header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

The Effect of Single Radius TKA Implantation and Joint Line Proximalisation on the Strain Pattern in the sMCL of the Knee

International Society for Technology in Arthroplasty (ISTA)



Abstract

Introduction

In this study, three-dimensional (3D) digital image correlation (DIC) was adopted to investigate the strain in the superficial medial collateral ligament (sMCL) of the human knee. To our knowledge, no reports or validation of 3D DIC measurement on human collagenous tissue exists.

The first part of this research project focused on the validation of 3D DIC (1) as a highly accurate tool for non-contact full field strain analysis of human collagenous tissue. In the second part, 3D DIC was used to measure the strain patterns in the superficial medial collateral ligament (sMCL) of the native knee (2). In a third part, the strain pattern in the sMCL after total knee arthroplasty (TKA) in an ‘optimal’ (3) and with a proximalised joint line (4) was analysed.

Methods

(1) Six fresh frozen human Achilles tendon specimens were mounted in a custom made rig for uni-axial loading. The accuracy and reproducibility of 3D DIC was compared to two linear variable differential transformers (LVDT's). (2) The strain pattern of the sMCL during the range of motion (ROM) was measured using 3D DIC in six fresh frozen cadaveric knees. The knees were mounted in a custom made rig, applying balanced tension to all muscle groups around the knee. The experiment was repeated after computer navigated implantation of a single radius posterior stabilised (PS) TKA in ‘optimal’ (3) and with a 4 mm proximalised joint line (4).

Results

(1) Accuracy analysis revealed that the scatter was very low for all specimens (0,03%) and a spatial resolution of 0,1 mm for strain measurement was reached. When compared to the LVDT, DIC showed excellent correlation (R = 0.99). (2) Overall, the sMCL behaved isometrically between 0° and 90° of flexion showing less 1% slackening in all specimens. Further slackening was seen in deeper flexion. Significant regional inhomogeneity was observed (fig 1). The highest strains (up to 5% lengthening) were seen in the proximal part. The middle and distal part were near isometric between 0° and 90° of flexion. (3) A significant alteration of the strain pattern was seen after TKA with an increased strain in all parts of the sMCL from 90° to deeper flexion (fig 2). (4) This effect became significantly more pronounced with joint line proximalisation.

Discussion

Strain in the native sMCL proved to be inhomogeneously distributed with significant differences between proximal, middle and distal part during the ROM. The higher baseline strain in the proximal part might be the explanation for the fact that most of the sMCL lesions are seen in that region. A single radius TKA failed to reproduce the native sMCL strain pattern from 90° to deeper flexion. This effect became even more pronounced with joint line proximalisation. These higher sMCL strains might compromise deeper flexion after TKA.

Conclusion

The strain pattern of the sMCL in the native knee showed important regional differences during the ROM and significant alterations after TKA implantation and joint line proximalisation.


*Email: