header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

THE INFLUENCE OF KNEE FLEXION CONTRACTURE ON TRUNK KINEMATICS DURING GAIT



Abstract

The purpose of this study was to investigate the effect of knee flexion contracture on trunk kinematics.

Ten healthy old women, averaged sixty-two years, participated in this study. Subjects were tested at our laboratory with use of gait analysis system which consisted of eight retro-reflective markers (placed at bilateral acromion, anterior and posterior superior iliac spine, and iliaccrest), and five cameras. Unilateral (only right side) knee flexion contractures of zero, fifteen, and thirty degrees were simulated with a hard brace. All subjects performed walking trials at their preferred speed with or without simulation. First, level walking was measured without simulation, and then, with simulation at zero, fifteen and thirty degrees of flexion in order. Walking trials without brace was used as control. We evaluated walking velocity (m/s) and trunk kinematics (degrees). In the coronal plane, shoulder-pelvis bending angle was defined as the angle between shoulder girdle line and pelvic line. In the sagittal plane, anterior inclination of the trunk was defined by the slope linked right acromion and iliac crest, and anterior inclination of the pelvis was defined by the slope linked right superior anterior iliac spine and right superior posterior iliac spine. Shoulder-pelvis rotation angle was defined as the angle between shoulder girdle line and pelvic line in the axial plane. Maximum values were calculated.

Walking velocity was significantly decreased at thirty degrees contracture (1.19 at controls, 0.98 at thirty degrees contracture). In the coronal plane, trunk significantly tilted leftward rather (4.5) than rightward (1.8) at thirty degrees contracture. In the sagittal plane, trunk anterior inclination significantly increased at thirty degrees contracture (0.1 at controls, 3.1 at thirty degrees contracture). However, pelvic anterior inclination was similar. In the axial plane, trunk significantly rotated rightward (6.7) rather than leftward (4.3) at thirty degrees contracture.

Knee flexion contracture significantly influences physiological trunk kinematics in each plane. In particular, lateral bending to the contracture side was restricted, and this fact indicated that the lumbar spine may bend convexly to knee contracture side. These facts may result in Knee-Spine Syndrome.

Correspondence should be addressed to: Cynthia Vezina, Communications Manager, COA, 4150-360 Ste. Catherine St. West, Westmount, QC H3Z 2Y5, Canada