header advert
Results 1 - 13 of 13
Results per page:
The Bone & Joint Journal
Vol. 104-B, Issue 10 | Pages 1118 - 1125
4 Oct 2022
Suda Y Hiranaka T Kamenaga T Koide M Fujishiro T Okamoto K Matsumoto T

Aims

A fracture of the medial tibial plateau is a serious complication of Oxford mobile-bearing unicompartmental knee arthroplasty (OUKA). The risk of these fractures is reportedly lower when using components with a longer keel-cortex distance (KCDs). The aim of this study was to examine how slight varus placement of the tibial component might affect the KCDs, and the rate of tibial plateau fracture, in a clinical setting.

Methods

This retrospective study included 255 patients who underwent 305 OUKAs with cementless tibial components. There were 52 males and 203 females. Their mean age was 73.1 years (47 to 91), and the mean follow-up was 1.9 years (1.0 to 2.0). In 217 knees in 187 patients in the conventional group, tibial cuts were made orthogonally to the tibial axis. The varus group included 88 knees in 68 patients, and tibial cuts were made slightly varus using a new osteotomy guide. Anterior and posterior KCDs and the origins of fracture lines were assessed using 3D CT scans one week postoperatively. The KCDs and rate of fracture were compared between the two groups.


Bone & Joint Open
Vol. 3, Issue 5 | Pages 390 - 397
1 May 2022
Hiranaka T Suda Y Saitoh A Tanaka A Arimoto A Koide M Fujishiro T Okamoto K

The kinematic alignment (KA) approach to total knee arthroplasty (TKA) has recently increased in popularity. Accordingly, a number of derivatives have arisen and have caused confusion. Clarification is therefore needed for a better understanding of KA-TKA. Calipered (or true, pure) KA is performed by cutting the bone parallel to the articular surface, compensating for cartilage wear. In soft-tissue respecting KA, the tibial cutting surface is decided parallel to the femoral cutting surface (or trial component) with in-line traction. These approaches are categorized as unrestricted KA because there is no consideration of leg alignment or component orientation. Restricted KA is an approach where the periarthritic joint surface is replicated within a safe range, due to concerns about extreme alignments that have been considered ‘alignment outliers’ in the neutral mechanical alignment approach. More recently, functional alignment and inverse kinematic alignment have been advocated, where bone cuts are made following intraoperative planning, using intraoperative measurements acquired with computer assistance to fulfill good coordination of soft-tissue balance and alignment. The KA-TKA approach aims to restore the patients’ own harmony of three knee elements (morphology, soft-tissue balance, and alignment) and eventually the patients’ own kinematics. The respective approaches start from different points corresponding to one of the elements, yet each aim for the same goal, although the existing implants and techniques have not yet perfectly fulfilled that goal.


Bone & Joint Research
Vol. 11, Issue 4 | Pages 226 - 228
20 Apr 2022
Hiranaka T Suda Y Saitoh A Koide M Tanaka A Arimoto A Fujishiro T Okamoto K


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 39 - 39
1 Feb 2020
Suda Y Muratsu H Hiranaka Y Tamaoka T Oshima T Koga T Matsumoto T Maruo A Miya H Kuroda R
Full Access

Introduction

The influences of posterior tibial slope on the knee kinematics have been reported in both TKA and UKA. We hypothesized the posterior tibial slope (PTS) would affect the sagittal knee alignment after UKA. The influences of PTS on postoperative knee extension angle were investigated with routine lateral radiographies of the knee after UKA.

Materials & Methods

Twenty-four patients (26 knees; 19 females, 7 males) underwent medial UKA were involved in this study. Average age was 74.8 ± 7.2 years. The mean preoperative active range of motion were − 4.1° ± 6.3°in extension and 123.2° ± 15.5° in flexion. All UKAs were performed using fixed bearing type UKA (Zimmer Biomet, ZUK), with adjusting the posterior slope of the proximal tibial bone cut according to the original geometry of the tibia. Routine lateral radiographies of the knee were examined preoperatively, 6 months after the surgery. PTS and knee extension angles with maximal active knee extension (mEXT) and one-leg standing (sEXT) were radiographically measured. We used the fibular shaft axis (FSA) for the sagittal mechanical axis of the tibia. PTS was defined as the angle between the medial tibial plateau and the perpendicular axis of FSA. Extension angles (mEXT and sEXT) were defined as the angles between FSA and distal femoral shaft axis (positive value for hyperextension). The changes of PTS and the influences of PTS on sEXT at each time period were analyzed using simple linear regression analysis (p<0.05).


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 38 - 38
1 Feb 2020
Tamaoka T Muratsu H Tachibana S Suda Y Oshima T Koga T Matsumoto T Maruo A Miya H Kuroda R
Full Access

Introduction

Patients-reported outcome measures (PROMs) have been reported as the important methods to evaluate clinical outcomes in total knee arthroplasty (TKA). The patient satisfaction score in Knee Society Score (KSS-2011) has been used in the recent literatures. Patient satisfaction was subjective parameter, and would be affected by multiple factors including psychological factors and physical conditions at not only affected joint but also elsewhere in the body. The question was raised regarding the consistency of patient satisfaction score in KSS-2011 to other PROMs.

The purpose of this study was to investigate the correlation of patient satisfaction in KSS-2011 to other categories in KSS-2011 and to other PROMs including Forgotten Joint Score (FJS-12), EuroQol-5 Dimensions (EQ-5D) and 25-questions in Geriatric Locomotive Function Scale (GLFS-25).

Material & Method

83 patients over 65 years old with osteoarthritic knees were involved in this study. All patients underwent CR-TKAs (Persona CRR). The means and ranges of demographics were as follows: age; 74.5 years old (65–89), Hip-Knee-Ankle (HKA) angle; 12.4 (−6.2–22.5) in varus. We asked patients to fulfill the questionnaire including KSS-2011, FJS-12, EQ-5D and GLFS-25 at 1-year postoperative follow-up visit. KSS-2011 consisted of 4 categories of questions; patient satisfaction (PS), symptoms, patient expectations (PE), functional activities (FA).

We evaluated the correlation of PS to other PROMs using simple linear regression analyses (p<0.001).


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 25 - 25
1 Jul 2014
Takeuchi H Enomoto H Matsunari H Umeyama K Nagashima H Yoshikawa T Okada Y Toyama Y Suda Y
Full Access

Summary

A novel in vivo animal model to establish new surgical interventions for patients with ACL insufficiency.

Introduction

After ACL reconstruction, recruited cells from surrounding tissues play crucial roles in ligamentization to obtain adequate structural properties. To allow athletes to return sports activity sooner, these remodeling processes should be elucidated and be accelerated. However, in conventional animal models, it has been difficult to differentiate donor and recipient cells. Here we introduce the transgenic Kusabira-Orange pigs, in which cells produce fluorescence systemically, as in vivo model to trace cell recruitment after ACL reconstruction.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 96 - 96
1 Aug 2013
Enomoto H Nakamura T Shimosawa H Niki Y Kiriyama Y Nagura T Toyama Y Suda Y
Full Access

Although proximal tibia vara is physiologically and pathologically observed, it is difficult to measure the varus angle accurately and reproducibly due to inaccuracy of the radiograph because of rotational and/or torsional deformities. Since tibial coronal alignment in TKA gives influence on implant longevity, intra- or extra-medurally cutting guide should be set carefully especially in cases with severe tibia vara. In this context, we measured the proximal tibial varus angle by introducing 3D-coordinate system.

Materials & Methods

Three-dimensional models of 32 tibiae (23 females, 9 males, 71.2 ± 7.8 y/o) were reconstructed from CT data of the patients undergoing CT-based navigation assisted TKA. Clinically relevant mid-sagittal plane is defined by proximal tibial antero-posterior axis and an apex of the tibial plafond. After the cross-sectional contours of the tibial canal were extracted, least-square lines were fitted to define the proximal diaphyseal and the metaphyseal anatomical axis. The proximal tibia vara was firstly investigated in terms of distribution of proximal anatomical axis exits at the joint surface. TVA1 and TVA2 were defined to be a project angle on the coronal plane between the metaphyseal tibial anatomical axis and the proximal diaphyseal anatomical axis, and that between the metaphyseal tibial anatomical axis and the tibial functional axis, respectively. The correlations of each angle with age and femoro-tibial angle (FTA) were also examined.

Results

The proximal anatomical axis exits distributed 4.3 ± 1.7 mm medially and 17.1 ± 3.4 mm anteriorly. TVA1 and TVA2 were 12.5 ± 4.5°(4.4?23.0°) and 11.8 ± 4.4° (4.4?22.0°), respectively. The correlations of FTA with TVA1 (r=0.374, p<0.05) and TVA2 (r=0.439, p<0.05) were statistically significant.


The Bone & Joint Journal
Vol. 95-B, Issue 6 | Pages 782 - 787
1 Jun 2013
Niki Y Takeda Y Udagawa K Enomoto H Toyama Y Suda Y

We investigated the characteristics of patients who achieved Japanese-style deep flexion (seiza-sitting) after total knee replacement (TKR) and measured three-dimensional positioning and the contact positions of the femoral and tibial components. Seiza-sitting was achieved after surgery by 23 patients (29 knees) of a series of 463 TKRs in 341 patients. Pre-operatively most of these patients were capable of seiza-sitting, had a lower body mass index and a favourable attitude towards the Japanese lifestyle (27 of 29 knees). According to two-/three-dimensional image registration analysis in the seiza-sitting position, flexion, varus and internal rotation angles of the tibial component relative to the femoral component had means of 148° (sd 8.0), 1.9° (sd 3.2) and 13.4° (sd 5.9), respectively. Femoral surface contact positions tended to be close to the posterior edge of the tibial polyethylene insert, particularly in the lateral compartment, but only 8.3% (two of 24) of knees showed femoral subluxation over the posterior edge. The mean contact positions of the femoral cam on the tibial post were located 7.8 mm (sd 1.5) proximal to the lowest point of the polyethylene surface and 5.5 mm (sd 0.9) medial to the centre of the post, indicating that the post-cam contact position translated medially during seiza-sitting, but not proximally. Collectively, the seiza-sitting position seems safe against component dislocation, but the risks of posterior edge loading and breakage of the tibial polyethylene post remain.

Cite this article: Bone Joint J 2013;95-B:782–7.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 67 - 67
1 Oct 2012
Enomoto H Nakamura T Shimosawa H Waseda A Niki Y Toyama Y Suda Y
Full Access

Although optimal alignment is essential for improved function and implant longevity after TKA, we have less bony landmarks of tibia relative to femur. Trans-malleolar axis (TMA) is a reference line of distal tibia in the axial plane, which externally rotated relative to a ML axis of proximal tibia. We originally defined another reference axis associated with the orientation of tibial plafond, and then measured tibial torsion in the 3D-coordinate system.

Three-dimensional CAD models of 20 tibiae were reconstructed based on pre-operative CT data from OA patients (16 females and 4 males, 73.8 ± 6.9 years old). TMA was a line connecting each apex of medial and lateral malleolus. The plafond axis (PLA) that we originally defined in this study was a line connecting each midpoint of medial and lateral margin of talocrural facet. In terms of interobserver correlation coefficiency and mean errors of the designated points to define those axes, TMA was found out to be 0.982, 3.14 ± 0.47 mm (medial), and 0.988, 4.88 ± 0.59 mm (lateral). Those of PLA were 0.997, 1.97 ± 0.53 mm (medial), and 0.995, 2.02 ± 0.44 mm (lateral). The tibial torsion was 16.3 ± 6.3°with reference to TMA, and 10.2 ± 8.4°to PLA.

Based on these results, as for the rotational reference axis in the axial plain of distal tibia, we consider the plafond axis to be another reliable and reproducible axis, which is expected to be applicable in preoperative planning in TKA to reduce outliers of coronal alignment.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 432 - 432
1 Nov 2011
Enomoto H Nakamura T Yanagimoto S Kaneko H Fujita Y Funayama A Suda Y Toyama Y
Full Access

In the light of the increasing popularity of femoral resurfacing implants, there has been growing concern regarding femoral neck fracture. This paper presents a detailed investigation of femoral neck anatomy, the knowledge of which is essential to optimise the surgical outcome of hip resurfacing as well as short hip stem implantation.

Three-dimensional lower limb models were reconstructed from the CT-scan data by using the Mimics (Materialise NV, Leuven, Belgium). We included the CT data for 22 females and nine males with average age of 60.7 years [standard deviation: 16.4]. A local coordinate system based on anatomical landmarks was defined and the measurements were made on the unaffected side of the models.

First, the centre of the femoral head was identified by fitting an optimal sphere to the femoral head surface. Then, two reference points, one each on the superior and the inferior surface of the base of femoral neck were marked to define the neck resection line, to which an initial temporary neck axis was set perpendicular. Cross-sectional contours of the cancellous/cortical border were defined along the initial neck axis. For each cross-sectional contour, a least-square fitted ellipse was determined. The line that connects the centre of the ellipse at the base of the femoral neck and the centre of the femoral head was defined as the new neck axis. The above process was repeated to reduce variances in the estimation of the initial neck axis. The neck isthmus was identified according to the axial distributions of the cross-sectional ellipse parameters.

The short axis of the ellipse decreased monotonically since it was calculated from the center of the femoral head to the neck resection level (base of neck), whereas the long axis changed with the local minima. The cross section at which the long axis of the fitted ellipse had the local minima was determined as the neck isthmus.

The following measurements were made on the proximal part of the femur. The neck axis length measured from the center of the femoral head to the lateral endosteal border of the proximal femur was 67.3 mm [6.4]. The length between the center of the femoral head and the neck isthmus was 22.5 mm [2.7]. The diameter of the ellipse long axis at the neck isthmus was 27.6 mm [3.5] and was 23.6 mm [3.3] for the short axis.

The center of the neck isthmus did not align with the neck axis. The deviation of the isthmus from the neck axis which we defined as the isthmus offset was 0.7 mm [0.4].

If an alternative neck axis was defined between the center of the femoral head and the center of the neck isthmus, there would be a certain degree of angular shift with respect to the original neck axis. An angular shift of 1.8 degrees between the two axes can be expected for a 0.7-mm isthmus offset. In the worst case, an angular shift of 4.59 degrees was estimated for a subject with the largest isthmus offset of 1.93 mm.

Further investigations would be necessary to determine the axis configuration that represents the clinically relevant centre of the femoral neck. In order to reduce the deviations in the three-dimensional determination of the femoral neck axis, the reference anatomical landmarks and methods of evaluation should be carefully selected.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 222 - 222
1 May 2009
Harato K Matsumoto H Nagura T Otani T Suda Y Toyama Y
Full Access

The purpose of this study was to investigate the effect of knee flexion contracture on trunk kinematics.

Ten healthy old women, averaged sixty-two years, participated in this study. Subjects were tested at our laboratory with use of gait analysis system which consisted of eight retro-reflective markers (placed at bilateral acromion, anterior and posterior superior iliac spine, and iliaccrest), and five cameras. Unilateral (only right side) knee flexion contractures of zero, fifteen, and thirty degrees were simulated with a hard brace. All subjects performed walking trials at their preferred speed with or without simulation. First, level walking was measured without simulation, and then, with simulation at zero, fifteen and thirty degrees of flexion in order. Walking trials without brace was used as control. We evaluated walking velocity (m/s) and trunk kinematics (degrees). In the coronal plane, shoulder-pelvis bending angle was defined as the angle between shoulder girdle line and pelvic line. In the sagittal plane, anterior inclination of the trunk was defined by the slope linked right acromion and iliac crest, and anterior inclination of the pelvis was defined by the slope linked right superior anterior iliac spine and right superior posterior iliac spine. Shoulder-pelvis rotation angle was defined as the angle between shoulder girdle line and pelvic line in the axial plane. Maximum values were calculated.

Walking velocity was significantly decreased at thirty degrees contracture (1.19 at controls, 0.98 at thirty degrees contracture). In the coronal plane, trunk significantly tilted leftward rather (4.5) than rightward (1.8) at thirty degrees contracture. In the sagittal plane, trunk anterior inclination significantly increased at thirty degrees contracture (0.1 at controls, 3.1 at thirty degrees contracture). However, pelvic anterior inclination was similar. In the axial plane, trunk significantly rotated rightward (6.7) rather than leftward (4.3) at thirty degrees contracture.

Knee flexion contracture significantly influences physiological trunk kinematics in each plane. In particular, lateral bending to the contracture side was restricted, and this fact indicated that the lumbar spine may bend convexly to knee contracture side. These facts may result in Knee-Spine Syndrome.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 130 - 130
1 Mar 2008
Harato K Suda Y Matsumoto H Nagura T Otani T Matsuzaki K Toyama Y
Full Access

Purpose: The purpose of this study was to investigate the relationship between knee flexion contracture and spinal alignment.

Methods: Ten healthy women (mean age 62) participated in this study. Subjects were examined with posture analysis system, using twelve retro-reflective markers (placed at bilateral acromion, bilateral anterior and posterior superior iliac spine, iliaccrest, greater trochanter, lateral knee joint, lateral malleolus, lateral calcaneus, and fifth metatarsal head), five cameras and a force plate. Unilateral (only right side) knee flexion contractures were simulated by using a hard brace at 0, 15 and 30 degrees. First, relaxed standing was measured without simulation, and then the same measurement was performed with each simulation. The posture without brace was used as control. The shoulder tilting angle was defined by the height difference in right and left acromions. The pelvic tilting angle was defined by the height difference in right and left superior posterior iliac spines. The anterior-bent of the trunk was defined by the slope linked right acromion and right iliac crest. The posterior-bent of the pelvis was defined by the slope linked right superior anterior iliac spine and right superior posterior iliac spine. Knee resultant force (% body weight) was calculated by using inverse dynamics technique.

Results: When contracture angle increased, the trunk was significantly tilted leftward (1.4 degrees at 30 degrees contracture), and the pelvis was significantly tilted rightward (1.8 degrees at 30 degrees contracture). In anterior-bent of the trunk, no significant difference was detected. The posterior-bent of the pelvis was significantly increased (1.5 degrees at 30 degrees contracture). The severer the right knee contracture, the smaller the right knee resultant force (41.5 at controls, 28.7 at 30 degrees contracture) and the larger the left knee resultant force (40.2 at controls, 59.9 at 30 degrees contracture).

Conclusions: This study showed the influence of knee flexion contracture not only in the sagittal plane, as the previous study reported, but also in the coronal plane. Severe unilateral knee flexion contracture can cause the lumbar spine bent convexly to the contracture side. This may result in Knee-Spine Syndrome.


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_I | Pages 43 - 43
1 Jan 2003
Matsumoto H Suda Y Otani T Niki Y Enomoto H
Full Access

The outcomes of various operative methods for osteochondritis dissecans of the femoral condyles were reviewed, and choice of these operative methods were discussed.

Twenty-four cases (19 males and 5 females) which underwent operative treatments were reviewed. The operative methods included drilling, repositioning and fixation of the osteochodral fragment, and bone graft or osteochondral graft. The minimum follow-up period was two years. The medial femoral condyle was involved in 17 cases, and the lateral, in seven. Lateral discoid meniscus or meniscal injury was combined in all the 7 cases in the lateral. The operative methods were decided from the condition of the cartilage. Drilling was performed in cases with no or minimal cartilage damages (10 cases). Repositioning (if required) and fixation of the fragment using absorbable pins was carried out in cases with a partial or total fragmentation (7 cases). Bone graft or osteochondral graft was performed when the original site was already degenerated (7 cases). Partial meniscectomy was added when the meniscal injury was combined.

In patients who received drilling, the lesion healed radiographically in all the cases and they complained of no or minimal symptoms. In patients who received the fragment fixation, re-union of the fragment was observed in 71% and the clinical outcomes were satisfactory in most of the cases. In patients who received bone graft or osteochondral graft, although union of the graft was observed in all the cases radiographically, 71% of the patients complained of residual pain.

From the results, drilling is sufficient if the cartilage surface is not damaged. When the fragmentation occurred already, the fragment should be repositioned and fixed to the original site before degenerated, as its clinical symptoms were much better than those with bone graft or osteochondral graft.