header advert
Results 21 - 40 of 101
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 133 - 133
1 Mar 2013
Bertollo N Gothelf T Walsh W
Full Access

Introduction

Surgical drill-bits are used in a raft of procedures, from trauma, joint reconstruction to Arthroplasty. Drilling of bone is associated with the conversion of mechanical work energy into shear failure of bone and heat generation, causing a transient rise in temperature of hard and soft tissues. Thermal insults above 47°C sustained for one minute or more may cause osteonecrosis, reduced osteogenic potential, compromise fixation and influence tolerances with cutting blocks. Drill design parameters and operational variables have marked effects on cutting performance and heat generation during drilling. Dulling and wear of the cutting surfaces sustained through repeated usage can significantly reduce drill bit performance. Deterioration of cutting performance substantially increases the axial thrust force required to propel the cutting face through bone, compromising surgeon control during drilling and increasing the likelihood of uncontrolled plunging, cortical breakthrough and improper placement of holes as well as other jigs.

Methods

The drilling accuracy and skiving of 2.8 mm 3-fluted SurgiBit (Orthopedic Innovation (OI), Sydney, Australia) (Figure 1) was compared with a standard 2-fluted drill (Synthes) at 15, 30 and 45 degrees using a 4th generation Sawbone as well as bovine cortical bone. A surgical handpiece was mounted in a servo-hydraulic testing machine and the motion of the drill-bit confined to 2 degrees of freedom. The lateral force and skiving distance was measured (n=6 per drill per angle per testing medium). A new drill was used for each test. Wear performance over multiple drilling episodes (1, 10 and 100) was performed in bovine cortical bone. The surface characteristics of the cutting faces of the drills were assessed optically at 10x magnification and at higher magnifications (50, 100 and 500x) using an environmental electron microscope.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 360 - 360
1 Mar 2013
Wang T Pelletier M Bertollo N Crosky A Walsh W
Full Access

Introduction

Implant contamination prior to cement application has the potential to affect the cement-implant bond. the consequences of implant contamination were investigated in vitro using static shear loading with bone cement and titanium dowels of differing surface roughness both with, and without contamination by substances that are likely to be present during surgery. Namely; saline, fat, blood and oil, as a negative control.

Methods

Fifty Titanium alloy (Ti-6Al-4V) dowels were prepared with two surface finishes comparable to existing stems. The roughness (Ra and Rq) of the dowel surface was measured before and after the pushout test. Four contaminants (Phosphate Buffered Saline (PBS), ovine marrow, ovine blood, olive oil) were prepared and heated to 37°C. Each contaminant was smeared on the dowel surface completely and uniformly approximately 4 minutes prior to implantation. Samples were separated into ten groups (n=5 per group) based on surface roughness and contaminant. Titanium alloy dowels was placed in the center of Polyvinyl chloride (PVC) tubes with bone cement, and equilibrated at 37°C in PBS for 7 days prior to mechanical testing. The push out test was performed at 1 mm per minute. The dowel surface and cement mantel were analyzed using a Scanning Electron Microscopy (SEM) to determine the distribution and composition of any debris and contaminates on the surface.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 143 - 143
1 Mar 2013
Chen D Bertollo N Stanford R Harper W Walsh W
Full Access

Aim

Cementless prosthesis is one of the major bone-implant interface fixation methods in total joint replacement. Grit blasted surface, hydroxyapatite coated surface and plasma sprayed metallic porous coating have been popularly used. The latter has demonstrated higher bone implant mechanical stability in previous laboratory study in early and middle stages. However, question remains what the mechanism is to make it performing better and how to improve them further. This study is designed to examine the mode of failure in bone-implant interface in a sheep model.

Method

Plasma sprayed porous coated (TiPL); hydroxyapatite (HA) coated and and grit blasted (TiGB) titanium implants were examined in the study. Each type has 36 specimens. Implants were inserted into cortical bones in a press-fit fashion in a total of 22 sheep bilateral hind limbs. Specimens were retrieved at 4 weeks and 12 weeks. Push- out testing was performed to just reach ultimate failure. Failed bone-implant interface were investigated by histology and BSEM. The percentage of failure at bone-coating interface, bone itself fracture, coating itself failure, and coating-substrate dissociation were measured by BSEM.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 144 - 144
1 Mar 2013
Chen D Bertollo N Harper W Stanford R Walsh W
Full Access

This study was performed to compare the mechanism of bone-implant integration and mechanical stability among three popularly used cementless implant surfaces. Plasma sprayed porous surface (TiPL), grit-blasted rough surface (TiGB), and hydroxyapatite coated implant surface (HA) were tested in a sheep model at 4 and 12 weeks. The integration patterns were investigated using histology, histomorphometry, and mechanical strength by push-out test. All three groups demonstrated early bone ongrowth on their surfaces, with much of the ongrowth resembling contact osteogenesis. TiPL group showed bone anchorage into porous coating with new bone ingrowth into the pores. HA group revealed small cracks at its coating at 12 weeks time point. Plasma sprayed porous surface also demonstrated its superior mechanical stability maybe reinforced by its bone anchorage, whearas, HA surface exhibited higher osteoconductivity with highest ongrowth rate.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 244 - 244
1 Mar 2013
Lovric V Heuberer P Goldberg M Stone D Page R Oliver R Yu Y Walsh W
Full Access

Introduction

Post-arthroscopic glenohumeral chondrolysis (PAGCL) is a rare, but significant, complication of arthroscopic shoulder surgery that may lead to arthroplasty. Exact causal factors and pathways associated with the development of PAGCL are unknown however a number of patient factors and surgical factors have been implicated. Suture is one of these potential causal factors and currently little is known about the body's immune response to commonly used orthopaedic sutures. The aim of this project is to examine the biological response to 3 commonly used orthopaedic sutures (Ethibond, Fibrewire, and Orthocord) in a murine airpouch model. It was hypothesised that different sutures would elicit a different histological response and that suture wear-debris would induce an increased inflammatory reaction compared to intact suture.

Methods

Total of 50 male Wister rats (12 weeks old) were used in this study. 5 rats were used per time point per group. Rat air-pouch was created according to a protocol previously described by Sedgewick et al. (1983). Once the pouch was established, on day 6, an incision was made and one of the test materials (intact Ethibond, intact Orthocord, intact Fibrewire, Fibrewire wear-debris) administered. Following wound closure, 5 ml of sterile PBS was injected to suspend the implanted materials. Negative control animals were injected with PBS alone. Rats were sacrificed at 1 and 4 weeks following surgery. The entire pouch was harvested and processed for H&E histology. The images of histological stained sections were digitally photographed and evaluated for presence of synovium and inflammatory reaction. Foreign body giant cells were quantified by two independent, blinded observers.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 207 - 207
1 Mar 2013
Johns B Pelletier M Bertollo N Hancock N Walsh W Bruce W
Full Access

Introduction

Initial stability of the tibial component influences the success of uncemented total knee arthroplasty. In uncemented components, osseointegration provides long-term fixation which is particularly important for the tibial component. Osseointegration is facilitated by minimising bone-implant interface micromotion to within acceptable limits. To investigate initial stability, this study compares the micromotion and initial seating of two uncemented hydroxyapatite-coated tibial components, the Genesis II and Profix. This is the first stability comparison of two hydroxyapatite-coated tibial components.

Methods

Six components of each type were implanted into synthetic tibias by a single orthopaedic surgeon. Good coverage was achieved. No screws or articular inserts were used. Initial seating was measured using ImageJ software at five areas on each tibia. Tibias were transected and their proximal section implanted into a molten alloy parallel to horizontal. Dynamic mechanical testing was performed using a hydraulic 858-Bionix machine. Prostheses underwent unilateral axial point-loading of 700N cyclically applied four times. The load was applied to three locations approximating femoral loading points. The loading cycle was repeated six times at each point, allowing micromotion to be recorded at three contralateral locations. Micromotion was measured by optical lasers. After dynamic testing, two tibial components of each type were removed with claw pliers while measuring the force required on the 858-Bionix machine. Implant under-surfaces were photographed for wear.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 316 - 316
1 Mar 2013
Russell N Rives A Bruce W Pelletier M Walsh W
Full Access

Introduction

Gamma Irradiation is often considered the gold standard for sterilizing bone allograft. However, a dose dependant decrease in the static mechanical properties of gamma irradiated bone has been well established. Supercritical Fluid Sterilization (SCF) using carbon dioxide represents a potential alternate method to sterilize allografts. This study aimed to evaluate the effect of SCF on the static and dynamic (fatigue) properties of cortical bone in 3-point bending.

Methods

Eighty paired 18-month old rabbit humeri were randomized to 4 treatments: Gamma Irradiation at 10 kGy or 25 kGy, SCF Control and SCF with Peracetic Acid (Figure 1) (n=20 pairs per group). One side was treated while the other acted as a control. Ten pairs in each group were tested statically at 5 mm/min; while ten were tested dynamically between 15–150 N at 4 Hz. Samples were fatigued to failure or 50000 cycles (run-out). All testing was performed at room temperature in a saline bath. A 2-tailed t-test was used to test for significance within pairs and a one-way ANOVA with Games-Howell post-hoc test was used to test between groups.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 294 - 294
1 Mar 2013
Oliver R Brinkman M Christou C Bruce W Walsh W
Full Access

Introduction

The reduction of intraoperative blood loss during total knee arthroplasty (TKA) and total hip arthroplasty (THA) and even organ resection is an important factor for surgeons as well as the patient. In order to cauterize blood vessels to stop bleeding diathermy is commonly used and involves the use of high frequency and induces localized tissue damage and burning. Saline-coupled bipolar sealing RFE technology however has been shown to reduce tissue carbonization, however the dosage effects of RFE are not well known for both bone and soft tissue. This study examined sealing progression of blood vessels using a range of energy levels of saline-coupled bipolar RFE on bone and various soft tissues in a non-survival animal study.

Materials and Methods

Following institutional ethical approval, three mature sheep were used to examine the cancellous bone of the femoral trochlear groove and soft tissue (liver, kidney, lung, pancreas and mesentry peritoneum) subjected to the following treatment regime varying by watts and time: (1) untreated control, (2) 50 W for 1 sec, 2 sec, 3 sec and 5 sec, (3) 140 W for 1 sec, 2 sec, 3 sec and 5 sec and (4) 170 W for 1 sec, 2 sec, 3 sec and 5 sec. The Aquamantys™ System Generator and hand piece (Salient Surgical Technologies, Inc, Portsmouth, NH) coupled to a saline (0.9% NaCl) drip was used to apply RFE to the various tissues. Two clinical diathermy settings were used as controls. Tissues were immediately harvested, fixed in 10% buffered formalin and prepared for routine paraffin histology. Stained sections were evaluated in a blinded fashion for the acute in vivo response.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 59 - 59
1 Mar 2013
Esposito C Roques A Tuke M Zicat B Walter WK Walsh W Walter WL
Full Access

Introduction

Edge loading commonly occurs in all bearings in hip arthroplasty. Edge loading wear can occur in these bearings when the biomechanical loading axis reaches the edge and the femoral head loads the edge of the cup producing wear damage on both the head and cup edge. When the biomechanical loading axis passes through the polished articulating surface of the acetabular component and does not reach the edge, the center of the head and the center of the cup are concentric. The resulting wear known as concentric wear is low in metal-on-metal (MOM) bearings, and is negligible in ceramic-on-ceramic (COC) bearings. Edge loading is well defined in COC hip bearings. However, edge loading is difficult to identify in MOM bearings, since the metal bearing surfaces do not show wear patterns macroscopically. The aims of this study are to compare edge loading wear rates in COC and MOM bearings, and to relate edge loading to clinical complications.

Materials and Methods

Twenty-nine failed large diameter metal-on-metal hip bearings (17 total hips, 12 resurfacings) were compared to 54 failed alumina-on-alumina bearings collected from 1998 to 2011. Most COC bearings were revised for aseptic loosening or periprosthetic bone fracture, while most MOM bearings were revised for pain, soft tissue reactions or impingement. The median time to revision was 3.2 years for the metal hip bearings and 3.5 years for alumina hip bearings. The surface topography of the femoral heads was measured using a RedLux AHP (Artificial Hip Profiler, RedLux Ltd, Southampton, UK).


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 60 - 60
1 Mar 2013
Esposito C Oliver R Campbell P Walter WK Walter WL Walsh W
Full Access

In patients with conventional metal-on-Polyethylene (MoP) hip replacements, osteolysis can occur in response to wear debris. During revision hip surgery, surgeons usually remove the source of osteolysis (polyethylene) but cannot always remove all of the inflammatory granulomatous tissues in the joint. We used a human/rat xenograft model to evaluate the effects of polyethylene granuloma tissues on bone healing. Human osteoarthritic and periprosthetic tissues collected during primary and revision hip arthroplasty surgeries were transplanted into the distal femora of athymic (nude) rats. The tissues were assessed before and after implantation and the bone response to the tissues was evaluated after 1 week and 3 weeks using micro-computed tomography, histology, and immunohistochemistry. After 3 weeks, the majority (70%) of defects filled with osteoarthritic tissues healed, while only 21% of defects with polyethylene granuloma tissues healed. Polyethylene granuloma tissues in trabecular bone defects inhibited bone healing. Surgeons should remove polyethylene granuloma tissues during revision surgery when possible, since these tissues may slow bone healing around a newly implanted prosthesis. This model provides a method for delivering clinically relevant sized particles into an in vivo model for investigation.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 359 - 359
1 Mar 2013
Walsh W Christou C Low A Yu Y Oliver R Bertollo N Schlossberg B Lloyd W Ahn E
Full Access

Introduction

The need for regeneration and repair of bone presents itself in a variety of clinical situations. The current gold standard of treatment is autograft harvested from the iliac crest or local bone. Inherent disadvantages associated with the use of autogenous bone include limited supply, increased operating time and donor site morbidity. This study utilized a challenging model of posterolateral fusion to evaluate the in vivo response of an engineered collagen carrier combined with nano-structured hydroxyapatite (NanOss Bioactive 3D, Pioneer Surgical) compared to a collagen porous beta-tricalcium phosphate bone void filler (Vitoss BA, Orthovita).

Materials and Methods

A single level posterolateral fusion was performed in 72 adult rabbits at 6, 12 and 26 weeks (8 per group per time point). Group 1: nanOss Bioactive 3D + bone marrow aspirate (BMA) + autograft, Group 2: Vitoss BA + BMA and Group 3: Autograft + BMA were compared were compared using radiographic (X-ray and Micro-computed tomography (μCT), biomechanics (manual palpation and tensile testing at 12 and 26 weeks) and histology.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 16 - 16
1 Mar 2013
Bertollo N Sorial R Low A Walsh W
Full Access

Introduction

The marriage of rapid prototyping technologies with Arthroplasty has resulted in the fabrication and use of cutting jigs and guides which are tailored to a patients' individual anatomy. These disposable cutting blocks are designed based on input parameters obtained from pre-operative CT and MRI scans and manufactured using 3-D printers. Indirect benefits include a reduction in inventory and a decrease in the burden for central sterilising units. This approach is advantageous for the surgeon in the attainment of ideal mechanical alignment, which is known to be associated with an improved clinical outcome and implant longevity. This study evaluated the postoperative alignment parameters from a single surgeon series of patients following TKA with the Signature (Biomet) system.

Methods and Materials

The postoperative alignment of a single surgeon series of 60 consecutive patients receiving a Vanguard cruciate retaining TKR (Biomet) using the Signature patient-specific surgical positioning guides was performed. Postoperative CT and preoperative templating MRI scans were imported into Mimics 14.0 (Materialise, Belgium) where specific bony landmarks were identified in both data sets. A subset of these points was used to transform the MRI data into the CT coordinate frame to enable the computation of femoral mechanical alignment in the absence of a full-length lower limb CT scan. CT and transformed MRI landmarks were then imported into ProEngineer (PTC, MA) where angular measurements were made by projecting axes onto anotomical planes. Flexion, rotation, valgus/varus of the femoral component and posterior slope, rotation and valgus/varus of the tibial component were computed. Femoral rotation was referenced to the trans-epicondylar axis as opposed to Whiteside's line. Overall limb alignment was determined based on individual component position.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 63 - 63
1 Sep 2012
Wong M Yu Y Yang J Walsh W
Full Access

The purpose of this study was to understand the effects of terminal sterilisation and residual calcium on human demineralised bone matrix (DBM) in ectopic bone formation in nude rat.

The intramuscular implantation of human DBM prepared by the Queensland Bone Bank (QBB) from four donors into eight male athymic rats was used to assess osteoinductivity. The DBM contained different levels of residual calcium and treated with or without gamma-irradiation at 11kGy. At 6 weeks post-implantation, calcium deposition was assessed by manual palpitation and radiological imaging. Tissue morphology and cellular interactions was analysed using various histological staining methods whilst protein expression of anabolic and catabolic biomarkers were examined through immunohistochemistry. All results were then analysed in qualitative, semi-quantitative and quantitative manners and tested for statistical significance.

Bone formation was observed in all specimens at the gross level. This was confirmed by histology which revealed bony capsules surrounded by soft tissue in the muscle pockets and differences in tissue components. On a cellular level, variations in osteoclast expression were found between the two groups as well as amongst individual donors through statistical analysis which resulted in an imbalance of the expression of anabolic and catabolic markers. Furthermore, a positive relationship between residual calcium and new bone formation in gamma irradiated DBM samples was found. To date, no studies have compared the effect of calcium in gamma irradiated DBM.

Our results suggest that gamma irradiation even at low doses and residual calcium may affect new bone formation. Taken together, this study stresses the importance of selecting ideal conditions for graft processing and the need to identify an optimal level of irradiation and remaining calcium levels that confers a balance between osteoinductivity and sterility.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 131 - 131
1 Sep 2012
Walter W Esposito C Roques A Zicat B Walter W Walsh W
Full Access

Edge loading commonly occurs in all bearings in hip arthroplasty. The aim of this study compares metal bearings with edge loading to alumina bearings with edge loading and to metal bearings without edge loading.

Seventeen failed large diameter metal-on-metal hip bearings (8 total hips, 9 resurfacings) were compared to 55 failed alumina-on-alumina bearings collected from 1998 to 2010. The surface topography of the femoral heads was measured using a chromatically encoded confocal measurement machine (Artificial Hip Profiler, RedLux Ltd.).

The median time to revision for the metal hip bearings and the alumina hip bearings was 2.7 years. Forty-six out of 55 (84%) alumina bearings and 9 out 17 (53%) metal bearings had edge loading wear (p<0.01). The average volumetric wear rate for metal femoral heads was 7.87 mm3/yr (median 0.25 mm3/yr) and for alumina heads was 0.78 mm3/yr (median 0.18 mm3/yr) (p=0.02).

The average volumetric wear rate for metal heads with edge loading was 16.51 mm3/yr (median 1.77 mm3/yr) and for metal heads without edge loading was 0.19 mm3/yr (median 0 mm3/yr) (p=0.1). There was a significant difference in gender, with a higher ratio of females in the alumina group than the metal group (p=0.02).

Large diameter metal femoral heads with edge loading have a higher wear rate than smaller alumina heads with edge loading. Metal-on-metal bearings have low wear when edge loading does not occur.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 92 - 92
1 Sep 2012
Bertollo N Crook T Hope B Scougall P Lunz D Walsh W
Full Access

Shape memory staples have several uses in both hand and foot and ankle surgery. There is relatively little data available regarding the biomechanical properties of staples, in terms of both the compression achieved and potential decay of mechanical advantage with time. An understanding of these properties is therefore important for the surgeon.

Two blocks of synthetic polyurethane mimicking properties of cancellous bone were fixed in jigs to both the actuator and 6 degree-of-freedom load cell of an MTS servohydraulic testing machine. With the displacement between the blocks held constant the peak value and subsequent decay in compressive force applied by both the smooth and barbed version of the nitinol OSStaple (Biomedical Enterprises), Easyclip (LMT), Herbert Bone Screws (Martin) and the Headless Compression Screw (Synthes) was measured. Nitinol staples were energised once only. A second experiment was conducted to assess the effects of repeated energisation on these parameters.

The Easyclip staples achieved a mean peak force of 5.2N, whilst the smooth and barbed OSStaples achieved values of 9.3N and 5.7N, respectively. The Herbert screws achieved a mean peak force of 9N and the headless compression screws 23.9N. The mean peak force achieved with 2 Easyclip staples in parallel was 8.1N. Following the application of a single energisation the OSStaples exhibited a significant reduction in compressive load, losing up to approximately 70% of the peak value attained. The repeated energisation of these nitinol staples produced progressive increases in both peak and trough loads, the positive effects exhibited a plateau with time.

Performance of both OSStaples was comparable to the Herbert screw with regard to reduction load applied across a simulated fracture plane. The maximum load applied by the OSStaples diminished with time. Staples provide fixation without violating the fracture plane which has the potential to offer some benefits from a healing perspective.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 32 - 32
1 Sep 2012
Yu Y Luk F Yang J Walsh W
Full Access

To set up an osteosarcoma mouse model with spontaneous lung metastasis and to identify a marker of osteosarcoma metastasis and to inhibit the marker against the invasive ability of an osteosarcoma cell line.

A human osteosarcoma orthotopic mouse model was set up by injecting 143B human osteosarcoma cells into mouse tibia. Type I insulin-like growth factor receptor (IGF-1R) and its downstream signalling factors were measured in samples from the primary tumor and the lung secondaries by immunohistochemistry. Human Alu mRNA expression was tested using in situ hybridization assay. A Matrigel assay was used to assess cell invasion ability under the interference of a MEK/ERK pathway specific inhibitor, U0126.

All fifteen mice showed tumour mass at the left tibia and lung metastasis. Human Alu expression in the primary and secondary tumours confirmed human origin of the tumour cells. Total IGF-1R, MEK, Akt, p38 and phosphorylated MEK (p-MEK), but not p-Akt and p-p38, were positive in both local tumours and lung secondaries. Leiomyosarcoma controls expressed p-Akt and p-MEK, but not p-p38. The 143B cells treated with U0126 had significantly lower in vitro invasion ability compared with controls.

The IGF-1R-MEK signalling pathway, particularly Ras/Raf/MEK/ERK, may play an important role in osteosarcoma lung metastasis, and the targeting MEK/ERK by its specific inhibitor may have a potential use in the effective treatment of osteosarcoma.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 8 - 8
1 Sep 2012
Lovric V Ledger M Goldberg J Harper W Yu Y Walsh W
Full Access

Animal studies examining tendon-bone healing have demonstrated that the overall structure, composition, and organization of direct type entheses are not regenerated following repair. We examined the effect of Low-Intensity Pulsed Ultrasound (LIPUS) on tendon-bone healing. LIPUS may accelerate and augment the tendon-bone healing process through alteration of critical molecular expressions.

Eight skeletally mature wethers, randomly allocated to either control group (n=4) or LIPUS group (n=4), underwent rotator cuff surgery following injury to the infraspinatus tendon. All animals were sacrificed 28 days post surgery to allow examination of early effects of LIPUS. Humeral head – infraspinatus tendon constructs were harvested and processed for histology and immunohistochemical staining for BMP2, Smad4, VEGF and RUNX2. All the growth factors were semiquantitative evaluated. T-tests were used to examine differences which were considered significant at p < 0.05. Levene's Test (p < 0.05) was used to confirm variance homogeneity of the populations.

The surgery and LIPUS treatment were well tolerated by all animals. Placement of LIPUS sensor did not unsettle the animals. Histologic appearance at the tendon-bone interface in LIPUS treated group demonstrated general improvement in appearance compared to controls. Generally a thicker region of newly formed woven bone, morphologically resembling trabecular bone, was noted at the tendon-bone interface in the LIPUS-treated group compared to the controls. Structurally, treatment group also showed evidence of a mature interface between tendon and bone as indicated by alignment of collagen fibres as visualized under polarized light. Immunohistochemistry revealed an increase in the protein expression patterns of VEGF (p = 0.038), RUNX2 (p = 0.02) and Smad4 (p = 0.05) in the treatment group. There was no statistical difference found in the expression patterns of BMP2. VEGF was positively stained within osteoblasts in newly formed bone, endothelial cells and some fibroblasts at the interface and focally within fibroblasts around the newly formed vessels. Expression patterns of RUNX2 were similar to that of BMP-2; the staining was noted in active fibroblasts found at the interface as well as in osteoblast-like cells and osteoprogenitor cells. Immunostaining of Smad4 was present in all cell types at the healing interface.

The results of this study indicate that LIPUS may aid in tendon to bone healing process in patients who have undergone rotator cuff repair. This treatment may also be beneficial following other types of reconstructive surgeries involving the tendon-bone interface.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 150 - 150
1 Sep 2012
Christou C MacDonald M Walsh W
Full Access

Treatment of large segmental defects in the extremities is challenging. A segmental tibial defect model in a large animal can provide a basis through which in vivo testing of materials and techniques for use in non-unions and severe trauma cases can be examined.

This study reports such a model.

Six aged ewes (> 5 years) were used following ethical approval. A 5cm piece of the mid diaphysis of the left tibia was removed including its associated periosteum. The tibia was stabilized with an 8mm stainless steel cross locked intramedullary nail and all tissues closed in their respective layers. Animals were euthanised at 12 weeks following surgery and evaluated using radiographic, micro-computed tomography (CT), soft tissue and hard tissue histology techniques.

Three weeks post operatively one of the intramedullary nails failed through the first of the distal two cross locking screw holes, the sheep was euthanised and the tibia was harvested. Early signs of callus formation were evident at the osteotomy edges originating from the periosteal surface; the defect space was bridged by fibrous scar tissue.

The remaining 5 sheep were taken out to the 12 week time point then all relevant tissues were harvested. Gross dissection revealed a lack of bony union in the defect site and no evidence of infection. X-rays and CT showed a lack of hard tissue callus bridging in the defect region at 12 weeks. Histological sections of the bridging tissues revealed, callus originating from both the periosteal and endosteal surfaces, with fibrous tissue completing the bridging in all instances. One case had cartilaginous tissue developing; however this was incomplete at 12 weeks.

As none of the 12 week time point sheep achieved clinical union; this model may be effective as a basis for the investigation of healing adjuncts to be used in non-union cases, where severe traumatic injury has lead to significant bone loss such as blast injuries or following large tumour removal.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 143 - 143
1 Sep 2012
Esposito C Roques A Tuke M Walter W Walsh W
Full Access

Two types of ceramic materials currently used in total hip replacements are third generation hot isostatic pressed (HIPed) alumina ceramic (commercially known as BIOLOX®forte, CeramTec) and an alumina matrix composite material consisting of 75% alumina, 24% zirconia, and 1% mixed oxides (BIOLOX®delta, CeramTec). The aim of this study is to compare BIOLOX delta femoral heads to BIOLOX forte femoral heads revised within 2 years in vivo.

Ceramic bearings revised at one center from 1998 to 2010 were collected (61 bearings). BIOLOX delta heads (n=11) revised between 1–33 months were compared to BIOLOX forte femoral heads with less than 24 months in vivo (n=20). The surface topography of the femoral heads was measured using a chromatically encoded confocal measurement machine (Artificial Hip Profiler, RedLux Ltd.).

The median time to revision for BIOLOX delta femoral heads was 12 months, compared to 13 months for BIOLOX forte femoral heads. Sixteen out of 20 BIOLOX forte femoral heads and 6 out of 11 BIOLOX delta femoral heads had edge loading wear. The average volumetric wear rate for BIOLOX forte was 0.96 mm3/yr (median 0.13 mm3/yr), and 0.06 mm3/yr (median 0.01 mm3/yr) for BIOLOX delta (p=0.03). There was no significant difference (p>0.05) in age, gender, time to revision or femoral head diameter between the two groups.

Early results suggest less volumetric wear with BIOLOX delta femoral heads in comparison to BIOLOX forte femoral heads.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 226 - 226
1 Sep 2012
Da Assuncao R Haddad R Bruce W Walker P Walsh W
Full Access

Introduction

In order to prepare hamstring autograft, suture fixation to the tendon is required to secure and handle the tendon during harvest and preparation. We use a simple, grasping suture which doesn't require suture of the tendon, thus saving time and avoiding violation of the graft itself. We present this technique, with results of mechanical testing compared to a standard whip suture, traditionally used to handle hamstring autograft.

Methods and materials

Twelve uniform ovine flexor tendons were prepared. A number two braided polyester suture was used in all cases. Six tendons were prepared with a standard, non-locking whip-suture, maintaining uniformity of suture bite and working length between samples. Six tendons were prepared with the utility suture, also taking care to maintain uniformity. The suture was applied by tying the thread around the tendon with a single-throw granny knot then symmetrically wrapping the suture ends from proximal to distal and securing with another single throw, allowing compression of the tendon with longitudinal tension on the suture. All the samples were tested to failure in uniaxial tension in a materials testing machine. Peak load values and load/displacement curves were acquired and results analysed with a two-sample T-test assuming significance at P<0.05.