquid. The pre- and post-operative positions of the popliteus were compared from full extension to deep flexion using normosized, oversized and undersized implants (one size increments).

At the tibia, TKA caused the popliteus to translate posteriorly, mostly in full extension: 4.1mm for normosized implants, and 15.8mm with oversized implants, but no translations were observed when using undersized implants. At the femur, TKA caused the popliteus to translate laterally at deeper flexion angles, peaking between 80º-120º: 2.0 mm for normosized implants and 2.6 mm with oversized implants. Three-dimensional analysis revealed prosthetic overhang at the postero-superior corner of normosized and oversized femoral components (respectively, up to 2.9 mm and 6.6 mm).

A well-sized tibial component modifies popliteal tracking, while an undersized tibial component maintains more physiologic patterns. Oversizing shifts the popliteus considerably throughout the full arc of motion. This study suggests that both femoro- and tibio-popliteus impingements could play a role in residual pain and stiffness after TKA.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 96 - 96
1 Jan 2017
Salvadore G Verstraete M Meere P Victor J Walker P
Full Access

During TKA surgery, the usual goal is to achieve equal balancing between the lateral and medial side, which can be achieved by ligament releases or “pie crusting”. However little is known regarding a relationship between the balancing forces on the medial and lateral plateaus during TKA surgery, and the varus and valgus and rotational laxities when the TKA components are inserted. It seems preferable that the laxity after TKA is the same as for the normal intact knee. Hence the first aim of this study was to compare the laxity envelope of a native knee, with the same knee after TKA surgery. The second aim was to examine the relationship between the Varus-Valgus (VV) laxity and the contact forces on the tibial plateau.

A special rig that reproduced surgical conditions and fit onto an operating table was designed (Verstraete et al. 2015). The rig allows application of a constant varus/valgus moment, and an internal-external (IE) torque. A series of heel push tests under these loading conditions were performed on 12 non-arthritic half semibodies hip-to-toe cadaveric specimens. Five were used for method development. To measure laxities, the flexion angle, the VV and the IE angle were measured using a navigation system. After testing the native knee, a TKA was performed using the Journey II BCS implant, the navigation assuring correct alignments. Soft tissue balancing was achieved by measuring compressive forces on the lateral and medial condyles with an instrumented tibial trial (Orthosensor, Dania Beach, Florida). At completion of the procedure, the laxity tests were repeated for VV and IE rotation and the contact forces on the tibial plateau were recorded, for the full range of flexion.

The average of the varus-valgus and the IE laxity envelope is plotted for the native (yellow), the TKA (pink) and the overlap between the two (orange). The average for six specimens of the contact force ratio (medial/medial+lateral force) during the varus and valgus test is plotted as a function of the laxity for each flexion angle.

The Journey II implant replicated the VV laxity of the native knee except for up to 3 degrees more valgus in high flexion. For the IE, the TKA was equal in internal rotation, but up to 5 degrees more constrained in varus in mid range. Plotting contact force ratio against VV laxity, as expected during the varus test the forces were clustered in a 0.85–0.95 ratio, implying predominant medial force with likely lateral lift-off. For the valgus test, the force ratio is more spread out, with all the values below 0.6. This could be due to the different stiffness of the MCL and LCL ligaments which are stressed during the VV test. During both tests the laxity increases progressively with flexion angle. Evidently the geometry knee reproduces more lateral laxity at higher flexion as in the anatomic situation.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 52 - 52
1 Jan 2017
Bonnin M Saffarini M Bossard N Victor J
Full Access

Analysis of the morphology of the distal femur, and by extension of the femoral components in total knee arthroplasty (TKA), has largely been related to the aspect ratio, which represents the width of the femur. Little is known about variations in trapezoidicity (i.e. whether the femur is more rectangular or more trapezoidal). This study aimed to quantify additional morphological characteristics of the distal femur and identify anatomical features associated with higher risks of over- or under-sizing of components in TKA.

We analysed the shape of 114 arthritic knees at the time of primary TKA using the pre- operative CT scans. The aspect ratio and trapezoidicity ratio were quantified, and the post- operative prosthetic overhang was calculated. We compared the morphological characteristics with those of 12 TKA models.

There was significant variation in both the aspect ratio and trapezoidicity ratio between individuals. Femoral trapezoidicity was mostly due to an inward curve of the medial cortex. Overhang was correlated with the aspect ratio (with a greater chance of overhang in narrow femurs), trapezoidicity ratio (with a greater chance in trapezoidal femurs), and the tibio- femoral angle (with a greater chance in valgus knees).

This study shows that rectangular/trapezoidal variability of the distal femur cannot be ignored. Most of the femoral components which were tested appeared to be excessively rectangular when compared with the bony contours of the distal femur. These findings suggest that the design of TKA should be more concerned with matching the trapezoidal/ rectangular shape of the native femur.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 107 - 107
1 May 2016
Verstraete M Salvadore G Victor J Meere P Walker P
Full Access

Total knee arthroplasty can largely impact the functioning of a knee. To minimize the impact of surgery and increase patient satisfaction, it is believed that restoring knee stability and control of the laxity has the potential to improve surgical outcome. In that respect, it is hypothesized that a well-balanced knee restores the native knee's laxity and stability, whereas unbalanced conditions result in an increased laxity and instability. This study intends to precisely evaluate knee laxity and stability in a cadaveric model in order to improve the clinical evaluation of the knee laxity under surgical conditions. This paper provides insight in the design considerations and methodology of a novel knee simulator and the preliminary results

In a first phase, a new knee simulator has therefore been developed. This simulator allows quantifying the knee kinematics and surgical feel at the time of surgery in a laboratory environment. More specifically, full lower limb specimens can be mounted in the simulator. This overcomes the need for disarticulation at the hip and ankle, often reported in cadaveric testing. The latter is believed to potentially release the tension in the knee and should therefore be avoided. Note that in respect to surgical conditions no muscle activation is considered for this simulator.

To facilitate a repeatable and unbiased evaluation of the knee kinematics, it is important that the knee simulator provides full kinematic freedom to the tested knee specimen. To obtain six degrees of freedom, a dedicated hip and ankle setup has been created (figure 1). The hip setup constrains the hip joint to a single axis hinge joint around the femoral head center. The remaining five degrees of freedom are built into the ankle setup. More specifically, the ankle setup has two translational degrees of freedom and full rotational freedom. The translational freedom is provided along the specimen's proximal-distal axis and medio-lateral axis. The rotational freedom is provided at a single point, using a ball in socket joint located along the mechanical axis of the tibia. The translation along the proximal-distal axis is thereby actively controlled by the operator, simulating heel push conditions. In addition to studying the neutral path kinematics, the presented simulator allows evaluating the laxity boundaries throughout the range of motion. Therefore, a constant internal/external torque can be applied to the tibia. Alternatively, a constant varus/valgus moment can be simulated.

Second, following the design and construction of this simulator, a set of ten cadaveric knees has been tested on this simulator, both before and after TKA surgery. For the native knees, the results of these tests confirm the kinematic freedom provided to the tested knee. In addition, the laxity envelope around the neutral path can be realistically evaluated and quantified.

Conclusion

Design and evaluation of new knee simulator that allows synchronous studying of the knee kinematics, contact loads and tensile forces, under neutral conditions and extreme varus/valgus moment or internal/external tibial torque.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 108 - 108
1 May 2016
Verstraete M Herregodts S De Baets P Victor J
Full Access

Introduction

For the evaluation of new orthopaedic implants, cadaveric testing remains an attractive solution. However, prior to cadaveric testing, the performance of an implant can be evaluated using numerical simulations. These simulations can provide insight in the kinematics and contact forces associated with a specific implant design and/or positioning.

Methods

Both a two and three dimensional simulation model have been created using the AnyBody Modelling System (AMS). In the two dimensional model, the knee joint is represented by a hinge. Similarly, the ankle and hip joint are represented by a hinge joint and a variable amplitude quadriceps force is applied to a rigid bar connected to the tibia (Figure 1a). In line with this simulation model, a hinge model was created that could be mounted in the UGent knee simulator to evaluate the performance of the simulated model. The hinge model thereby performs a cyclic motion under varying quadriceps load while recording the ankle reaction forces.

In addition to the two dimensional model, a three dimensional model has been developed (Figure 1b). More specifically, a model is built of a sawbone leg holding a posterior stabilized single radius total knee implant. The physical sawbone model contains simplified medial and lateral collateral ligaments. In line with the boundary conditions of the UGent knee simulator, the simulated hip contains a single rotational degree of freedom and the ankle holds four degrees of freedom (three rotations, single translation). In the simulations, the knee is modelled using the force-dependent kinematics (FDK) method built in the AMS. This leaves the knee with six degrees of freedom that are controlled by the ligament tension in combination with the applied quadriceps load and shape of the implant. The physical sawbone model goes through five cycles in the UGent simulator using while recording the kinematics of the femur and tibia using a set of markers rigidly attached to the femur and tibia bone. The position of the implant with respect to the markers was evaluated by CT-scanning the sawbone model.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 103 - 103
1 May 2016
Van Onsem S Lambrecht D Verstraete M Van Der Straeten C Victor J
Full Access

Introduction

Better functional outcomes, lower pain and better stability have been reported with knee designs which restore physiological knee kinematics. Also the ability of the TKA design to properly restore the physiological femoral rollback during knee flexion, has shown to be correlated with better restoration of the flexor/extensor mechanism (appropriate flexor/extensor muscle lever arm, sufficient quadriceps force to extend the knee under load and limited patello-femoral force), which is fundamental to the function of the human knee. The purpose of the study is to compare the kinematics of three different TKA designs, by evaluating knee motion during Activities of Daily Living. The second goal is to see if there is a correlation between the TKA kinematics and the patient reported outcomes.

Methods

Ten patients who are at least 6 months after their Total Knee Replacement are included in this study. Seven satisfied and 3 dissatisfied patients are selected for this design. In this study 5 different movements are being analysed: flexion/extension; Sitting on and rising from a chair, Stair climbing, descending stairs, Flexion and extension open chain and squatting. These movements will be captured with a fluoroscope. The 2D images that are obtained, are matched with the 3D implants. (see figure 1 and 2.) This 3D image is processed with custom-made software to be able to analyse the movement (figure 3.). Tibio-femoral contactpoints of the medial and lateral condyles, tibio-femoral axial rotation, determination of the pivot-point are analysed and described. After this analysis, a correlation between the kinematics and the KOOS and KSS is investigated.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 105 - 105
1 May 2016
Verstraete M Van Onsem S Stevens C Arnout N Victor J
Full Access

For evaluating the impact of knee surgery, cadaveric knee simulators are commonly applied. However, most of the knee simulators are based on the Oxford type as originally described by Zavatsky (Zavatsky, J. of Biomechanics, 1997). These simulators mainly focus on the squatting motion. Although a wide range of flexion angles can be examined while performing this motion, the significance for activities of daily living is limited.

To that extent a new knee simulator has recently been developed at Ghent University. In this simulator, the ankle motion is dynamically controlled in the sagittal plane; both in the proximal/distal direction and the anterior/posterior direction. As a result, this simulator allows simulating random motion patterns, e.g. cycling, stair ascent and descent, … The ankle translation is unrestrained in the medial/lateral direction. In addition, all rotational degrees of freedom are unrestrained at the ankle, resulting in four degrees of freedom at the ankle. The hip adds one rotational degree of freedom being the rotation in the sagittal plane. This leaves 5 degrees of freedom (DOF) to the knee; the sixth being flexion/extension that is controlled by the actuators at the ankle. During the simulation of different motion patterns, the quadriceps and hamstring force are actively controlled to mimic realistic conditions obtained through musculoskeletal simulations.

In this study, five cadaveric experiments have been performed on the simulator. While mounting the cadaveric specimens in the test rig, the initial alignment remains crucial. Whilst the rig leaves 5 DOF to the knee, it is important to restore the anatomical position of the hip and ankle. To minimize the impact of the mounting procedure, cadaver specific 3D printed guides are used to assure the alignment of the cadaver in the test rig. As a result, the kinematics are more likely to represent physiological conditions. These kinematics have been evaluated in accordance to the methodology described by Grood&Suntay (Grood & Suntay, Transactions of the ASME, 1983). Therefore, a CT scan of the examined knee is combined with motion tracking data from rigidly attached markers on both the femur and the tibia. The cadaveric knees have been subjected to a variety of motion patterns, i.e. squatting and cycling. The squatting experiments provide evidence that the knee simulator creates adequate boundary conditions as the kinematic patterns coincide with literature reportings. The cycling experiments however significantly differ from the squatting patterns. Most noteworthy is the difference in terms of internal/external rotation for these native knees (Figure 1). This internal/external rotations is highly fluctuating from flexion to extension. This is understood as the quadriceps force is not constant during the extension phase, representing physiological conditions.

Conclusion

Significant difference in knee kinematics between squatting and cycling indicates the importance of testing a variety of conditions. Furthermore, this reveals the need to study clinically relevant motion patterns, selected from patient reported outcomes.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 106 - 106
1 May 2016
Verstraete M Van Onsem S Biebouw S Cortens W Arnout N Victor J
Full Access

Total knee arthroplasty aims at restoring the function of the native knee. An important aspect at this point are the knee kinematics, as it can be assumed that following TKA surgery these should resemble the native conditions. The use of cadaveric testing is since long an important step in the development and validation of implant designs and surgical techniques. However, this cadaveric testing has primarily focused on squatting under load bearing conditions. The main research question of this paper is therefore to evaluate the impact of TKA surgery on the knee kinematics under a range of boundary conditions.

A set of five cadaveric knees have been tested in a newly developed and validated knee simulator at Ghent University. In contrast to other simulators, this simulator allows simulating a wide range of conditions as it facilitates a controlled movement of the ankle in the sagittal plane under continuously variable hamstring and quadriceps loading. In the framework of this study, two different motion patterns have been studied. First, the knees were subjected to a traditional squatting motion maintaining constant quadriceps loading. Second, the knees were tested while performing a cycling movement with a highly variable quadriceps load during the extension phase. For both cases, the studied motion patterns have been repeated five times. Following the evaluation of the native knee kinematics, TKA surgery was performed using a single radius implant. During surgery, the implant alignment has been controlled using computer navigation. Subsequently, the same boundary conditions have been applied and the kinematics again recorded.

Focusing on the native knee, the measured kinematic patterns for the squatting motion significantly differ from the ones observed for the cycling movement for similar flexion angles. This is attributed to a difference in quadriceps loading. However, following TKA surgery, the kinematic patterns are remarkably comparable between the squatting and cycling experiments. These observations suggest that the TKA design considered in this study displays a highly constrained behavior. More specifically, the design appears to favor the squatting behavior. Further study is however required to thoroughly evaluate this observation for other implant designs and a wider range of motion patterns.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 47 - 47
1 May 2016
Bonnin M De Kok A Verstraete M Van Hoof T Van Der Straeten C Victor J
Full Access

Goals of the study

(1) to investigate the relationships between the bony contours of the knee and the Popliteus Tendon (PT) in the healthy knee and after implantation of a TKA and (2) to analyze the influence of implant sizing.

Hypothesis

With an apparently well-sized TKA, the position of the PT during knee flexion is modified compared with the preoperative situation.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 98 - 98
1 Jan 2016
Verstraete M Van Der Straeten C Opsomer G De Lepeleere B Victor J
Full Access

An accurate evaluation of the mechanical properties of human tissue is key to understanding and successfully simulating (parts of) human joints. Due to the rapid post-mortem decay, however, the cadavers are usually frozen or embalmed. The main aim of this paper is to quantitatively compare the impact of both techniques on the biomechanical properties. To that extent, the Achilles tendons of seven cadavers have been tested. For each cadaver, one of the Achilles tendons was tested after being frozen for at maximum two weeks, whilst the other tendon was tested following a Thiel embalming process.

All specimens were gripped in custom made clamps and subjected to uniaxial tensile loading. The specimens were scanned using a micro-CT to determine their cross-sectional area, which allowed transferring the applied forces to stresses. During the tensile tests, the specimens’ elongation was measured both using the digital image correlation (DIC) technique and using linear variable displacement transducers (LVDT's) mounted across the grips. The former allowed to assess the severity of slip in the grips. As is well described in literature, the obtained stress-strain relationship is not linear (Figure 1). Accordingly, the following bilinear relationship was fitted through the data points using a least squares fit:

s = E0 e     e <= ê

s = E0 ê + E (e - ê)     e > ê

As a result, the stress-strain response is sub-divided in two regions: a toe-region (e <= ê) with a low slope and stiffness (E0) and a linear elastic region (e > ê) with a higher stiffness (E). Both stiffness values were subsequently compared between the fresh frozen and Thiel embalmed group. Given the non-normal distribution of the test data, the non-parametric Wilcoxon signed rank test was used to assess the statistical significance of the obtained results.

No statistically significant difference was observed between the stiffness of the toe-region (e <= ê) obtained from Thiel embalmed and fresh frozen specimens (p-value = 0.249). In the contrary, the stiffness of linear elastic region (e > ê) was significantly different between both groups (p-value = 0.046 – see Figure 2). An average, the Thiel embalmed specimens displayed a 36% higher stiffness compared to the fresh frozen specimens. The latter contrasts the findings of other studies reported in literature, which report a decrease of the stiffness following Thiel embalming. To the authors’ opinion, this discrepancy could either be attributed to a difference in testing protocol (embalming time, donor factors, …) or tissue perfusion kinetics (Achilles tendon is relatively massive).

In conclusion, this study has demonstrated that Thiel embalming significantly alters the biomechanical properties of tendons. Specimens that underwent Thiel embalming should therefore not be considered for determining input parameters for advanced numerical models.


The Bone & Joint Journal
Vol. 98-B, Issue 1 | Pages 49 - 57
1 Jan 2016
Bonnin MP Saffarini M Bossard N Dantony E Victor J

Aims

Analysis of the morphology of the distal femur, and by extension of the femoral components in total knee arthroplasty (TKA), has largely been related to the aspect ratio, which represents the width of the femur. Little is known about variations in trapezoidicity (i.e. whether the femur is more rectangular or more trapezoidal). This study aimed to quantify additional morphological characteristics of the distal femur and identify anatomical features associated with higher risks of over- or under-sizing of components in TKA.

Methods

We analysed the shape of 114 arthritic knees at the time of primary TKA using the pre-operative CT scans. The aspect ratio and trapezoidicity ratio were quantified, and the post-operative prosthetic overhang was calculated. We compared the morphological characteristics with those of 12 TKA models.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 99 - 99
1 Jan 2016
Verstraete M Van Der Straeten C Victor J
Full Access

To evaluate the impact of a knee prosthesis on the soft-tissue envelope or knee kinematics, cadaveric lower extremities are often mounted in a custom test rig, e.g. Oxford knee rig. Using such test rig, the knee is tested while performing a squatting motion. However, such motion is of limited daily-life relevance and clinical practices has shown that squatting commonly causes problems for knee patients. As a result, a new test rig was developed that allows a random, controlled movement of the ankle relative to the hip in the sagittal plane.

Mounting the specimen in the test rig, restricts five degrees of freedom (DOF) at the hip; only the rotation in the sagittal plane is not restrained (Figure 1). On the other hand, at the ankle, only two degrees of freedom are restrained, namely the movement in the sagittal plane. The ankle has thus three rotational degrees of freedom, all rotation axis intersect in a single point: the center of the ankle. In addition, the out-of-plane translational movement of the ankle remains free. This is achieved by means of a linear bearing. The other translational degrees of freedom, in the sagittal plane, are controlled by two actuators. As a result, the knee has five degrees of freedom left; flexion-extension is controlled. This represents typical closed chain applications, such as cycling.

In a first step, the knee kinematics have been evaluated under un-loaded conditions (no quadriceps or hamstring forces applied). To evaluate the knee kinematics, an infrared camera system (OptiTrack, NaturalPoint Inc, USA) is used. Therefore, three infrared markers are placed on the femur and tibia respectively. In addition, markers are placed on the test rig itself, to evaluate the accuracy of the applied motion. All markers are tracked using eight infrared cameras. At the ankle, a 2D circular motion with a radius of 100 mm was applied. Based on the 3D motion analysis, it was demonstrated that the control system has an accuracy of ± 0.5 mm.

The evaluation of the knee kinematics in accordance to Grood and Suntay (J. of Biomechanical Engineering, 1983), additionally requires the evaluation of the knee anatomy. To that extent, the cadaveric specimen has been visualized using a CT scan, with the infrared markers in place. From these CT images, a 3D reconstruction has been created (Mimics, Materialise, Belgium). Subsequently, custom software has been developed that combines the CT data with the motion analysis data (Matlab, The MathWorks Inc., USA). As a result, knee motion is visualized in 3D (Figure 2.a) and clinical relevant kinematic parameters can be derived (Figure 2.b).

In conclusion, the presented test rig and analysis framework is ready to evaluate more complex knee kinematics with reasonable accuracy and stability of the control loops. Future research will however primarily focus on the evaluation and validation of the impact of forces applied onto the specimen.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 100 - 100
1 Jan 2016
Verstraete M Luyckx T De Roo K Bellemans J Victor J
Full Access

It is nowadays widely recognized that patient satisfaction following knee arthroplasty strongly depends on ligament balancing. To obtain this balancing, the occurring ligament strain is assumed to play a crucial role. To measure this strain, a method is described in this paper that allows full field 3D evaluation of the strains. The latter is preferred over traditional measurement techniques, e.g. displacement transducers or strain gauges, as human soft tissue is not expected to deform uniformly due to its highly inhomogeneous and anisotropic properties.

To facilitate full field strain measurements, the 3D digital image correlation (DIC) technique was adopted. This technique was previously validated by our research group on human tissue. First, a high contrast speckle pattern was applied on the sMCL. Therefore, the specimens are first coated with a small layer of methylene blue. Following, a random white speckle pattern is applied. During knee flexion, two cameras simultaneously take pictures of the deforming region at predefined flexion angles. Using dedicated software, the captured images are eventually combined and result in 3D full field strains and displacements.

Using this method, the strain distribution was studied in six cadaveric knees during flexion extension movement. Therefore, the femur was rigidly fixed in a custom test rig. The tibia was left unconstrained, allowing the six degrees of freedom in the knee. A load was applied to all major muscles in physiological directions of each muscle by attaching a series of calibrated weights (Farahmand et al., J Orthop Res., 1998;16(1)). The direction of the pulling cables was controlled using a digital inclinometer for each specimen. As a result, a statically balanced muscle loading of the knee was obtained.

From these cadaveric experiments, it is observed that on average the sMCL behaves isometrically between 0° and 90° of flexion. However, high regional differences in strain distribution are observed from the full field measurements. The proximal region of the sMCL experiences relatively high strains upon flexion. These strains are positive (tension) in the anterior part and negative (compression) in the posterior region. In contrast, the distal region remains approximately isometric upon knee flexion (see Figure 1).

It is accordingly concluded that the sMCL behaves isometric, though large regional differences are observed. The proximal region experiences higher strains. Furthermore, the DIC technique provided valuable insights in the deformation of the sMCL. This technique will therefore be applied to study the impact of knee arthroplasty in the near future.

Caption with figure 1: Full field strain distribution in the sMCL's longitudinal direction for specimen in 45° (a) and 90° (b) of knee flexion


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 88 - 88
1 Jan 2016
Van Der Straeten C Van Onsem S Callens R Slabbaert M Victor J
Full Access

Background

The use of Computed Tomography (CT) as a medical imaging tool has widespread applications in the field of knee surgery. Surgeons use a CT scan in a conventional way during the pre-operative stage, to plan the position of the femoral component in the horizontal plane. In the post-operative stage, the use of a CT scan is a routine tool in the evaluation of failed TKA as rotational malalignment of the femoral component has been determined as a cause of poor clinical outcome after TKA.

Aim

How accurately can we measure the different angles with importance for alignment on a 3D-image in comparison to a standard CT, 2D, image.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 89 - 89
1 Jan 2016
Van Der Straeten C Van Onsem S Victor J
Full Access

Introduction

Total Knee Arthroplasty (TKA) is a proven successful and cost-effective method to relieve pain and improve joint function and quality of life in patients with advanced knee arthritis. However, after a TKA, only 75 to 89% of patients are satisfied. Since patient satisfaction is one of the main objectives of elective orthopaedic surgery, it is important to investigate the reasons for dissatisfaction and develop remedial strategies.

Objectives

The aims of the current project are to investigate patient satisfaction after TKA and establish physical, mental and social determinants of patient satisfaction and overall socio-economic costs associated with unsatisfactory outcome. The global objective is to identify patients most likely to benefit from primary TKA, establish optimal evidence-based indications and timing for TKA, and address the necessity to educate patients preoperatively towards realistic expectations or propose alternative therapies. Based on the results, a composite score for patient selection will be developed using objective and subjective parameters. Cut-off values for acceptable indications for TKA will be proposed.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 91 - 91
1 Jan 2016
Van Der Straeten C Doyen B Dutordoir C Goedertier W Pirard S Victor J
Full Access

INTRODUCTION

Meniscal tears are very common and treated surgically by suturing or partial or total meniscectomy. After meniscectomy, the tibiofemoral contact area is decreased whih leads to higher contact stresses associated with clinical symproms and a faster progression of tibiofemoral osteoarthritis. Besides meniscus allograft transplantation, artificial implants have been developed to replace the menisci after meniscectomy.

AIM

We investigated the short- and medium-term clinical results and survivorship of two artificial meniscus implants used as a treatment for post-meniscectomy pain in young to middle-aged patients: the anchored polyurethane degradable Actifit® (2007–2013) and the non-anchored polycarbonate-urethane NUSurface® meniscal implants (2011–2013).


The Bone & Joint Journal
Vol. 97-B, Issue 3 | Pages 318 - 323
1 Mar 2015
Verdonk P Dhollander A Almqvist KF Verdonk R Victor J

The treatment of osteochondral lesions is of great interest to orthopaedic surgeons because most lesions do not heal spontaneously. We present the short-term clinical outcome and MRI findings of a cell-free scaffold used for the treatment of these lesions in the knee. A total of 38 patients were prospectively evaluated clinically for two years following treatment with an osteochondral nanostructured biomimetic scaffold. There were 23 men and 15 women; the mean age of the patients was 30.5 years (15 to 64). Clinical outcome was assessed using the Knee Injury and Osteoarthritis Outcome Score (KOOS), the Tegner activity scale and a Visual Analgue scale for pain. MRI data were analysed based on the Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) scoring system at three, 12 and 24 months post-operatively. There was a continuous significant clinical improvement after surgery. In two patients, the scaffold treatment failed (5.3%) There was a statistically significant improvement in the MOCART precentage scores. The repair tissue filled most of the defect sufficiently. We found subchondral laminar changes in all patients. Intralesional osteophytes were found in two patients (5.3%). We conclude that this one-step scaffold-based technique can be used for osteochondral repair. The surgical technique is straightforward, and the clinical results are promising. The MRI aspects of the repair tissue continue to evolve during the first two years after surgery. However, the subchondral laminar and bone changes are a concern.

Cite this article: Bone Joint J 2015; 97-B:318–23.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 75 - 75
1 Feb 2015
Victor J
Full Access

Osteotomy is one of the oldest orthopaedic interventions and has evolved significantly over the years. The procedure is well established as a biomechanical solution in the treatment of arthritis and instability of the knee. The operation is technically demanding and carries risks of neurovascular injury, inadequate fixation and under- or overcorrection. These technical problems have given osteotomy significant headwind in the orthopaedic community. The relative success of knee arthroplasty (uni or total) in the past decade has fed the perception that this procedure is the only remaining treatment to be trusted for patients with knee arthritis. However, both registry data and single center studies often show disappointing results for knee arthroplasty in the young, active and demanding patient population. Osteotomy has a significant role for these patients, provided they have unicompartmental arthritis with constitutional malalignment. Also, more complex deformities as seen in the post-traumatic setting often need a biomechanical approach based upon osteotomy principles.

Recently, technology was developed to allow the surgeon perform a three-dimensional evaluation of the deformity and prediction of postoperative alignment. Patient specific guides with a broad fit on the femur or tibia can guide the osteotomy and fixation accurately, within 2 degrees of accuracy. With this technological approach, a new dawn for osteotomy appears on the horizon.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 124 - 124
1 Feb 2015
Victor J
Full Access

Ligament release in knee arthroplasty can be limited with accurate placement of implants, correct sizing and anatomic geometry of the implants. Still, in some instances a release of the medial collateral ligament can be necessary. In the proposed minimally invasive technique, multiple punctures in the MCL are made, using an 19-gauge needle, in order to progressively stretch the MCL until a correct ligament balance is achieved. This technique requires no additional soft tissue dissection and can even be performed percutaneously when necessary.

We analyzed 61 cases with varus deformity that were intraoperatively treated using this technique. In 4 other cases the technique was used as a percutaneous procedure in order to correct postoperative medial tightness. The procedure was considered successful when 2–4mm mediolateral joint line opening was obtained in extension and 2–6mm in flexion. In 62 cases (95%) a progressive correction of medial tightness was achieved according to the above described criteria. We therefore consider needle puncturing as an effective and safe technique for progressive correction of MCL tightness during minimally invasive TKA.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 401 - 401
1 Dec 2013
Luyckx T Verstraete M De Roo K Dewaele W Victor J Bellemans J
Full Access

Introduction

In this study, three-dimensional (3D) digital image correlation (DIC) was adopted to investigate the strain in the superficial medial collateral ligament (sMCL) of the human knee. To our knowledge, no reports or validation of 3D DIC measurement on human collagenous tissue exists.

The first part of this research project focused on the validation of 3D DIC (1) as a highly accurate tool for non-contact full field strain analysis of human collagenous tissue. In the second part, 3D DIC was used to measure the strain patterns in the superficial medial collateral ligament (sMCL) of the native knee (2). In a third part, the strain pattern in the sMCL after total knee arthroplasty (TKA) in an ‘optimal’ (3) and with a proximalised joint line (4) was analysed.

Methods

(1) Six fresh frozen human Achilles tendon specimens were mounted in a custom made rig for uni-axial loading. The accuracy and reproducibility of 3D DIC was compared to two linear variable differential transformers (LVDT's). (2) The strain pattern of the sMCL during the range of motion (ROM) was measured using 3D DIC in six fresh frozen cadaveric knees. The knees were mounted in a custom made rig, applying balanced tension to all muscle groups around the knee. The experiment was repeated after computer navigated implantation of a single radius posterior stabilised (PS) TKA in ‘optimal’ (3) and with a 4 mm proximalised joint line (4).


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 569 - 569
1 Dec 2013
Van Der Straeten C Witvrouw E Willems T Verstuyft L Victor J Bellemans J
Full Access

Background:

Recently a new version of the Knee Society Knee Scoring System has been developed, adapted to the lifestyle and activities of contemporary patients with a Total Knee Arthroplasty (TKA). It is subdivided into 4 domains including an Objective Knee Score, a Satisfaction Score, an Expectations Score and a Functional Activity Score. Before this scale can be used in non-English speaking populations, it has to be translated and validated for specific populations. The aim of this study was to translate and validate the New Knee Society Knee Scoring System (new KSS) for Dutch speaking populations.

Materials and Methods:

A Dutch translation of the New KSS was established using a forward-backward translation protocol. 137 patients undergoing TKA were asked to complete the Dutch translation of the New KSS as well as the Dutch WOMAC, Dutch KOOS and the Dutch SF12. To determine the test-retest reliability, 53 patients were asked to fill out a second questionnaire with one-week interval. We tested the test-retest reliability of the subjective domains of the New KSS by assessing the intra-class coefficient and the Pearson correlation coefficient between the first and second questionnaires. Systematic differences between the first and second questionnaires were investigated with T-tests and non-parametric statistics. Internal consistency of the Dutch new KSS was evaluated with Cronbach's alpha. The construct validity of the Dutch New KSS was determined by comparing it to the Dutch WOMAC, Dutch KOOS and Dutch SF12 using Pearson correlation coefficients. Content validity was assessed by examining the distribution and the floor and ceiling effects of the Dutch version of the new KSS.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 187 - 187
1 Dec 2013
Van Der Straeten C Van Quickenborne D Pennynck S De Smet K Victor J
Full Access

Background:

Potential systemic toxicity of metal ions from metal-on-metal hip arthroplasties (MoMHA) is concerning. High blood cobalt (Co) levels have been associated with neurological, cardiac and thyroid dysfunctions.

Questions/purposes:

The aim of this research was to investigate the prevalence of systemic Co toxicity in a MoMHA population, to identify confounding factors, and to indicate a Co level above which there is a high risk for systemic toxicity.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 189 - 189
1 Dec 2013
Verstraete M Luyckx T De Roo K Dewaele W Bellemans J Victor J
Full Access

Purpose

As human soft tissue is anisotropic, non-linear and inhomogeneous, its properties are difficult to characterize. Different methods have been described that are either based on contact or noncontact protocols. In this study, three-dimensional (3D) digital image correlation (DIC) was adopted to examine the mechanical behaviour of the human Achilles tendon. Despite its wide use in engineering research and its great potential for strain and displacement measurements in biological tissue, the reported biomedical applications are rather limited. To our knowledge, no validation of 3D DIC measurement on human tendon tissue exists.

The first goal of this study was to determine the feasibility to evaluate the mechanical properties of the human Achilles tendon under uniaxial loading conditions with 3D Digital Image Correlation. The second goal was to compare the accuracy and reproducibility of the 3D DIC against two linear variable differential transformer (LVDT's).

Methods

Six human Achilles tendon specimens were prepared out of fresh frozen lower limbs. Prior to preparation, all limbs underwent CT-scanning. Using Mimics software, the volume of the tendons and the cross sectional area at each level could be calculated. Subsequently, the Achilles tendons were mounted in a custom made rig for uni-axial loading. Tendons were prepared for 3D DIC measurements with a modified technique that enhanced contrast and improved the optimal resolution. Progressive static loading up to 628,3 N en subsequent unloading was performed. Two charge-coupled device camera's recorded images of each loading position for subsequent strain analysis. Two LVDT's were mounted next to the clamped tendon in order to record the displacement of the grips.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 190 - 190
1 Dec 2013
Victor J Tajdar F Ghijselings S Witvrouw E Van Der Straeten C
Full Access

Background:

The number of young patients undergoing total knee arthroplasty is rapidly increasing. Long-term follow-up of modern type implants is needed to provide a benchmark of implant longevity for these patients.

Methods:

Between January 1995 and October 1997, 245 consecutive total knee arthroplasties were performed in 217 patients by a single surgeon. In 156 knees, the Genesis I implant was used, and in 89 knees the Genesis II implant was used. Mean age at surgery was 69.3 years for the Genesis I cohort and 66 years for the Genesis II (p = 0.016). At 15 to 17 years, cumulative survivorship was calculated using Kaplan-Meier statistics whilst outcomes were rated with the ‘Knee society score’ and with the ‘Knee Injury and Osteoarthritis Outcome Score’. Radiological assessment included coronal alignment measured on full leg standing X-rays, and analysis of radiolucent lines and polyethylene thickness on AP, Lateral and Axial X-rays, positioned under fluoroscopic control.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 51 - 51
1 Dec 2013
Dujardin J Vandenneucker H Bellemans J Victor J
Full Access

A prospective randomized trial on 128 patients with end-stage osteoarthritis was conducted to assess the accuracy of patient-specific guides. In cohort A (n = 64), patient- specific guides from four different manufacturers (Subgroup A1 Signature ®, A2 Trumatch ®, A3 Visionaire ® and A4 PSI ®) were used to guide the bone cuts. Surgical navigation was used as an intraoperative control for outliers. In cohort B (n = 64), conventional instrumentation was used. All patients of cohorts A and B underwent a postoperative full-leg standing X-ray and CT scan for measuring overall coronal alignment of the limb and three-planar alignment of the femoral and the tibial component. Three-planar alignment was the primary endpoint. Deviation of more than three degrees from the target in any plane, as measured with surgical navigation or radiologic imaging, was defined as an outlier.

In 14 patients (22%) of cohort A, the use of the patient-specific guide was abandoned because of outliers in more than one plane. In 18 patients (28%), a correction of the position indicated by the guide, was made in at least one plane. A change in cranial-caudal position was most common. Cohort A and B showed a similar percentage of outliers in long-leg coronal alignment (24.6%, 28.1%, p = 0.69), femoral coronal alignment (6.6%, 14.1%, p = 0.24) and femoral axial alignment (23%, 17.2%, p = 0.50). Cohort A had more outliers in coronal tibial alignment (14.6%) and sagittal tibial alignment (21.3%) than cohort B (3.1%, p = 0.03 and 3.1%, p = 0.002, respectively). These data indicate that patient specific guides do not improve accuracy in total knee arthroplasty.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 568 - 568
1 Dec 2013
Van Der Straeten C Van Quickenborne D De Roest B Victor J De Smet K
Full Access

Introduction

Metal-on-metal hip resurfacings (MoMHRAs) have a characteristic wear pattern initially characterised by a run-in period, followed by a lower-wear steady-state. The use of metal ions as surrogate markers of in-vivo wear is now recommended as a screening tool for the in-vivo performance of MoMHRAs. The aims of this retrospective study were to measure ion levels in MoMHRAs at different stages during the steady-state in order to study the evolution of wear at minimum 10 years postoperatively and describe factors that affect it.

Materials and methods

A retrospective study was conducted to investigate the minimum 10-year survivorship of a single-surgeon Birmingham Hip Resurfacing (BHR) series, and the evolution of metal ion levels. Implant survival, Harris Hip Scores (HHS), radiographs and serum metal ion levels were assessed. The evolution of metal ion levels was evaluated in 80 patients for whom at least two ion measurements were available at more than 12 months postoperatively, i.e. past the run-in phase. Ion level change (Delta Cr; Delta Co) was defined as Cr or Co level at last assessment minus Cr or Co level at initial assessment. Sub-analysis was performed by gender, diagnosis, age, femoral component size and cup inclination angle.


The Bone & Joint Journal
Vol. 95-B, Issue 11_Supple_A | Pages 153 - 158
1 Nov 2013
Victor J Premanathan A

We have investigated the benefits of patient specific instrument guides, applied to osteotomies around the knee. Single, dual and triple planar osteotomies were performed on tibias or femurs in 14 subjects. In all patients, a detailed pre-operative plan was prepared based upon full leg standing radiographic and CT scan information. The planned level of the osteotomy and open wedge resection was relayed to the surgery by virtue of a patient specific guide developed from the images. The mean deviation between the planned wedge angle and the executed wedge angle was 0° (-1 to 1, sd 0.71) in the coronal plane and 0.3° (-0.9 to 3, sd 1.14) in the sagittal plane. The mean deviation between the planned hip, knee, ankle angle (HKA) on full leg standing radiograph and the post-operative HKA was 0.3° (-1 to 2, sd 0.75). It is concluded that this is a feasible and valuable concept from the standpoint of pre-operative software based planning, surgical application and geometrical accuracy of outcome.

Cite this article: Bone Joint J 2013;95-B, Supple A:153–8.


The Bone & Joint Journal
Vol. 95-B, Issue 10 | Pages 1332 - 1338
1 Oct 2013
Van Der Straeten C Van Quickenborne D De Roest B Calistri A Victor J De Smet K

A retrospective study was conducted to investigate the changes in metal ion levels in a consecutive series of Birmingham Hip Resurfacings (BHRs) at a minimum ten-year follow-up. We reviewed 250 BHRs implanted in 232 patients between 1998 and 2001. Implant survival, clinical outcome (Harris hip score), radiographs and serum chromium (Cr) and cobalt (Co) ion levels were assessed.

Of 232 patients, 18 were dead (five bilateral BHRs), 15 lost to follow-up and ten had been revised. The remaining 202 BHRs in 190 patients (136 men and 54 women; mean age at surgery 50.5 years (17 to 76)) were evaluated at a minimum follow-up of ten years (mean 10.8 years (10 to 13.6)). The overall implant survival at 13.2 years was 92.4% (95% confidence interval 90.8 to 94.0). The mean Harris hip score was 97.7 (median 100; 65 to 100). Median and mean ion levels were low for unilateral resurfacings (Cr: median 1.3 µg/l, mean 1.95 µg/l (< 0.5 to 16.2); Co: median 1.0 µg/l, mean 1.62 µg/l (< 0.5 to 17.3)) and bilateral resurfacings (Cr: median 3.2 µg/l, mean 3.46 µg/l (< 0.5 to 10.0); Co: median 2.3 µg/l, mean 2.66 µg/l (< 0.5 to 9.5)). In 80 unilateral BHRs with sequential ion measurements, Cr and Co levels were found to decrease significantly (p < 0.001) from the initial assessment at a median of six years (4 to 8) to the last assessment at a median of 11 years (9 to 13), with a mean reduction of 1.24 µg/l for Cr and 0.88 µg/l for Co. Three female patients had a > 2.5 µg/l increase of Co ions, associated with head sizes ≤ 50 mm, clinical symptoms and osteolysis. Overall, there was no significant difference in change of ion levels between genders (Cr, p = 0.845; Co, p = 0.310) or component sizes (Cr, p = 0.505; Co, p = 0.370). Higher acetabular component inclination angles correlated with greater change in ion levels (Cr, p = 0.013; Co, p = 0.002). Patients with increased ion levels had lower Harris hip scores (p = 0.038).

In conclusion, in well-functioning BHRs the metal ion levels decreased significantly at ten years. An increase > 2.5 µg/l was associated with poor function.

Cite this article: Bone Joint J 2013;95-B:1332–8.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 100 - 100
1 May 2013
Victor J
Full Access

Correct alignment and ligament tension are widely accepted conditional features of successful TKA. The technical route of achieving this goal remains a matter of debate. Two philosophies prevail: measured resection as a geometry based system, and tensioned gaps, based upon the dependent relation between tibia and femur. Both techniques claim the best results and are often presented as radically different. From a conceptual standpoint, however, the dependent technique is not purely ligament based as it starts with a cut of the proximal tibia, which is geometrically ruled by sagittal and coronal alignment targets. As such, geometric alignment is the starting point of both techniques.

The use of ligament tensioners as the main basis for obtaining stability and alignment can be a treacherous route to follow. In the native knee that is not affected by arthritis, the functional characteristics of the ligaments are determined by their insertions and the articular geometry. Once the arthritis sets in, the articular surface deforms and leg alignment deviates. It is difficult to restore these parameters, making use of ligament tension as a guide, for the following reasons.

Ligament tension is hard to measure reproducibly intra-operatively. The stress-strain curves of ligaments are different and the magnitude of the optimal distraction force is unknown.

In flexion, the dislocation or eversion of the patella will affect the obtained result and might induce significant bias.

Ligament tensioners evaluate available space in flexion and in 90° of flexion. No information about the mid- and deep flexion range can be obtained. Articular geometry of the implant will affect this.

The ligament tensioner does not control relative position AP position of femur and tibia. Especially in the presence of the PCL, distraction of the femur from the tibia at 90° of flexion will push the tibia forwards as the PCL straightens out and finds a more vertical position.

The medial side of the knee is the more stable and isometric side, where the lateral side is more dynamically controlled by muscle loads. Applying an equal distraction force to the medial and lateral compartment in an anesthetised patient can overestimate the available space in the lateral compartment and induce excessive external rotation.

Traumatic or chronic ligament injury caused by the arthritic process can skew the obtained results

Measure resection is obviously not void of potential errors. Especially in case of dysplasia or prior trauma, bone geometry and landmarks can be deformed. In contrast to ligament assessment however, pre-operative imaging under the form of x-rays or CT allows for an objective and reproducible evaluation of the amount of deformity and subsequent surgical correction.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 112 - 112
1 May 2013
Victor J
Full Access

Osteotomies around the knee are traditionally templated on 2D plain X-rays. Results are often inaccurate and inconsistent and multiplanar osteotomies are hard to perform. The aim of this study is to evaluate the feasibility and accuracy of virtual three-dimensional CT-based planning and correct execution of osteotomies around the knee with the aid of patient specific surgical guides and locking plates.

Eight consecutive patients with significant malalignment of the lower limb were included in the study. Pre-operative CT scans of the affected limb and the normal contra-lateral side were obtained and 3D models of the patient's anatomy were created, using dedicated software. The healthy contralateral limb was mirrored and geometrically matched to the distal femur or proximal tibia of the healthy side. A virtual opening wedge correction of the affected bone was used to match the geometry of the healthy contralateral bone. Standard lower limb axes measurements confirmed correction of the alignment. Based on the virtual plan, surgical guides were designed to perform the planar osteotomy and achieve the planned wedge opening and hinge axis orientation. The osteotomy was fixed with locking plates and screws. Post-operative assessment included planar X-rays, CT-scan and full leg standing X-rays.

One three-planar, three bi-planar and four single-plane osteotomies were performed. Maximum weightbearing mechanical femoro-tibial coronal malalignment varied between 7° varus and 14° valgus (mean 7.6°, SD 3.1). Corrective angles varied from 7°–15° (coronal), 0°–13° (sagittal) and 0°–23° (horizontal). The maximum deviation between the planned pre-operative wedge angle and the executed post-operative wedge angle was 1° in the coronal, sagittal and horizontal plane. The desired mechanical femorotibial axis on full-leg standing X-rays was achieved in 6 patients. Two patients were undercorrected by 1° and 2° respectively.

Conclusion

3D planning and guided correction of multi-planar deformity of femur or tibia is a feasible and accurate novel technique.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 22 - 22
1 Oct 2012
Victor J Premanathan A Keppler L Deprez P Bellemans J
Full Access

Eight consecutive patients with significant malalignment of the lower limb were included in the study. Pre-operative CT scans of the affected limb and the normal contra-lateral side were obtained and 3D models of the patient's anatomy were created, using dedicated software. The healthy contralateral limb was mirrored and geometrically matched to the distal femur or proximal tibia of the healthy side. A virtual opening wedge correction of the affected bone was used to match the geometry of the healthy contralateral bone. Standard lower limb axes measurements confirmed correction of the alignment. Based on the virtual plan, surgical guides were designed to perform the planar osteotomy and achieve the planned wedge opening and hinge axis orientation. The osteotomy was fixed with locking plates and screws. Post-operative assessment included planar X-rays, CT-scan and full leg standing X-rays.

One three-planar, three bi-planar and four single-plane osteotomies were performed. Maximum weightbearing mechanical femoro-tibial coronal malalignment varied between 7° varus and 14° valgus (mean 7.6°, SD 3.1). Corrective angles varied from 7°–15°(coronal), 0°–13°(sagittal) and 0°–23°(horizontal). The maximum deviation between the planned pre-operative wedge angle and the executed post-operative wedge angle was 1° in the coronal, sagittal and horizontal plane. The desired mechanical femorotibial axis on full-leg standing X-rays was achieved in 6 patients. Two patients were undercorrected by 1° and 2° respectively.

Conclusion

3D planning and guided correction of multi-planar deformity of femur or tibia is a feasible and accurate novel technique.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 146 - 146
1 Sep 2012
Premanathan A Victor J Keppler L Deprez P Bellemans J
Full Access

Background

Osteotomies around the knee have been used to correct lower limb mal-alignment for over 50 years. The procedure is technically demanding and carries specific risks of neurovascular injury, incorrect planning and execution, and insufficient fixation. In recent years, with the advent of locking plates, fixation techniques have improved significantly but the correct planning and execution of the operation remains difficult. Despite the availability of CT and MRI 3D imaging, surgical planning is still traditionally performed on 2D plain X-rays [1]. Especially with multi-planar deformities, this technique is prone to error. The aim of this clinical pilot study is to evaluate the feasibility of virtual pre-operative three-dimensional planning and correct execution of osteotomies around the knee with the aid of patient specific surgical guides and locking plates.

Patients and methods

Eight consecutive patients, presenting with significant malalignment of the lower limb were included in the study. Pre-operative CT scans of the affected limb and the normal contra-lateral side were obtained and 3D models of the patient's anatomy were created, using dedicated software (Mimics® 3-matic®, Materialise, Leuven Belgium) [2]. These models were used to evaluate the required surgical correction. The healthy contralateral limb was mirrored and geometrically matched to the distal femur or proximal tibia of the healthy side. A virtual opening wedge correction of the affected bone was used to match the geometry of the healthy contralateral bone. Standard lower limb axes measurements confirmed correction of the alignment [3]. Based on the virtual plan, surgical guides were designed to perform the planar osteotomy and achieve the planned wedge opening and hinge axis orientation (see figure 1). Apart from guiding the osteotomy, the patient specific surgical guide also guided drilling of the planned screw holes. Post-operative assessment of the correction was obtained through planar X-rays, CT-scan and full leg standing X-ray.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 208 - 208
1 Sep 2012
Victor J Premanathan A Keppler L Deprez P Bellemans J
Full Access

Introduction

Osteotomies around the knee are traditionally templated on 2D plain X-rays. Results are often inaccurate and inconsistent and multiplanar ostetomies are hard to perform. The aim of this study is to evaluate the feasibility and accuracy of virtual three-dimensional CT-based planning and correct execution of osteotomies around the knee with the aid of patient specific surgical guides and locking plates.

Methods

Eight consecutive patients with significant malalignment of the lower limb were included in the study. Pre-operative CT scans of the affected limb and the normal contra-lateral side were obtained and 3D models of the patient's anatomy were created, using dedicated software. The healthy contralateral limb was mirrored and geometrically matched to the distal femur or proximal tibia of the healthy side. A virtual opening wedge correction of the affected bone was used to match the geometry of the healthy contralateral bone. Standard lower limb axes measurements confirmed correction of the alignment. Based on the virtual plan, surgical guides were designed to perform the planar osteotomy and achieve the planned wedge opening and hinge axis orientation. The osteotomy was fixed with locking plates and screws. Post-operative assessment included planar X-rays, CT-scan and full leg standing X-rays.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 9 | Pages 1271 - 1276
1 Sep 2012
Luyckx T Peeters T Vandenneucker H Victor J Bellemans J

Obtaining a balanced flexion gap with correct femoral component rotation is one of the prerequisites for a successful outcome after total knee replacement (TKR). Different techniques for achieving this have been described. In this study we prospectively compared gap-balancing versus measured resection in terms of reliability and accuracy for femoral component rotation in 96 primary TKRs performed in 96 patients using the Journey system. In 48 patients (18 men and 30 women) with a mean age of 65 years (45 to 85) a tensor device was used to determine rotation. In the second group of 48 patients (14 men and 34 women) with a mean age of 64 years (41 to 86), an ‘adapted’ measured resection technique was used, taking into account the native rotational geometry of the femur as measured on a pre-operative CT scan.

Both groups systematically reproduced a similar external rotation of the femoral component relative to the surgical transepicondylar axis: 2.4° (sd 2.5) in the gap-balancing group and 1.7° (sd 2.1) in the measured resection group (p = 0.134). Both gap-balancing and adapted measured resection techniques proved equally reliable and accurate in determining femoral component rotation after TKR. There was a tendency towards more external rotation in the gap-balancing group, but this difference was not statistically significant (p = 0.134). The number of outliers for our ‘adapted’ measured resection technique was much lower than reported in the literature.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IX | Pages 47 - 47
1 Mar 2012
Almqvist K Vanlauwe J Saris D Victor J Verdonk P Bellemans J Verdonk R
Full Access

Introduction

Autologous chondrocyte implantation presents a viable alternative to microfracture in the repair of damaged articular cartilage of the knee; however, outcomes for patellar lesions have been less encouraging. ChondroCelect (CC) is an innovative, advanced cell therapy product consisting of autologous cartilage cells expanded ex vivo through a highly controlled and consistent manufacturing process.

Purpose

To assess the effect of CC in the treatment of patellofemoral lesions, for which standard treatment options had failed and/or no other treatment options were considered feasible.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 433 - 433
1 Nov 2011
Victor J Van Doninck D Labey L
Full Access

The understanding of rotational alignment of the distal femur is essential in total knee replacement to ensure that there is correct placement of the femoral component. Many reference axes have been described, but there is still disagreement about their value and mutual angular relationship. Our aim was to validate a geometrically-defined reference axis against which the surface-derived axes could be compared in the axial plane. A total of 12 cadaver specimens underwent CT after rigid fixation of optical tracking devices to the femur and the tibia. Three-dimensional reconstructions were made to determine the anatomical surface points and geometrical references. The spatial relationships between the femur and tibia in full extension and in 90° of flexion were examined by an optical infrared tracking system.

After co-ordinate transformation of the described anatomical points and geometrical references, the projection of the relevant axes in the axial plane of the femur were mathematically achieved. Inter-and intra-observer variability in the three-dimensional CT reconstructions revealed angular errors ranging from 0.16° to 1.15° for all axes except for the trochlear axis which had an interobserver error of 2°. With the knees in full extension, the femoral transverse axis, connecting the centres of the best matching spheres of the femoral condyles, almost coincided with the tibial transverse axis (mean difference −0.8°, SD 2.05). At 90° of flexion, this femoral transverse axis was orthogonal to the tibial mechanical axis (mean difference −0.77°, SD 4.08). Of all the surfacederived axes, the surgical transepicondylar axis had the closest relationship to the femoral transverse axis after projection on to the axial plane of the femur (mean difference 0.21°, SD 1.77). The posterior condylar line was the most consistent axis (range −2.96° to − 0.28°, SD 0.77) and the trochlear anteroposterior axis the least consistent axis (range − 10.62° to +11.67°, SD 6.12). The orientation of both the posterior condylar line and the trochlear anteroposterior axis (p = 0.001) showed a trend towards internal rotation with valgus coronal alignment.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 406 - 406
1 Nov 2011
Victor J Labey L Wong P Bellemans J
Full Access

A comparative kinematic study was carried out on six cadaver limbs, comparing tibiofemoral kinematics in five different conditions: unloaded, under a constant 130 N ankle load with a variable quadriceps load, with and without a constant 50 N medial and lateral hamstrings load. Kinematics were described as translation of the projected centers of the medial (MFT) and lateral femoral condyles (LFT) in the horizontal plane of the tibia, and tibial axial rotation (TR) as a function of flexion angle. In passive conditions, the tibia rotated internally with increasing flexion, to an average of −16° (range −12/−20°, SD 3.0°). Between 0 – 40° flexion, the medial condyle translated forwards 4 mm (range 0.8/5.5 mm, SD 2.5 mm), followed by a gradual posterior translation, totaling −9 mm (range −5.8/−18.5 mm, SD 4.9 mm) between 40° – 140° flexion. The lateral femoral condyle translated posteriorly with increasing flexion completing −25 mm (range −22.6 – −28.2 mm, SD 2.5 mm). Dynamic, loaded measurements were carried out in a knee rig. Under a fixed ankle load of 130 N and variable quadriceps loading, tibial rotation was inverted, mean TR 4.7° (range −3.3°/11.8° SD 5.4°), MFT −0.5 mm (range = −4.3/2.4 mm, SD = 2.4 mm), LFT 3.3 mm (range = −3.6/10.6 mm, SD = 5.1 mm). As compared to the passive condition, all these excursions were significantly different: p=0.015, p=0.013, and p=0.011 for TR, MFT and LFT respectively. Adding medial and lateral hamstrings force of 50N each, reduced TR, MFT and LFT significantly as compared to the passive condition. In general, loading the knee with hamstrings and quadriceps reduces rotation and translation as compared to the passive condition. Lateral hamstring action is more influential on knee kinematics than medial hamstrings action.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 464 - 464
1 Nov 2011
Victor J Hardeman F Londers J Witvrouw E
Full Access

Methodology: A retrospective review based on a prospective database was performed on 146 consecutive revision TKA’s. An independent observer measured clinical outcomes using the Knee Society Knee (KS) and Function Score (FS). X-ray evaluation, including rating of radiolucent lines, tibiofemoral and patellofemoral alignment, was carried out by an independent radiologist. ANOVA was used for statistical analysis, with significance set at p≤0.05 (SPSS version 15.0). Post-hoc Bonferroni testing was carried out for single variables including primary cause of failure, age at revision surgery, time span between index operation and revision, type of index operation, partial or total revision and the performance of a tuberosity osteotomy.

Results: 146 files were available in 135 patients. 16 patients deceased (17 knees) during the follow-up period and 2 patients (2 knees) were lost to follow-up. 117 patients (127 knees) were available for evaluation. Age at revision surgery averaged 67.7 years (range 32.3–88.1). Mean follow-up time was 4.5 years (range 1–14). Patients had revision TKA between 51 days and 16.1 years (average 4.7 years) after the index TKA. 54% of the early revisions were due to infection and instability, 55% of late revisions were caused by polyethylene-wear and loosening. The mean postoperative KS was 70.8 with a mean improvement of 43.2 points as compared to pre-operative. The mean postoperative FS was 52.9 with a mean improvement of 25.4 points. Grouping outcomes according to cause of failure of the index TKA gave the following ranking from better to worse, without being significant: wear (n=15; KS 80.8; range 43–99, SD 17.5), loosening (n=44; KS 75.8; range 15–100, SD=21.2), malalignment (n=19; KS 70.0; range 9–95, SD 25.9), instability (n=33; KS 68.2; range 5–100, SD 24.1), others (n=16; KS 66.7; range 10–100, SD 25.9), and infection (n=21; KS 64.2; range 3–100, SD 31.7). Survivorship at 5 years was 90.0% (CI 86.4% –93.6%), at 10 years 84,6% (CI 77.0% –92.3%) and at 14 years 84,6% (CI 37.7% –131.6%). Significant better outcomes were seen with late revisions, index operation being partial knee replacement and older age at revision. More failures (p=0.002) were seen with early revisions. In 32.6% of the patients radiolucent lines of ≥1 mm were observed. Points were granted with the use of a Radiolucency Scoring Scheme. Patients with less than 4 points (n=87, mean KS 71.2) had better outcomes than patients with 4 or more points (n=8, mean KS 56.4). 87% of patients were aligned within 4° of mechanical axis.

Conclusion:

Outcomes of revision TKA are inferior to primary TKA.

Early failures were mainly caused by infection, instability, malalignment.

Grouping revision TKA’s to etiology of failure did not lead to significant differences in outcomes.

Significant better outcomes were reported for late revisions, patients with older age at revision surgery and partial knee replacement.

Survivorship analysis was significally better for late than for early revisions.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 10 | Pages 1355 - 1361
1 Oct 2011
Bollars P Luyckx J Innocenti B Labey L Victor J Bellemans J

High-flexion total knee replacement (TKR) designs have been introduced to improve flexion after TKR. Although the early results of such designs were promising, recent literature has raised concerns about the incidence of early loosening of the femoral component. We compared the minimum force required to cause femoral component loosening for six high-flexion and six conventional TKR designs in a laboratory experiment.

Each TKR design was implanted in a femoral bone model and placed in a loading frame in 135° of flexion. Loosening of the femoral component was induced by moving the tibial component at a constant rate of displacement while maintaining the same angle of flexion. A stereophotogrammetric system registered the relative movement between the femoral component and the underlying bone until loosening occurred.

Compared with high-flexion designs, conventional TKR designs required a significantly higher force before loosening occurred (p < 0.001). High-flexion designs with closed box geometry required significantly higher loosening forces than high-flexion designs with open box geometry (p = 0.0478). The presence of pegs further contributed to the fixation strength of components.

We conclude that high-flexion designs have a greater risk for femoral component loosening than conventional TKR designs. We believe this is attributable to the absence of femoral load sharing between the prosthetic component and the condylar bone during flexion.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 292 - 292
1 Jul 2011
Almqvist K Saris D Vanlauwe J Victor J Luyten F
Full Access

Purpose: Long-term follow-up was to determine clinical benefit of ChondroCelect (CC) in the repair of full-thickness femoral cartilage lesions as compared to microfracture (MF).

Methods: In a randomized controlled clinical trial CC (n=57) was compared to MF (n=61) in patients aged 18 to 50 years with single ICRS grade III/IV symptomatic cartilage defects of the femoral condyles. Clinical improvement was measured up to 36 months using the KOOS (Knee injury and Osteoarthritis Outcome Score). Safety was monitored throughout the study.

Results: At baseline, KOOS was comparable between treatment groups (Mean ± SD: CC, 56.30 ± 13.61 and MF, 59.53 ± 14.95). Improvement from baseline in adjusted mean ± SE for the Overall KOOS was 21.25 ± 3.60 for the CC group vs. 15.83 ± 3.48 for the MF group at 36 months. When using the mixed linear model analysis at 36 months, statistically significantly greater improvements were demonstrated in the CC group vs. the MF group in change from baseline for the overall KOOS (D 7.60%, P = 0.018), as well as in 4 of 5 KOOS domains (activities of daily living, pain, symptoms/stiffness, and quality of life). Percentages of treatment responders were 83% (n = 34/41) vs. 62% (n = 31/50) based on the KOOS for CC and MF groups, respectively. Two (3.9%) patients in the CC group and 7 (11.5%) patients in the MF group underwent a re-intervention and were therefore considered treatment failures. Both treatments were well tolerated and the proportion of patients reporting AEs diminished over time, indicating stabilization of the patients’ condition.

Conclusions: Implantation of ChondroCelect in the treatment of articular cartilage defects of the femoral condyles shows superior clinical benefit at 36 months vs. microfracture. Structural superiority in favour of the ChondroCelect group was previously demonstrated at 1 year follow up.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 181 - 181
1 May 2011
Innocenti B Bollars P Luyckx J Labey L Victor J Bellemans J
Full Access

Introduction: High-flexion (HF) TKA designs were introduced in order to achieve greater flexion than with conventional TKA designs. Although early clinical results are promising, recent literature raises concerns about fixation and risk for early loosening of the femoral component during high demanding activities. This study’s aim was to measure the loosening force of the femoral component of several PS-TKA designs in a deep flexion configuration.

Methods: The loosening force of the femoral component of ten contemporary PS-TKAs, including five HF and five conventional designs from the major orthopaedic companies were evaluated. To simulate a deep flexion configuration, each TKA was implanted in a femoral bone model and placed in a loading frame in 135° of flexion, with the tibia vertically. Loosening of the femoral component was induced by raising the tibial insert with constant displacement rate, maintaining the same flexion angle. The resisting force was recorded continuously. A stereo-photogrammetric system registered the relative motion between the femoral component and the bone model. The loosening force was determined when a gap of 2 mm was observed. The influence of pegs on the loosening force was also investigated.

Results: Generally, conventional femoral designs required higher forces before loosening occurred compared to HF designs (p< 0.001). In the group of the HF designs there was a statistically significant difference between the designs (p=0.015) due to the shape of the internal box cut. For some designs, the presence of pegs induced a statistically significant change in loosening force.

Discussion and Conclusion: Several design characteristics of the femoral component can alter its resistance to loosening. In this in vitro study, it was shown that the shape of the internal box cut and the presence of pegs, as well as the geometry of the pegs, are important factors for the loosening force. In the group of the HF components there was a statistically significant difference between the designs with an open and a closed box.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 507 - 507
1 Oct 2010
Tengrootenhuysen M Meermans G Pittoors K Van Damme G Victor J
Full Access

Introduction: Meniscal injuries are common and a potential source of osteoarthritis of the knee. This has led to the development of techniques to repair meniscal tears. The goal of this study was to look at the independent variables that have an influence on the outcome and identify factors that might improve future clinical results.

Method: A total of 119 meniscal repairs were included in this study and evaluated at minumum 72 months postoperatively (range 72–86). Meniscal repair was done by an arthroscopically assisted technique: inside-out, all-inside or by a combination of both techniques. Patients with menisci repaired were clinically evaluated. We performed examinations using the International Knee Documentation Committee (IKDC) form and the Lysholm score. Radiological analysis of the knees was done by means of the Ahlback classification pre- and postoperatively. Variables that were analyzed were age, gender, type of repair, chronicity of the lesion, zone of injury, morphology of the tear, involvement of the anterior cruciate ligament (ACL), and the compartment involved. Statistical analysis was done by means of logistic regression.

Results: The overall clinical success rate for meniscal repair was 74.0%. In 73.1% of the cases, the mensiscal injury was associated with an injury of the ACL. Patients with an associated ACL injury had a better chance for a successfull outcome, but this was only significantly when the ACL injury was repaired (p< 0.05). There was no difference between the male and female patients regarding outcome. A delay in treatment for 6 weeks or more resulted in significantly worse results (p< 0.001). Younger patients had significantly better outcome results (p< 0.05). Better results were obtained when the inside-out technique was used for meniscal repair (p< 0.05).

Discussion: Our data confirm the good outcome results of meniscal repair. In our hands, a meniscal repair has the highest likelihood of success in young patients, with a concomitant ACL injury that is repaired at the same time. Better outcome scores were observed when the inside-out technique was used and when menisci where repaired within 6 weeks of the initial injury.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 502 - 502
1 Oct 2010
Bohnsack M Almqvist F Bellemans J Luyten F Saris D Vanlauwe J Verdonk R Victor J
Full Access

Purpose: A three-year evaluation of long-term clinical efficacy of Characterized Chondrocyte Implantation (CCI) compared to microfracture (MF), in the repair of symptomatic cartilage defects of the femoral condyles at 36 months post-surgery.

Materials and Methods: In a prospective, randomized, controlled, multicenter trial, CCI was compared to MF in patients aged 18–50 years with a single symptomatic ICRS grade III–IV lesion of the knee. Clinical outcome was measured 36 months after surgery by means of the KOOS, VAS for pain and ARS, with a non-inferiority margin preset at 9 % points for KOOS and VAS. Furthermore, response to treatment and progression of knee symptoms were assessed. Treatment failure was monitored throughout the study.

Results: Improvement from baseline was higher in the CCI group (N = 41) compared to the MF group (N = 49) for all clinical outcome parameters. Mean improvement from baseline for Overall KOOS was 22.14 vs. 14.48, respectively, with VAS and ARS scores revealing a similar trend. Responder analysis showed 83% of the patients treated with CCI improving vs. 61% after MF. Additionally, we observed a shift in the proportion of knee symptoms over time (52% vs. 35% of asymptomatic knees at 36 months compared to 2% vs. 8% at baseline in the CCI and MF group respectively). At 36 months, failure rates were low in both groups (n=2 in CCI vs. n=7 in MF).

Conclusions: Previous data have described a superior structural repair after CCI compared to MF at 1 year post-surgery. Continued clinical improvement as well as a favorable responder analysis was demonstrated for CCI compared to MF at 36 months.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 195 - 195
1 Mar 2010
Harato K Bourne R Hart J Victor J Snyder M Ries M
Full Access

The purpose of the current study was to compare mid-term outcomes of posterior cruciate retaining(CR) versus posterior cruciate substituting (PS)procedures, using the Genesis II total knee arthroplasty (TKA) system(Smith and Nephew, Memphis TN). Ninety nine CR and 93 PS TKA’s were analysed in this prospective, randomised, clinical trial. Surgeries were performed at seven medical centres by participating surgeons. Clinical outcomes (Knee Society Score, Range of Motion, WOMAC, SF 12 : and radiographic findings), in addition to postoperative complications, were evaluated with a minimum follow-up of five years. Following data analysis, there were no Significant differences in patient demographics or pre-operative clinical measures between the two groups. At the latest follow-up interval, no Significant differences were found between the CR and PS groups with regard to functional assessment, patient satisfaction or post-operative complications. However the PS group did display statistically Significant improvements in range of motion when compared with the CR group. The results of this investigation would suggest that while comparable in regards to supporting good clinical outcomes, the PS Genesis II design does appear to support significantly improved post-operative range of motion when compared with the CR design


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 415 - 415
1 Sep 2009
Saris DB Vanlauwe J Victor J Bellemans J LuytenYFortems FP
Full Access

Purpose: As a one-step surgical procedure, microfracture is frequently considered to be technically easier and associated with less postoperative morbidity than autologous chondrocyte implantation (ACI), which involves both arthrotomy and arthroscopy and therefore safety was assessed in patients with symptomatic cartilage lesions of the knee treated with characterized chondrocyte implantation (CCI) or microfracture.

Methods: CCI (n=57) was compared to microfracture (n=61) in patients with grade III–IV symptomatic cartilage defects of the femoral condyles in a Phase III, prospective, multi-center, randomized, controlled trial. Safety assessments included adverse events (AEs), physical examination, vital signs, hematology and clinical chemistry.

Results: At 18 months post-surgery, similar proportions of patients experienced AEs in the CCI (88%) and microfracture (82%) groups; 67% and 59%, respectively, experienced AEs considered treatment related. The AE profile was generally similar between groups, with no significant difference for hypertrophy, although significantly more CCI-treated patients had joint swelling (19% versus 4.9%; p=0.022) and treatment-related joint crepitation (12% versus 1.6%; p=0.028). Although the proportion of patients with severe AEs was similar for CCI (12%) and microfracture (13%), slightly more microfracture-treated patients experienced serious (life-threatening or requiring hospitalization) AEs (13% versus 8.8%). No patients discontinued due to AEs or died during the study.

Conclusion: Contrary to general opinion, the two-step CCI procedure, involving arthroscopy followed by arthrotomy, has a similar safety profile to that of microfracture, a one-step arthroscopic procedure, for treating cartilage lesions of the knee.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 415 - 415
1 Sep 2009
Saris DB Vanlauwe J Victor J Bellemans J Luyten FP Fortems Y
Full Access

Purpose: This study compared the efficacy and safety of Characterized Chondrocyte Implantation (CCI) to microfracture in the repair of symptomatic cartilage defects of the femoral condyle.

Methods: CCI (n=51) was compared to microfracture (n=61) in patients with grade III–IV symptomatic cartilage defects of the femoral condyles in a prospective, multicenter, randomized, controlled trial. Structural repair was assessed at 1 year by histopathologists blinded to the treatment using

computerized histomorphometry and

an overall histology assessment. Clinical outcome was measured using the Knee Injury and Osteoarthritis Outcome Score (KOOS). Safety was recorded throughout the study.

Results: CCI resulted in better structural repair than microfracture at 1 year post-treatment, as assessed by histomorphometry (p=0.003) and overall histology (p=0.012). Structural repair parameters relating to chondrocyte phenotype and tissue structure were also superior with CCI. Noninferiority of CCI was demonstrated for clinical outcome at 12–18 months, and both treatments were generally well tolerated.

Conclusion: At 1 year post-treatment, CCI resulted in superior tissue repair compared to microfracture. Short-term clinical outcome after 12–18 months was similar for both treatments, as was the safety profile. The superior structural repair achieved with CCI may lead to improved long-term clinical benefits.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 5 | Pages 683 - 690
1 May 2009
Victor J Van Doninck D Labey L Van Glabbeek F Parizel P Bellemans J

The understanding of rotational alignment of the distal femur is essential in total knee replacement to ensure that there is correct placement of the femoral component. Many reference axes have been described, but there is still disagreement about their value and mutual angular relationship. Our aim was to validate a geometrically-defined reference axis against which the surface-derived axes could be compared in the axial plane. A total of 12 cadaver specimens underwent CT after rigid fixation of optical tracking devices to the femur and the tibia. Three-dimensional reconstructions were made to determine the anatomical surface points and geometrical references. The spatial relationships between the femur and tibia in full extension and in 90° of flexion were examined by an optical infrared tracking system.

After co-ordinate transformation of the described anatomical points and geometrical references, the projection of the relevant axes in the axial plane of the femur were mathematically achieved. Inter- and intra-observer variability in the three-dimensional CT reconstructions revealed angular errors ranging from 0.16° to 1.15° for all axes except for the trochlear axis which had an interobserver error of 2°. With the knees in full extension, the femoral transverse axis, connecting the centres of the best matching spheres of the femoral condyles, almost coincided with the tibial transverse axis (mean difference −0.8°, sd 2.05). At 90° of flexion, this femoral transverse axis was orthogonal to the tibial mechanical axis (mean difference −0.77°, sd 4.08). Of all the surface-derived axes, the surgical transepicondylar axis had the closest relationship to the femoral transverse axis after projection on to the axial plane of the femur (mean difference 0.21°, sd 1.77). The posterior condylar line was the most consistent axis (range −2.96° to −0.28°, sd 0.77) and the trochlear anteroposterior axis the least consistent axis (range −10.62° to +11.67°, sd 6.12). The orientation of both the posterior condylar line and the trochlear anteroposterior axis (p = 0.001) showed a trend towards internal rotation with valgus coronal alignment.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 5 | Pages 646 - 655
1 May 2005
Victor J Banks S Bellemans J

We performed a prospective, randomised trial of 44 patients to compare the functional outcomes of a posterior-cruciate-ligament-retaining and posterior-cruciate-ligament-substituting total knee arthroplasty, and to gain a better understanding of the in vivo kinematic behaviour of both devices.

At follow-up at five years, no statistically significant differences were found in the clinical outcome measurements for either design. The prevalence of radiolucent lines and the survivorship were the same. In a subgroup of 15 knees, additional image-intensifier analysis in the horizontal and sagittal planes was performed during step-up and lunge activity. Our analysis revealed striking differences. Lunge activity showed a mean posterior displacement of both medial and lateral tibiofemoral contact areas (roll-back) which was greater and more consistent in the cruciate-substituting than in the cruciate-retaining group (medial p < 0.0001, lateral p = 0.011). The amount of posterior displacement could predict the maximum flexion which could be achieved (p = 0.018). Forward displacement of the tibiofemoral contact area in flexion during stair activity was seen more in the cruciate-retaining than in the cruciate-substituting group. This was attributed mainly to insufficiency of the posterior cruciate ligament and partially to that of the anterior cruciate ligament. We concluded that, despite similar clinical outcomes, there are significant kinematic differences between cruciate-retaining and cruciate-substituting arthroplasties.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_III | Pages 227 - 227
1 Mar 2004
Victor J Hoste D
Full Access

Aims: The aim of the study was to determine the accuracy of the kinematical determination of the centre of rotation of the hip and to compare the outcome of the Computer assisted surgery (CAS) group versus a control group of patients with conventionally instrumented TKA, in a prospective randomized way. Methods: A prospective, randomized and controlled trial was undertaken with an image based CAS system (ION®), using specific knee software for the GENESIS II®total knee system. Randomization was performed on a consecutive group of 50 primary TKA’s, without exclusion criteria. All computed kinematical centres of rotation of the hip were compared to the anatomic fluoroscopic images. The difference between the kinematical centre of rotation and the anatomic centre of the femoral head was measured in the frontal plane. Coronal alignment was measured on full leg standing films. Validation of the full leg standing films was carried out in comparing the pre-operative measured angle and the computed deformity angle at the beginning of the surgery. Outcome of the CAS group was compared to the conventional group on the following items: tourniquet time, operative time, blood loss, patellar alignment, tibial slope, coronal alignment, range of motion and complications. Results: ACCURACY: The correlation index between pre-op full legs and CAS measured values was excellent: r2=0.997. Difference between kinematical centre of rotation and anatomic centre of the hip: mean deviation between the two points was 1.2 mm (0–4mm), stdv 1.2 mm. This corresponds with a mean angular deviation of 0.17° (0–0.57°). OUTCOME: Tourniquet time: conventional 56 min., CAS 72 min. p=0.002. Operative time: conventional 70 min., CAS 93 min. p< 0.001. Blood loss: conventional 3.3 g/dl, CAS 4 g/dl. Patellar alignment: no tilt > 5°, no subluxation > 3 mm, both groups. Tibial slope: conventional 3.5°, CAS 3°. Post-operative mechanical alignment was between 0 and 2° of deformity for 16 conventional knees, and between 3–4° for 5 conventional knees. In the CAS group, all 21 knees scored between 0° and 2° of mechanical alignment. ROM at 6 weeks: flexion conventional 106°, CAS 105°. Fixed flexion contracture: conventional 2.9, CAS 2.1. Complications: delayed wound healing: conventional 2, CAS 1. Conclusions: Computer assisted kinematical determination of the centre of the hip can be highly accurate. Post-operative coronal alignment in CAS group is excellent, however not significantly better than conventional instrumentation.


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 1 | Pages 50 - 53
1 Jan 2002
Bellemans J Banks S Victor J Vandenneucker H Moemans A

Our purpose was to determine the mechanism which allows the maximum knee flexion in vivo after a posterior-cruciate-ligament (PCL)-retaining total knee arthroplasty.

Using three-dimensional computer-aided design videofluoroscopy of deep squatting in 29 patients, we determined that in 72% of knees, direct impingement of the tibial insert posteriorly against the back of the femur was the factor responsible for blocking further flexion.

In view of this finding we defined a new parameter termed the ‘posterior condylar offset’. In 150 consecutive arthroplasties of the knee, the magnitude of posterior condylar offset was found to correlate with the final range of flexion.