header advert
Results 1 - 20 of 38
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 31 - 31
24 Nov 2023
Mdingi V Gens L Mys K Zeiter S Marais L Richards G Moriarty F Chitto M
Full Access

Aim

In this study we investigated the effects of non-steroidal anti-inflammatory drugs (NSAIDs) with different cyclooxygenase (COX) selectivity on orthopaedic device-related infections (ODRIs) in a rat model. Specifically, we aimed to measure the impact of NSAID therapy on bone changes, bacterial load, and cytokine levels after treatment with antibiotics. In addition, we compared the effects of long vs short-term celecoxib (a COX-2 inhibitor) treatment on the same outcomes.

Method

Skeletally mature female Wistar rats were implanted with Staphylococcus epidermidis-contaminated polyetheretherketone (PEEK) screws (1.5 × 106 CFU per screw) in the proximal right tibia and monitored for 7 days. All animals received subcutaneous antibiotics (rifampicin plus cefazolin) for two weeks from day 7 to 21. In phase I of the study, rats were randomly assigned to receive 28 days of oral treatment with acetylsalicylic acid, ibuprofen, celecoxib, or vehicle control. In phase II, an additional group received seven days of celecoxib treatment from day 0 to 7. After implantation, bone changes were monitored using in vivo micro-CT and histology. Quantitative bacteriology was performed at euthanasia. Plasma samples were collected to measure cytokine levels at four time points (day 0, 6, 20, and 28).


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 16 - 16
24 Nov 2023
Siverino C Gens L Ernst M Buchholz T Windolf M Richards G Zeiter S Moriarty F
Full Access

Aim

Debridement, Antibiotics, Irrigation, and implant Retention (DAIR) is a surgical treatment protocol suitable for some patients with fracture related infection (FRI). Clinically relevant pre-clinical models of DAIR are scarce and none have been developed in large animals. Therefore, this project aimed to develop a large animal model for FRI including a DAIR approach and compare outcomes after 2 or 5 weeks of infection.

Method

Swiss Alpine sheep (n=8), (2–6 years, 50–80 kg) were included in this study. This study was approved by cantonal Ethical authorities in Chur, Switzerland. A 2 mm osteotomy was created in the tibia and fixed with a 10-hole 5.5 mm steel plate. Subsequently, 2.5 mL of saline solution containing 106 CFU/mL of Staphylococcus aureus MSSA (ATCC 25923) was added over the plate. Sheep were observed for 2 (n=3) or 5 weeks (n=5) until revision surgery, during which visibly infected or necrotic tissues were removed, and the wound flushed with saline. All samples were collected for bacterial quantification. After revision surgery, the sheep were treated systemically for 2 weeks with flucloxacillin and for 4 weeks with rifampicin and cotrimoxazole. After 2 further weeks off antibiotics, the animals were euthanized. Bacteriological culture was performed at the end of the study. Bone cores were isolated from the osteotomy site and processed for Giemsa & Eosin and Brown and Brenn staining. A radiographical examination was performed every second week.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_15 | Pages 30 - 30
7 Nov 2023
Mdingi V Marais L Gens L Mys K Zeiter S Richards G Moriarty F Chittò M
Full Access

We investigated the effects of non-steroidal anti-inflammatory drugs (NSAIDs) with different cyclooxygenase (COX) selectivity on orthopaedic device-related infections (ODRIs) in a rat model. We aimed to measure the impact of NSAID therapy on bone changes, bacterial load, and cytokine levels after treatment with antibiotics. We also compared the effects of long vs short-term celecoxib (a COX-2 inhibitor) treatment on the same outcomes.

Skeletally mature female Wistar rats were implanted with Staphylococcus epidermidis- contaminated polyetheretherketone (PEEK) screws in the proximal right tibia and monitored for 7 days. All animals received subcutaneous antibiotics (rifampicin plus cefazolin) for two weeks from day 7 to 21. In phase I of the study, rats were randomly assigned to receive 28 days of oral treatment with acetylsalicylic acid, ibuprofen, celecoxib, or vehicle control. In phase II, an additional group received seven days of celecoxib treatment from day 0 to 7. Bone changes were monitored using in vivo micro-CT and histology. Quantitative bacteriology was performed at euthanasia. Plasma samples were collected to measure cytokine levels on days 0, 6, 20, and 28.

Combination antibiotic therapy resulted in treatment success in 85.71% of cases, while the addition of long-term celecoxib treatment reduced it to 45.45%. Long-term celecoxib treatment significantly reduced bone loss (33.85% mean difference [95% CI 14.12–53.58], p=0.0004 on day 6 bone fraction) and periosteal reaction (0.2760 μm mean difference [95% CI 0.2073–0.3448], p<0.0001 on day 14 periosteal thickness) during early infection compared to the control group. Short- term celecoxib treatment showed similar radiological results without a reduction in treatment success (88.9%). No differences in the inflammatory markers were observed.

Our findings highlight the potential benefits of short-term use of celecoxib in improving bone fraction during the early post-infection period without impairing the efficacy of antibiotic therapy


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 88 - 88
11 Apr 2023
Souleiman F Heilemann M Hennings R Hepp P Gueorguiev B Richards G Osterhoff G Gehweiler D
Full Access

The aim of this study was to investigate the effect of different loading scenarios and foot positions on the configuration of the distal tibiofibular joint (DTFJ).

Fourteen paired human cadaveric lower legs were mounted in a loading frame. Computed tomography scans were obtained in unloaded state (75 N) and single-leg loaded stand (700 N) of each specimen in five foot positions: neutral, 15° external rotation, 15° internal rotation, 20° dorsiflexion, and 20° plantarflexion. An automated three-dimensional measurement protocol was used to assess clear space (diastasis), translational angle (rotation), and vertical offset (fibular shortening) in each foot position and loading condition.

Foot positions had a significant effect on the configuration of DTFJ. Largest effects were related to clear space increase by 0.46 mm (SD 0.21 mm) in loaded dorsal flexion and translation angle of 2.36° (SD 1.03°) in loaded external rotation, both versus loaded neutral position. Loading had no effect on clear space and vertical offset in any position. Translation angle was significantly influenced under loading by −0.81° (SD 0.69°) in internal rotation only.

Foot positioning noticeably influences the measurement when evaluating the configuration of DTFJ. The influence of the weightbearing seems to have no relevant effect on native ankles in neutral position.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 65 - 65
11 Apr 2023
Siverino C Arens D Zeiter S Richards G Moriarty F
Full Access

In chronically infected fracture non-unions, treatment requires extensive debridement to remove necrotic and infected bone, often resulting in large defects requiring elaborate and prolonged bone reconstruction. One approach includes the induced membrane technique (IMT), although the differences in outcome between infected and non-infectious aetiologies remain unclear. Here we present a new rabbit humerus model for IMT secondary to infection, and, furthermore, we compare bone healing in rabbits with a chronically infected non-union compared to non-infected equivalents.

A 5 mm defect was created in the humerus and filled with a polymethylmethacrylate (PMMA) spacer or left empty (n=6 per group). After 3 weeks, the PMMA spacer was replaced with a beta-tricalcium phosphate (chronOs, Synthes) scaffold, which was placed within the induced membrane and observed for a further 10 weeks. The same protocol was followed for the infected group, except that four week prior to treatment, the wound was inoculated with Staphylococcus aureus (4×106 CFU/animal) and the PMMA spacer was loaded with gentamicin, and systemic therapy was applied for 4 weeks prior to chronOs application.

All the animals from the infected group were culture positive during the first revision surgery (mean 3×105 CFU/animal, n= 12), while at the second revision, after antibiotic therapy, all the animals were culture negative. The differences in bone healing between the non-infected and infected groups were evaluated by radiography and histology. The initially infected animals showed impaired bone healing at euthanasia, and some remnants of bacteria in histology. The non-infected animals reached bone bridging in both empty and chronOs conditions.

We developed a preclinical in vivo model to investigate how bacterial infection influence bone healing in large defects with the future aim to explore new treatment concepts of infected non-union.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 59 - 59
11 Apr 2023
Chitto M Chen B Kunisch F Wychowaniec J Onsea J Post V Richards G Zeiter S Wagemans J Trampuz A D'Este M Moreno M Lavigne R Moriarty F
Full Access

Fracture related infection remains a major challenge in musculoskeletal trauma surgery. Despite best practice, treatment strategies suffer from high failure rates due to antibiotic resistance and tolerance. Bacteriophages represent a promising alternative as they retain activity against such bacteria. However, optimal phage administration protocols remain unknown, although injectable hydrogels, loaded with phage and conventional antibiotics, may support conventional therapy.

In this study we tested the activity of meropenem, and two newly isolated bacteriophages (ϕ9 and ϕ3) embedded within alginate-chitosan microbeads and a hydrogel. Antibiotic and phage stability and activity were monitored in vitro, over a period of 10 days. In vivo, the same material was tested in treatment of a 5-day old Pseudomonas aeruginosa infection of a tibial plate osteotomy in mice. Treatment involved debridement and 5 days of systemic antibiotic therapy plus: i- saline, ii-phages in saline, iii-phages and antibiotics loaded into a hydrogel (n=7 mice/group). To assess the efficacy of the treatments, the infection load was monitored during revision surgery with debridement of the infected tissue after 5,10 and 13 days (euthanasia) by CFU and PFU quantification.

In vitro testing confirmed that the stability of meropenem and activity of ϕ9 and ϕ3, was not affected within the alginate beads or hydrogel over 10 days. The in vivo study showed that all mice receiving phages and antibiotics loaded into a hydrogel survived the infection with a reduction of the bacterial load in the soft tissue. Active phages could be recovered from the infected site at euthanasia (104 PFU/g).

The hydrogel loaded with bacteriophages and meropenem showed a positive result in locally reducing the infection load indicating a synergistic effect of the selected antimicrobials. Overall, our new strategy shows encouraging results for improving the treatment of antibiotic-resistant biofilm infections that are related to medical implants.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 35 - 35
11 Apr 2023
Pastor T Knobe M Ciric D Zderic I van de Wall B Rompen I Visscher L Link B Babst R Richards G Gueorguiev B Beeres F
Full Access

Implant removal after clavicle plating is common. Low-profile dual mini-fragment plate constructs are considered safe for fixation of diaphyseal clavicle fractures. The aim of this study was to investigate: (1) the biomechanical competence of different dual plate designs from stiffness and cycles to failure, and (2) to compare them against 3.5mm single superoanterior plating.

Twelve artificial clavicles were assigned to 2 groups and instrumented with titanium matrix mandible plates as follows: group 1 (G1) (2.5mm anterior+2.0mm superior) and group 2 (G2) (2.0mm anterior+2.0mm superior). An unstable clavicle shaft fracture (AO/OTA15.2C) was simulated. Specimens were cyclically tested to failure under craniocaudal cantilever bending, superimposed with torsion around the shaft axis and compared to previous published data of 6 locked superoanterior plates tested under the same conditions (G3).

Displacement (mm) after 5000 cycles was highest in G3 (10.7±0.8) followed by G2 (8.5±1.0) and G1 (7.5±1.0), respectively. Both outcomes were significantly higher in G3 as compared to both G1 and G2 (p≤0.027). Cycles to failure were highest in G3 (19536±3586) followed by G1 (15834±3492) and G2 (11104±3177), being significantly higher in G3 compared to G2 (p=0.004). Failure was breakage of one or two plates at the level of the osteotomy in all specimens. One G1 specimen demonstrated failure of the anterior plate. Both plates in other G1 specimens. Majority of G2 had fractures in both plates. No screw pullout or additional clavicle fractures were observed among specimens.

Low-profile 2.0/2.0 dual plates demonstrated similar initial stiffness compared to 3.5mm single plates, however, had significantly lower failure endurance. Low-profile 2.5/2.0 dual plates showed significant higher initial stiffness and similar resistance to failure compared to 3.5mm single locked plates and can be considered as a useful alternative for diaphyseal clavicle fracture fixation. These results complement the promising results of several clinical studies.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 82 - 82
11 Apr 2023
Souleiman F Zderic I Pastor T Varga P Helfen T Richards G Gueorguiev B Theopold J Osterhoff G Hepp P
Full Access

Glenohumeral joint injuries frequently result in shoulder instability. However, the biomechanical effect of cartilage loss on shoulder stability remains unknown. The aim of the current study was to investigate biomechanically the effect of two severity stages of cartilage loss in different dislocation directions on shoulder stability. Joint dislocation was provoked for 11 human cadaveric glenoids in seven different dislocation directions between 3 o'clock (anterior) to 9 o'clock (posterior) dislocation. Shoulder stability ratio (SSR) and concavity gradient were assessed in intact condition, and after 3 mm and 6 mm simulated cartilage loss. The influence of cartilage loss on SSR and concavity gradient was statistically evaluated. Between intact state and 6 mm cartilage loss, both SSR and concavity gradient decreased significantly in every dislocation direction (p≤0.038), except the concavity gradient in 4 o'clock dislocation direction (p=0.088). Thereby, anterior-inferior dislocation directions were associated with the highest loss of SSR and concavity gradient of up to 59.0% and 49.4%, respectively, being significantly higher for SSR compared to all other dislocation directions (p≤0.04). The correlations between concavity gradient and SSR for pooled dislocation directions were significant for all three conditions of cartilage loss (p<0.001). From a biomechanical perspective, articular cartilage of the glenoid contributes significantly to the concavity gradient, correlating strongly with the associated loss in glenohumeral joint stability. The highest effect of cartilage loss was observed in anterior-inferior dislocation directions, suggesting that surgical intervention should be considered for recurrent shoulder dislocations in the presence of cartilage loss.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 86 - 86
11 Apr 2023
Souleiman F Zderic I Pastor T Varga P Gueorguiev B Richards G Osterhoff G Hepp P Theopold J
Full Access

Osteochondral glenoid loss is associated with recurrent shoulder instability. The critical threshold for surgical stabilization is multidimensional and conclusively unknown. The aim of this work was to provide a well- measurable surrogate parameter of an unstable shoulder joint for the frequent anterior-inferior dislocation direction.

The shoulder stability ratio (SSR) of 10 paired human cadaveric glenoids was determined in anterior-inferior dislocation direction. Osteochondral defects were simulated by gradually removing osteochondral structures in 5%-stages up to 20% of the intact diameter. The glenoid morphological parameters glenoid depth, concavity gradient, and defect radius were measured at each stage by means of optical motion tracking. Based on these parameters, the osteochondral stability ratio (OSSR) was calculated. Correlation analyses between SSR and all morphological parameters, as well as OSSR were performed.

The loss of SSR, concavity gradient, depth and OSSR with increasing defect size was significant (all p<0.001). The loss of SSR strongly correlated with the losses of concavity gradient (PCC = 0.918), of depth (PCC = 0.899), and of OSSR (PCC = 0.949). In contrast, the percentage loss based on intact diameter (defect size) correlated weaker with SSR (PCC=0.687). Small osteochondral defects (≤10%) led to significantly higher SSR decrease in small glenoids (diameter <25mm) compared to large (≥ 25mm) ones (p ≤ 0.009).

From a biomechanical perspective, the losses of concavity gradient, glenoid depth and OSSR correlate strong with the loss of SSR. Therefore, especially the loss of glenoidal depth may be considered as a valid and reliable alternative parameter to describe shoulder instability. Furthermore, smaller glenoids are more vulnerable to become unstable in case of small osteochondral loosening. On the other hand, the standardly used percentage defect size based on intact diameter correlates weaker with the magnitude of instability and may therefore not be a valid parameter for judgement of shoulder instability.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 37 - 37
4 Apr 2023
Pastor T Zderic I van Knegsel K Richards G Gueorguiev B Knobe M
Full Access

Proximal humeral shaft fractures are commonly treated with long straight plates or intramedullary nails. Helical plates might overcome the downsides of these techniques as they are able to avoid the radial nerve distally. The aim of this study was to investigate in an artificial bone model: (1) the biomechanical competence of different plate designs and (2) to compare them against the alternative treatment option of intramedullary nails.

Twenty-four artificial humeri were assigned in 4 groups and instrumented as follows: group1 (straight 10-hole-PHILOS), group2 (MULTILOCK-nail), group3 (45°-helical-PHILOS) and group4 (90°-helical-PHILOS). An unstable proximal humeral shaft fracture was simulated. Specimens were tested under quasi-static loading in axial compression, internal/external rotation and bending in 4 directions monitored by optical motion tracking.

Axial displacement (mm) was significantly lower in group2 (0.1±0.1) compared to all other groups (1: 3.7±0.6; 3: 3.8±0.8; 4: 3.5±0.4), p<0.001. Varus stiffness in group2 (0.8±0.1) was significantly higher compared to groups1+3, p≤0.013 (1: 0.7±0.1; 3: 0.7±0.1; 4: 0.8±0.1). Varus bending (°) was significantly lower in group2 compared to all other groups (p<0.001) and group4 to group1, p=0.022. Flexion stiffness in group1 was significantly higher compared to groups2+4 (p≤0,03) and group4 to group1, p≤0,029 (1: 0.8±0.1; 2: 0.7±0.1; 3: 0.7±0.1; 4: 0.6±0.1). Flexion bending (°) in group4 was higher compared to all other groups (p≤0.024) and lower in group2 compared to groups1+4, p≤0.024. Torsional stiffness remained non significantly different, p≥0.086. Torsional deformation in group2 was significantly higher compared to all other groups, p≤0.017. Shear displacement remained non significantly different, p≥0.112.

From a biomechanical perspective, helical plating with 45° and 90° may be considered as a valid alternative fixation technique to standard straight plating of proximal third humeral fractures. Intramedullary nails demonstrated higher axial and bending stiffness as well as lower fracture gap movements during axial loading compared to all plate designs. However, despite similar torsional stiffness they were associated with higher torsional movements during internal/external rotation as compared to all investigated plate designs.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 69 - 69
1 Nov 2021
Pastor T Zderic I Richards G Gueorguiev B Knobe M
Full Access

Introduction and Objective

Distal femoral fractures are commonly treated with a straight plate fixed to the lateral aspects of both proximal and distal fragments. However, the lateral approach may not always be desirable due to persisting soft-tissue or additional vascular injury necessitating a medial approach. These problems may be overcome by pre-contouring the plate in helically shaped fashion, allowing its distal part to be fixed to the medial aspect of the femoral condyle. The objective of this study was to investigate the biomechanical competence of medial femoral helical plating versus conventional straight lateral plating in an artificial distal femoral fracture model.

Materials and Methods

Twelve left artificial femora were instrumented with a 15-hole Locking Compression Plate – Distal Femur (LCP-DF) plate, using either conventional lateral plating technique with the plate left non-contoured, or the medial helical plating technique by pre-contouring the plate to a 180° helical shape and fixing its distal end to the medial femoral condyle (n=6). An unstable extraarticular distal femoral fracture was subsequently simulated by means of an osteotomy gap. All specimens were tested under quasi-static and progressively increasing cyclic axial und torsional loading until failure. Interfragmentary movements were monitored by means of optical motion tracking.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 24 - 24
1 Nov 2021
Gueorguiev B Zderic I Pastor T Gehweiler D Richards G Knobe M
Full Access

Introduction and Objective

Plating of geriatric distal femoral fractures with Locking Compression Plate Distal Femur (LCP–DF) often requires augmentation with a supplemental medial plate to achieve sufficient stability allowing early mobilization. However, medial vital structures may be impaired by supplemental medial plating using a straight plate. Therefore, a helically shaped medial plate may be used to avoid damage of these structures. Aim of the current study was to investigate the biomechanical competence of augmented LCP–DF plating using a supplemental straight versus helically shaped medial plate.

Materials and Methods

Ten pairs of human cadaveric femora with poor bone quality were assigned pairwise for instrumentation using a lateral anatomical 15-hole LCP–DF combined with a medial 14-hole LCP, the latter being either straight or manually pre-contoured to a 90-degree helical shape. An unstable distal femoral fracture AO/OTA 33–A3 was simulated by means of osteotomies. All specimens were biomechanically tested under non-destructive quasi-static and destructive progressively increasing combined cyclic axial and torsional loading in internal rotation, with monitoring by means of optical motion tracking.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 12 - 12
1 Mar 2021
Ahrend M Noser H Shanmugam R Kamer L Burr F Hügli H Zaman TK Richards G Gueorguiev B
Full Access

Artificial bone models (ABMs) are commonly used in traumatology and orthopedics for training, education, research and development purposes. The aim of this study was to develop the first evidence-based generic Asian pelvic bone model and compare it to an existing pelvic model.

A hundred clinical CT scans of intact adult pelvises (54.8±16.4 years, 161.3±8.3 cm) were acquired. They represented evenly distributed female and male patients of Malay (n=33), Chinese (n=34) and Indian (n=33) descent. The CTs were segmented and defined landmarks were placed. By this means, 100 individual three-dimensional models were calculated using thin plate spline transformation. Following, three statistical mean pelvic models (male, female, unisex) were generated. Anatomical variations were analyzed using principal component analysis (PCA). To quantify length variations, the distances between the anterior superior iliac spines (ASIS), the anterior inferior iliac spines (AIIS), the promontory and symphysis (conjugate vera) as well as the ischial spines (diameter transversa) were measured for the three mean models and the existing ABM.

PCA demonstrated large variability regarding pelvic surface and size. Principal component one (PC 1) contributed to 24% of the total anatomical variation and predominantly displayed a size variation pattern. PC 2 (17.7% of variation) mainly exhibited anatomical variations originating from differences in shape. Female and male models were similar in ASIS (225±20 mm; 227±13 mm) and AIIS (185±11 mm; 187±10 mm), whereas differed in conjugate vera (116±10 mm; 105±10 mm) and diameter transversa (105±7 mm; 88±8 mm). Comparing the Asian unisex model to the existing ABM, the external pelvic measurements ASIS (22.6 cm; 27.5 cm) and AIIS (186 mm; 209 mm) differed notably. Conjugate vera (111 mm; 105 mm) and diameter transversa (97 mm; 95 mm) were similar in both models. Low variability of mean distances (3.78±1.7 mm) was found beyond a sample number of 30 CTs.

Our analysis revealed notable anatomical variations regarding size dominating over shape and gender-specific variability. Dimensions of the generated mean models were comparatively smaller compared to the existing ABM. This highlights the necessity for generation of Asian ABMs by evidence-based modeling techniques.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 23 - 23
1 Mar 2021
Schopper C Zderic I Menze J Muller D Rocci M Knobe M Shoda E Richards G Gueorguiev B Stoffel K
Full Access

Femoral neck fractures account for half of all hip fractures and are recognized as a major public health problem associated with a high socioeconomic burden. Whilst internal fixation is preferred over arthroplasty for physiologically younger patients, no consensus exists about the optimal fixation device yet. The recently introduced implant Femoral Neck System (FNS) (DePuy Synthes, Zuchwil, Switzerland) was developed for dynamic fixation of femoral neck fractures and provides angular stability in combination with a minimally invasive surgical technique. Alternatively, the Hansson Pin System (HPS) (Swemac, Linköping, Sweden) exploits the advantages of internal buttressing. However, the obligate peripheral placement of the pins, adjacent to either the inferior or posterior cortex, renders the instrumentation more challenging. The aim of this study was to evaluate the biomechanical performance of FNS versus HPS in a Pauwels II femoral neck fracture model with simulated posterior comminution. Forty-degree Pauwels II femoral neck fractures AO 31-B2.1 with 15° posterior wedge were simulated in fourteen paired fresh-frozen human cadaveric femora, followed by instrumentation with either FNS or HPS in pair-matched fashion. Implant positioning was quantified by measuring the shortest distances between implant and inferior cortex (DI) as well as posterior cortex (DP) on anteroposterior and axial X-rays, respectively. Biomechanical testing was performed in 20° adduction and 10° flexion of the specimens in a novel setup with simulated iliopsoas muscle tension. Progressively increasing cyclic loading was applied until construct failure. Interfragmentary femoral head-to-shaft movements, namely varus deformation, dorsal tilting and rotation around the neck axis were measured by means of motion tracking and compared between the two implants. In addition, varus deformation and dorsal tilting were correlated with DI and DP. Cycles to 5/10° varus deformation were significantly higher for FNS (22490±5729/23007±5496) versus HPS (16351±4469/17289±4686), P=0.043. Cycles to 5/10° femoral head dorsal tilting (FNS: 10968±3052/12765±3425; HPS: 12244±5895/13357±6104) and cycles to 5/10° rotation around the femoral neck axis (FNS: 15727±7737/24453±5073; HPS: 15682±10414/20185±11065) were comparable between the implants, P≥0.314. For HPS, the outcomes for varus deformation and dorsal tilting correlated significantly with DI and DP, respectively (P=0.025), whereas these correlations were not significant for FNS (P≥0.148).

From a biomechanical perspective, by providing superior resistance against varus deformation and performing in a less sensitive way to variations in implant placement, the angular stable Femoral Neck System can be considered as a valid alternative to the Hansson Pin System for the treatment of Pauwels II femoral neck fractures.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 6 - 6
1 Mar 2021
Penev P Zderic I Qawasmi F Mosheiff R Knobe M Krause F Richards G Raykov D Gueorguiev B Klos K
Full Access

Being commonly missed in the clinical practice, Lisfranc injuries can lead to arthritis and long-term complications. There are controversial opinions about the contribution of the main stabilizers of the joint. Moreover, the role of the ligament that connects the medial cuneiform (MC) and the third metatarsal (MT3) is not well investigated. The aim of this study was to investigate the influence of different Lisfranc ligament injuries on CT findings under two specified loads.

Sixteen fresh-frozen human cadaveric lower limbs were embedded in PMMA at mid-shaft of the tibia and placed in a weight-bearing radiolucent frame for CT scanning. All intact specimens were initially scanned under 7.5 kg and 70 kg loads in neutral foot position. A dorsal approach was then used for sequential ligaments cutting: first – the dorsal and the (Lisfranc) interosseous ligaments; second – the plantar ligament between the MC and MT3; third – the plantar Lisfranc ligament between the MC and the MT2. All feet were rescanned after each cutting step under the two loads.

The average distances between MT1 and MT2 in the intact feet under 7.5 kg and 70 kg loads were 0.77 mm and 0.82 mm, whereas between MC and MT2 they were 0.61 mm and 0.80 mm, without any signs of misalignment or dorsal displacement of MT2. A slight increase in the distances MT1-MT2 (0.89 mm; 0.97 mm) and MC-MT2 (0.97 mm; 1.13 mm) was observed after the first disruption of the dorsal and the interosseous ligaments under 7.5 kg and 70 kg loads. A further increase in MT1-MT2 and MC-MT2 distances was registered after the second disruption of the ligament between MC and MT3. The largest distances MT1-MT2 (1.5 mm; 1.95 mm) and MC-MT2 (1.74 mm; 2.35 mm) were measured after the final plantar Lisfranc ligament cut under the two loads. In contrast to the previous two the previous two cuts, misalignment and dorsal displacement of 1.25 mm were seen at this final disrupted stage.

The minimal pathological increase in the distances MT1-MT2 and MC-MT2 is an important indicator for ligamentous Lisfranc injury. Dorsal displacement and misalignment of the second metatarsal in the CT scans identify severe ligamentous Lisfranc injury. The plantar Lisfranc ligament between the medial cuneiform and the second metatarsal seems to be the strongest stabilizer of the Lisfranc joint. Partial lesion of the Lisfranc ligaments requires high clinical suspicion as it can be easily missed.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 77 - 77
1 Dec 2020
Ivanov S Stefanov A Zderic I Gehweiler D Richards G Raykov D Gueorguiev B
Full Access

Displaced intraarticular calcaneal fractures are debilitating injuries with significant socioeconomic and psychological effects primarily affecting patients in active age between 30 and 50 years. Recently, minimally and less invasive screw fixation techniques have become popular as alternative to locked plating. The aim of this study was to analyze biomechanically in direct comparison the primary stability of 3 different cannulated screw configurations for fixation of Sanders type II-B intraarticular calcaneal fractures.

Fifteen fresh-frozen human cadaveric lower limbs were amputated mid-calf and through the Chopart joint. Following, soft tissues at the lateral foot side were removed, whereas the medial side and Achilles tendon were preserved. Reproducible Sanders type II-B intraarticular fracture patterns were created by means of osteotomies. The proximal tibia end and the anterior-inferior aspect of the calcaneus were then embedded in polymethylmethacrylate. Based on bone mineral density measurements, the specimens were randomized to 3 groups for fixation with 3 different screw configurations using two 6.5 mm and two 4.5 mm cannulated screws. In Group 1, two parallel longitudinal screws entered the tuber calcanei above the Achilles tendon insertion and proceeded to the anterior process, and two transverse screws fixed the posterior facet perpendicular to the fracture line. In Group 2, two parallel screws entered the tuber calcanei below the Achilles tendon insertion, aiming at the anterior process, and two transverse screws fixed the posterior facet. In Group 3, two screws were inserted along the bone axis, entering the tuber calcanei above the Achilles tendon insertion and proceeding to the central-inferior part of the anterior process. In addition, one transverse screw was inserted from lateral to medial for fixation of the posterior facet and one oblique screw – inserted from the posterior-plantar part of the tuber calcanei – supported the posterolateral part of the posterior facet. All specimens were tested in simulated midstance position under progressively increasing cyclic loading at 2 Hz. Starting from 200N, the peak load of each cycle increased at a rate of 0.1 N/cycle. Interfragmentary movements were captured by means of optical motion tracking and triggered mediolateral x-rays.

Plantar movement, defined as displacement between the anterior process and the tuber calcanei at the most inferior side was biggest in Group 2 and increased significantly over test cycles in all groups (P = 0.001). Cycles to 2 mm plantar movement were significantly higher in both Group 1 (15847 ± 5250) and Group 3 (13323 ± 4363) compared to Group 2 (4875 ± 3480), P = 0.048. Medial gapping after 2500 cycles was significantly bigger in Group 2 versus Group 3, P = 0.024. No intraarticular displacement was observed in any group during testing.

From biomechanical perspective, screw configuration implementing one oblique screw seems to provide sufficient hindfoot stability in Sanders Type II-B intraarticular calcaneal fractures under dynamic loading. Posterior facet support by means of buttress or superiorly inserted longitudinal screws results in less plantar movement between the tuber calcanei and anterior fragments. On the other hand, inferiorly inserted longitudinal screws seem to be associated with bigger interfragmentary movements.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 82 - 82
1 Dec 2020
Zderic I Breceda A Schopper C Schader J Gehweiler D Richards G Gueorguiev B Sands A
Full Access

It is common belief that consolidated intramedullary nailed trochanteric femur fractures can result in secondary midshaft or supracondylar fractures, involving the distal screws, when short or long nails are used, respectively. In addition, limited data exists in the literature to indicate when short or long nails should be selected for treatment. The aim of this biomechanical cadaveric study was to investigate short versus long Trochanteric Femoral Nail Advanced (TFNA) fixation in terms of construct stability and generation of secondary fracture pattern following trochanteric fracture consolidation.

Eight intact human cadaveric femur pairs were assigned to 2 groups of 8 specimens each for nailing using either short or long TFNA with blade as head element. Each specimen was first biomechanically preloaded at 1 Hz over 2000 cycles in superimposed synchronous axial compression to 1800 N and internal rotation to 11.5 Nm. Following, internal rotation to failure was applied over an arc of 90° within 1 second under 700 N axial load. Torsional stiffness, torque at failure, angle at failure and energy at failure were evaluated. Fracture patterns were analyzed.

Outcomes in the groups with short and long nails were 9.7±2.4 Nm/° and 10.2±2.9 Nm/° for torsional stiffness, 119.8±37.2 Nm and 128.5±46.7 Nm for torque at failure, 13.5±3.5° and 13.4±2.6° for angle at failure, and 887.5±416.9 Nm° and 928.3±461.0 Nm° for energy at failure, respectively, with no significant differences between them, P≥0.167. Fractures through the distal locking screw occurred in 5 and 6 femora instrumented with short and long nails, respectively. Fractures through the lateral entry site of the head element were detected in 3 specimens within each group. For short nails, fractures through the distal shaft region, not interfacing with the implant, were detected in 3 specimens.

From biomechanical perspective, the risk of secondary peri-implant fracture after intramedullary nailed trochanteric fracture consolidation is similar when using short or long TFNA. Moreover, for both nail versions the fracture pattern does not unexceptionally involve the distal locking screw.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 65 - 65
1 Dec 2020
Panagiotopoulou V Ovesy M Gueorguiev B Richards G Zysset P Varga P
Full Access

Proximal humerus fractures are the third most common fragility fractures with treatment remaining challenging. Mechanical fixation failure rates of locked plating range up to 35%, with 80% of them being related to the screws perforating the glenohumeral joint. Secondary screw perforation is a complex and not yet fully understood process. Biomechanical testing and finite element (FE) analysis are expected to help understand the importance of various risk factors. Validated FE simulations could be used to predict perforation risk. This study aimed to (1) develop an experimental model for single screw perforation in the humeral head and (2) evaluate and compare the ability of bone density measures and FE simulations to predict the experimental findings.

Screw perforation was investigated experimentally via quasi-static ramped compression testing of 20 cuboidal bone specimens at 1 mm/min. They were harvested from four fresh-frozen human cadaveric proximal humeri of elderly donors (aged 85 ± 5 years, f/m: 2/2), surrounded with cylindrical embedding and implanted with a single 3.5 mm locking screw (DePuy Synthes, Switzerland) centrally. Specimen-specific linear µFE (ParOSol, ETH Zurich) and nonlinear explicit µFE (Abaqus, SIMULIA, USA) models were generated at 38 µm and 76 µm voxel sizes, respectively, from pre- and post-implantation micro-Computed Tomography (µCT) images (vivaCT40, Scanco Medical, Switzerland). Bone volume (BV) around the screw and in front of the screw tip, and tip-to-joint distance (TJD) were evaluated on the µCT images. The µFE models and BV were used to predict the experimental force at the initial screw loosening and the maximum force until perforation.

Initial screw loosening, indicated by the first peak of the load-displacement curve, occurred at a load of 64.7 ± 69.8 N (range: 10.2 – 298.8 N) and was best predicted by the linear µFE (R2 = 0.90), followed by BV around the screw (R2 = 0.87). Maximum load was 207.6 ± 107.7 N (range: 90.1 – 507.6 N) and the nonlinear µFE provided the best prediction (R2 = 0.93), followed by BV in front of the screw tip (R2 = 0.89). Further, the nonlinear µFE could better predict screw displacement at maximum force (R2 = 0.77) than TJD (R2 = 0.70). The predictions of non-linear µFE were quantitatively correct.

Our results indicate that while density-based measures strongly correlate with screw perforation force, the predictions by the nonlinear explicit µFE models were even better and, most importantly, quantitatively correct. These models have high potential to be utilized for simulation of more realistic fixations involving multiple screws under various loading cases. Towards clinical applications, future studies should investigate if explicit FE models based on clinically available CT images could provide similar prediction accuracies.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 71 - 71
1 Dec 2020
Pukalski Y Barcik J Zderic I Yanev P Baltov A Rashkov M Richards G Gueorguiev B Enchev D
Full Access

Coronoid fractures account for 2 to 15% of the cases with elbow dislocations and usually occur as part of complex injuries. Comminuted fractures and non-unions necessitate coronoid fixation, reconstruction or replacement. The aim of this biomechanical study was to compare the axial stability achieved via an individualized 3D printed prosthesis with curved cemented intramedullary stem to both radial head grafted reconstruction and coronoid fixation with 2 screws. It was hypothesized that the prosthetic replacement will provide superior stability over the grafted reconstruction and screw fixation.

Following CT scanning, 18 human cadaveric proximal ulnas were osteotomized at 40% of the coronoid height and randomized to 3 groups (n = 6). The specimens in Group 1 were treated with an individually designed 3D printed stainless steel coronoid prosthesis with curved cemented intramedullary stem, individually designed based on the contralateral coronoid scan. The ulnas in Group 2 were reconstructed with an ipsilateral radial head autograft fixed with two anteroposterior screws, whereas the osteotomized coronoids in Group 3 were fixed in situ with two anteroposterior screws.

All specimens were biomechanically tested under ramped quasi-static axial loading to failure at a rate of 10 mm/min. Construct stiffness and failure load were calculated. Statistical analysis was performed at a level of significance set at 0.05.

Prosthetic treatment (Group 1) resulted in significantly higher stiffness and failure load compared to both radial head autograft reconstruction (Group 2) and coronoid screw fixation, p ≤ 0.002. Stiffness and failure load did not reveal any significant differences between Group 2 and Group 3, p ≥ 0.846.

In cases of coronoid deficiency, replacement of the coronoid process with an anatomically shaped individually designed 3D printed prosthesis with a curved cemented intramedullary stem seems to be an effective method to restore the buttress function of the coronoid under axial loading. This method provides superior stability over both radial head graft reconstruction and coronoid screw fixation, while achieving anatomical articular congruity. Therefore, better load distribution with less stress at the bone-implant interface can be anticipated. In the clinical practice, implementation of this prosthesis type could allow for early patient mobilization with better short- and long-term treatment outcomes and may be beneficial for patients with irreparable comminuted coronoid fractures, severe arthritic changes or non-unions.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 85 - 85
1 Dec 2020
Stefanov A Ivanov S Zderic I Baltov A Rashkov M Gehweiler D Richards G Gueorguiev B Enchev D
Full Access

Treatment of comminuted intraarticular calcaneal fractures remains controversial and challenging. Anatomic reduction with stable fixation has demonstrated better outcomes than nonoperative treatment of displaced intraarticular fractures involving the posterior facet and anterior calcaneocuboid joint (CCJ) articulating surface of the calcaneus. The aim of this study was to investigate the biomechanical performance of three different methods for fixation of comminuted intraarticular calcaneal fractures.

Comminuted calcaneal fractures, including Sanders III-AB fracture of the posterior facet and Kinner II-B fracture of the CCJ articulating calcaneal surface, were simulated in 18 fresh-frozen human cadaveric lower legs by means of osteotomies. The ankle joint, medial soft tissues and midtarsal bones along with the ligaments were preserved. The specimens were randomized according to their bone mineral density to 3 groups for fixation with either (1) 2.7 mm variable-angle locking anterolateral calcaneal plate in combination with one 4.5 mm and one 6.5 mm cannulated screw (Group 1), (2) 2.7 mm variable-angle locking lateral calcaneal plate (Group 2), or (3) interlocking calcaneal nail with 3.5 mm screws in combination with 3 separate 4.0 mm cannulated screws (Group 3). All specimens were biomechanically tested until failure under axial loading with the foot in simulated midstance position. Each test commenced with an initial quasi-static compression ramp from 50 N to 200 N, followed by progressively increasing cyclic loading at 2Hz. Starting from 200 N, the peak load of each cycle increased at a rate of 0.2 N/cycle. Interfragmentary movements were captured by means of optical motion tracking. In addition, mediolateral X-rays were taken every 250 cycles with a triggered C-arm. Varus deformation between the tuber calcanei and lateral calcaneal fragments, plantar gapping between the anterior process and tuber fragments, displacement at the plantar aspect of the CCJ articular calcaneal surface, and Böhler angle were evaluated.

Varus deformation of 10° was reached at significantly lower number of cycles in Group 2 compared to Group 1 and Group 3 (P ≤ 0.017). Both cycles to 10° plantar gapping and 2 mm displacement at the CCJ articular calcaneal surface revealed no significant differences between the groups (P ≥ 0.773). Böhler angle after 5000 cycles (1200 N peak load) had significantly bigger decrease in Group 2 compared to both other groups (P ≤ 0.020).

From biomechanical perspective, treatment of comminuted intraarticular calcaneal fractures using variable-angle locked plate with additional longitudinal screws or interlocked nail in combination with separate transversal screws seems to provide superior stability as opposed to variable-angle locked plating only.