header advert
Results 41 - 56 of 56
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 135 - 135
1 Dec 2013
Nam D Cody E Nguyen J Figgie MP Mayman DJ
Full Access

Background:

Conventional, extramedullary (EM) tibial alignment guides are only 65%–88% accurate in creating a tibial resection within 2° of perpendicular to the tibial mechanical axis in total knee arthroplasty (TKA). The purpose of this study was to compare the overall, tibial component alignment, and the surgeon's ability to achieve a specific, intraoperative goal for alignment between a portable, navigation system (KneeAlign™) and conventional, EM alignment guides.

Methods:

One hundred patients were enrolled in a prospective, randomized controlled study. Fifty patients received a TKA using the KneeAlign™ to perform the tibial resection, and 50 patients an EM alignment guide. Standing AP hip-to-ankle radiographs and lateral knee-to-ankle radiographs were obtained at the first, postoperative visit.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 66 - 66
1 Dec 2013
Gladnick B Nam D Khamaisy S Paul S Pearle A
Full Access

Introduction:

Two fixed bearing options exist for tibial resurfacing when performing unicompartmental knee arthroplasty (UKA). Inlay components are polyethylene-only implants inserted into a carved pocket on the tibial surface, relying upon the subchondral bone to support the implant. Onlay components have a metal base plate and are placed on top of a flat tibial cut, supported by a rim of cortical bone. To our knowledge, there is no published report that compares the clinical outcomes of these two implants using a robotically controlled surgical technique. We performed a retrospective review of a single surgeon's experience with Inlay versus Onlay components, using a robotic-guided protocol.

Methods:

All surgeries were performed using the same planning software and robotic guidance for execution of the surgical plan (Mako Surgical, Fort Lauderdale, FL). The senior surgeon's prospective database was reviewed to identify patients with 1) medial-sided UKA and 2) at least two years of clinical follow up. Eighty-six patients met these inclusion/exclusion criteria: 41 Inlays and 45 Onlays. Five patients underwent a secondary or revision procedure during the follow up period and were considered separately. Our primary outcome was the WOMAC score, subcategorized by the Pain, Stiffness, and Function sub-scores. The secondary outcome was need for secondary surgery. Continuous variables were analyzed using the two-tailed Student's t-test; categorical variables were analyzed using Fisher's exact test.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 101 - 101
1 Dec 2013
Gladnick B Khamaisy S Nam D Reinhardt K Pearle A
Full Access

Introduction

Limb alignment after unicondylar knee arthroplasty (UKA) has a significant impact on surgical outcomes. The literature lacks studies that evaluate the limb alignment after lateral UKA or compare alignment outcomes between medial and lateral UKA. In this study, we retrospectively compare a single surgeon's alignment outcomes between medial and lateral UKA using a robotic-guided protocol.

Methods

All surgeries were performed by a single surgeon using the same planning software and robotic guidance for execution of the surgical plan. The senior surgeon's prospective database was reviewed to identify patients who had 1) undergone medial or lateral UKA for unicompartmental osteoarthritis; and 2) had adequate pre- and post-operative full-length standing radiographs. There were 229 medial UKAs and 37 lateral UKAs in this study. Mechanical limb alignment was measured in standing long limb radiographs both pre- and post-operatively. Intra-operatively, limb alignment was measured using the computer assisted navigation system. The primary outcome was over-correction of the mechanical alignment (i.e, past neutral). Our secondary outcome was the difference between the radiographic post-operative alignment and the intra-operative “virtual” alignment as measured by the computer navigation system. This allowed an assessment of the accuracy of our navigation system for predicting post-operative limb alignment after UKA.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 372 - 372
1 Dec 2013
Nam D Khamaisy S Zuiderbaan H Pearle A
Full Access

Introduction:

The number of medial unicompartmental knee arthroplasties (UKA) performed over the last decade has increased by 30%, as studies have demonstrated improved knee kinematics, range of motion, and decreased perioperative morbidity versus total knee arthroplasty. However, concerns remain regarding the future risk of revision due to lateral compartment degeneration. In patients with a varus mechanical alignment and tibiofemoral subluxation secondary to medial compartment osteoarthritis, the femoral and tibial articular surfaces of the lateral compartment subsequently become incongruous, potentially increasing the focal contact stresses seen with loading. The purpose of this study is to evaluate whether the tibiofemoral congruence of the lateral compartment of the knee is improved following a medial UKA.

Methods:

This study is a retrospective review of 192 consecutive medial UKAs included in an IRB-approved, single-surgeon database. All UKAs were performed using a robot-assisted surgical technique. Preoperative and postoperative standing, anteroposterior hip-to-ankle radiographs controlling for lower extremity rotation were performed from which the congruence of the lateral compartment was measured.

The preoperative and postoperative degree of articular congruence (congruence index, CI) was calculated using an iterative closest point (ICP)-based software code (Matlab, MathWorks Inc., Natick, MA), specially developed to evaluate congruence of knee compartments. Following digitization of the articular surfaces of the femur and tibia, the code performs a rigid transformation that best aligns the articular surfaces and evaluates the current degree of articular congruence. A congruence index (CI) is then calculated, with a value of 1 indicating complete congruence, and a value of 0 indicating a 100% dislocation of the articular surfaces.

A student's t-test was used to compare the preoperative and postoperative values of lateral compartment congruence.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 136 - 136
1 Dec 2013
Nam D Maher P Ranawat A Padgett DE Mayman DJ
Full Access

Background:

Numerous studies have reported the importance of acetabular component positioning in decreasing dislocation rates, the risk of liner fractures, and bearing surface wear in total hip arthroplasty (THA). The goal of improving acetabular component positioning has led to the development of computer-assisted surgical (CAS) techniques, and several studies have demonstrated improved results when compared to conventional, freehand methods. Recently, a computed tomography (CT)-based robotic surgery system has been developed (MAKO™ Robotic Arm Interactive Orthopaedic System, MAKO Surgical Corp., Fort Lauderdale, FLA, USA), with promising improvements in component alignment and surgical precision. The purpose of this study was to compare the accuracy in predicting the postoperative acetabular component position between the MAKO™ robotic navigation system and an imageless, CAS system (AchieveCAS, Smith and Nephew Inc., Memphis, TN, USA).

Materials and Methods:

30 THAs performed using the robotic navigation system (robotic cohort) were available for review, and compared to the most recent 30 THAs performed using the imageless, CAS system (CAS cohort). The final, intraoperative reading for acetabular abduction and anteversion provided by each navigation system was recorded following each THA. Einsel-Bild-Roentgen analysis was used to measure the acetabular component abduction and anteversion based on anteroposterior pelvis radiographs obtained at each patient's first, postoperative visit (Figure 1). Two observers, blinded to the treatment arms, independently measured all the acetabular components, and the results were assessed for inter-observer reliability.

Comparing the difference between the final, intraoperative reading for both acetabular abduction and anteversion, and the radiographic alignment calculated using EBRA analysis, allowed assessment of the intraoperative predictive capability of each system, and accuracy in determining the postoperative acetabular component position. In addition, the number of acetabular components outside of the “safe zone” (40° + 10° of abduction, 15° + 10° of anteversion), as described by Lewinnek et al., was assessed. Lastly, the operative time for each surgery was recorded.


The Bone & Joint Journal
Vol. 95-B, Issue 11_Supple_A | Pages 135 - 139
1 Nov 2013
Reinhardt KR Osoria H Nam D Alexiades MA Figgie MP Su EP

Blood loss during total knee replacement (TKR) remains a significant concern. In this study, 114 patients underwent TKR, and were divided into two groups based on whether they received a new generation fibrin sealant intra-operatively, or a local infiltration containing adrenaline. Groups were then compared for mean calculated total blood volume (TBV) loss, transfusion rates, and knee range of movement. Mean TBV loss was similar between groups: fibrin sealant mean was 705 ml (281 to 1744), local adrenaline mean was 712 ml (261 to 2308) (p = 0.929). Overall, significantly fewer units of blood were transfused in the fibrin sealant group (seven units) compared with the local adrenaline group (15 units) (p = 0.0479). Per patient transfused, significantly fewer units of blood were transfused in the fibrin sealant group (1.0 units) compared with the local adrenaline group (1.67 units) (p = 0.027), suggesting that the fibrin sealant may reduce the need for multiple unit transfusions. Knee range of movement was similar between groups. From our results, it appears that application of this newer fibrin sealant results in blood loss and transfusion rates that are low and similar to previously applied fibrin sealants.

Cite this article: Bone Joint J 2013;95-B, Supple A:135–9.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 108 - 108
1 Aug 2013
Khamaisy S Gladnick BP Nam D Reinhardt KR Pearle A
Full Access

Lower limb alignment after unicondylar knee arthroplasty (UKA) has a significant impact on surgical outcomes. The literature lacks studies that evaluate the limb alignment after lateral UKA or compare it to alignment outcomes after medial UKA, making our understanding of this issue based on medial UKA studies. Unfortunately, since the geometry, mechanics, and ligamentous physiology are different between these two compartments, drawing conclusions for lateral UKAs based on medial UKA results may be imprecise and misleading. The purpose of this study was to compare the risk for limb alignment overcorrection and the ability to predict postoperative limb alignment between medial and lateral UKA. We evaluated the results of mechanical limb alignment in 241 patients with unicompartmental knee osteoarthritis who underwent medial or lateral UKA; there were 229 medial UKAs and 37 lateral UKAs. Mechanical limb alignment was measured in standing long limb radiographs pre and post-operatively, intra-operatively it was measured using a computer assisted navigation system. Between the two cohorts, we compared the percentage of overcorrection and the difference between post-operative alignment and alignment measured by the navigation system. The percentage of overcorrection was significantly higher in the lateral UKA group (11%), when compared to the medial UKA group (4%), (p= 0.0001). In the medial UKA group, the mean difference between the intraoperative “virtual” alignment provided by the navigation system, and the post-operative, radiographically measured mechanical axis, was 1.33°(±1.2°). This was significantly lower than the mean 1.86° (±1.33°) difference in the lateral UKA group (p=0.019). Our data demonstrated an increased risk of mechanical limb alignment overcorrection and greater difficulty in predicting postoperative alignment using computer navigation, when performing lateral UKAs compared to medial UKAs.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 82 - 82
1 Aug 2013
Khamaisy S Gladnick BP Nam D Reinhardt KR Pearle A
Full Access

Lower limb alignment after unicondylar knee arthroplasty (UKA) has a significant impact on surgical outcomes. The literature lacks studies that evaluate the limb alignment after lateral UKA or compare it to alignment outcomes after medial UKA, making our understanding of this issue based on medial UKA studies. Unfortunately, since the geometry, mechanics, and ligamentous physiology are different between these two compartments, drawing conclusions for lateral UKAs based on medial UKA results may be imprecise and misleading. The purpose of this study was to compare the risk for limb alignment overcorrection and the ability to predict postoperative limb alignment between medial and lateral UKA. We evaluated the results of mechanical limb alignment in 241 patients with unicompartmental knee osteoarthritis who underwent medial or lateral UKA; there were 229 medial UKAs and 37 lateral UKAs. Mechanical limb alignment was measured in standing long limb radiographs pre and post-operatively, intra-operatively it was measured using a computer assisted navigation system. Between the two cohorts, we compared the percentage of overcorrection and the difference between post-operative alignment and alignment measured by the navigation system. The percentage of overcorrection was significantly higher in the lateral UKA group (11%), when compared to the medial UKA group (4%), (p= 0.0001). In the medial UKA group, the mean difference between the intraoperative “virtual” alignment provided by the navigation system, and the post-operative, radiographically measured mechanical axis, was 1.33°(±1.2°). This was significantly lower than the mean 1.86° (±1.33°) difference in the lateral UKA group (p=0.019). Our data demonstrated an increased risk of mechanical limb alignment overcorrection and greater difficulty in predicting postoperative alignment using computer navigation, when performing lateral UKAs compared to medial UKAs.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 63 - 63
1 Aug 2013
Klingenstein G Cross M Plaskos C Li A Nam D Lyman S Pearle AD Mayman D
Full Access

Introduction

The aim of this study was to quantify mid-flexion laxity in a total knee arthroplasty with an elevated joint line, as compared to a native knee and a TKA with joint line maintained. Our hypothesis was joint line elevation of 4mm would increase coronal plane laxity throughout mid-flexion in a pattern distinct from the preoperative knee or in a TKA with native joint line.

Methods

Six fresh-frozen cadaver legs from hip-to-toe underwent TKA with a posterior stabilised implant (APEX PS, OMNIlife Science, Inc.) using a computer navigation system equipped with a robotic cutting-guide, in this controlled laboratory cadaveric study. After the initial tibial and femoral resections were performed, the flexion and extension gaps were balanced using navigation, and a 4mm recut was made in the distal femur. The remaining femoral cuts were made, the femoral component was downsized by resecting an additional 4mm of bone off the posterior condyles, and the polyethylene was increased by 4mm to create a situation of a well-balanced knee with an elevated joint line. The navigation system was used to measure overall coronal plane laxity by measuring the mechanical alignment angle at maximum extension, 30, 45, 60 and 90(of flexion, when applying a standardised varus/valgus load of 9.8Nm across the knee using a 4kg spring-load located at 25cm distal to the knee joint line. Laxity was also measured in the native knee, as well as the native knee after a standard approach during TKA which included a medial release. Coronal plane laxity was defined as the absolute difference (in degrees) between the mean mechanical alignment angle obtained from applying a standardised varus and valgus stress at 0, 30, 45, 60 and 90(.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 128 - 128
1 Mar 2013
Klingenstein G Cross MB Plaskos C Nam D Li A Pearle A Mayman DJ
Full Access

Introduction

The aim of this study was to quantitatively analyze the amount coronal plane laxity in mid-flexion that occurs in a well-balanced knee with an elevated joint line of 4 mm. In the setting an elevated joint line, we hypothesized that we would observe an increased varus and/or valgus laxity throughout mid flexion.

Methods

After obtaining IRB approval, nine fresh-frozen cadaver legs from hip-to-toe underwent TKA with a posterior stabilized implant (APEX PS, OMNIlife Science, Inc.) using a computer navigation system equipped with a robotic cutting-guide, in this controlled laboratory cadaveric study. After the initial tibial and femoral resections were performed, the flexion and extension gaps were balanced using navigation, and a 4 mm recut was made in the distal femur. The remaining femoral cuts were made, the femoral component was downsized by resecting an additional 4 mm of bone off the posterior condyles, and the polyethylene was increased by 4 mm to create a situation of a well-balanced knee with an elevated joint line. Real implants were used in the study to eliminate any inherent error or laxity in the trials. The navigation system was used to measure overall coronal plane laxity by measuring the mechanical alignment angle at maximum extension, 30, 45, 60 and 90 degrees of flexion, when applying a standardized varus/valgus load of 9.8 [Nm] across the knee using a 4 kg spring-load located at 25 cm distal to the knee joint line (Figure 1). Coronal plane laxity was defined as the absolute difference (in degrees) between the mean mechanical alignment angle obtained from applying a standardized varus and valgus stress at 0, 30, 45, 60 and 90 degrees. Each measurement was performed three separate times.

Two tailed student t-tests were performed to analyze whether there was difference in the mean mechanical alignment angle at 0°, 30°, 45°, 60°, and 90° between the well balanced scenario and following a 4 mm joint line elevation with an otherwise well balanced knee.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 6 - 6
1 Mar 2013
Cross MB Klingenstein G Plaskos C Nam D Li A Pearle A Mayman DJ
Full Access

Introduction

The aim of this study was to quantitatively analyze the amount coronal plane laxity in mid-flexion that occurs with a loose extension gap in TKA. In the setting of a loose extension gap, we hypothesized that although full extension is achieved, a loose extension gap will ultimately lead to increased varus and/or valgus laxity throughout mid flexion.

Methods

After obtaining IRB approval, six fresh-frozen cadaver legs from hip-to-toe underwent TKA with a posterior stabilized implant (APEX PS OMNIlife Science, Inc.) using a computer navigation system equipped with a robotic cutting-guide, in this controlled laboratory cadaveric study. After the initial tibial and femoral resections were performed, and the flexion and extension gaps were balanced using navigation, a 4 mm distal recut was made in the distal femur to create a loose extension gap (using the same thickness of polyethylene as the well-balanced case). Real implants were used in the study to eliminate error in any laxity inherent to the trials. The navigation system was used to measure overall coronal plane laxity by measuring the mechanical alignment angle at maximum extension, 30, 45, 60 and 90 degrees of flexion, when applying a standardized varus/valgus load of 9.8 [Nm] across the knee using a 4 kg spring-load located at 25 cm distal to the knee joint line. (Figure 1). Coronal plane laxity was defined as the absolute difference (in degrees) between the mean mechanical alignment angle obtained from applying a standardized varus and valgus stress at 0, 30, 45, 60 and 90 degrees. Each measurement was performed three separate times.

Two tailed student t-tests were performed to analyze whether there was difference in the mean mechanical alignment angle at 0°, 30°, 45°, 60°, and 90° between the well balanced scenario and following a 4 mm recut in the distal femur creating a loose extension gap.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 339 - 339
1 Mar 2013
Nam D Weeks D Reinhardt K Nawabi DH Cross MB Mayman DJ Su E
Full Access

Introduction

Computer assisted surgery (CAS) systems have been shown to improve alignment accuracy in total knee arthroplasty (TKA), yet concerns regarding increased costs, operative times, pin sites, and the learning curve associated with CAS techniques have limited its widespread acceptance. The purpose of this study was to compare the alignment accuracy of an accelerometer-based, portable navigation device (KneeAlignÒ 2) to a large console, imageless CAS system (AchieveCAS). Our hypothesis is that no significant difference in alignment accuracy will be appreciated between the portable, accelerometer-based system, and the large-console, imageless navigation system.

Methods

62 consecutive patients, and a total of 80 knees, received a posterior cruciate substituting TKA using the Achieve CAS computer navigation system. Subsequently, 65 consecutive patients, and a total of 80 knees, received a posterior cruciate substituting TKA using the KneeAlignÒ 2 to perform both the distal femoral and proximal tibial resections (femoral guide seen in Figure 1, and tibial guide seen in Figure 2). Postoperatively, standing AP hip-to-ankle radiographs were obtained for each patient, from which the lower extremity mechanical axis, tibial component varus/valgus mechanical alignment, and femoral component varus/valgus mechanical alignment were digitally measured. Each measurement was performed by two, blinded independent observers, and interclass correlation for each measurement was calculated. All procedures were performed using a thigh pneumatic tourniquet, and the total tourniquet time for each procedure was recorded.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 8 - 8
1 Sep 2012
Cross MB Plaskos C Nam D Sherman S Lyman S Pearle A Mayman DJ
Full Access

Aims/Hypothesis

The aims of this study were: 1) to quantitatively analyse the amount of knee extension that is achieved with +2mm incremental increases in the amount of distal femoral bone that is resected during TKA in the setting of a flexion contracture, 2) to quantify the amount of coronal plane laxity that occurs with each 2mm increase in the amount of distal femur resected. In the setting of a soft tissue flexion contracture, we hypothesized that although resecting more distal femur will reliably improve maximal knee extension, it will ultimately lead to increased varus and/or valgus laxity throughout mid-flexion.

Methods

Seven fresh-frozen cadaver legs from hip-to-toe underwent TKA with a posterior stabilized implant using a measured resection technique with computer navigation system equipped with a robotic cutting-guide, in this IRB approved, controlled laboratory study. After the initial tibial and femoral resections were performed, the posterior joint capsule was sutured (imbricated) through the joint space under direct visualization until a 10° flexion contracture was obtained with the trial components in place, as confirmed by computer navigation. Two distal femoral recuts of +2mm each where then subsequently made and after the remaining femoral cuts were made, the trail implants were reinserted. The navigation system was used to measure overall coronal plane laxity by measuring the mechanical alignment angle at maximum extension, 30°, 60° and 90° of flexion, when applying a standardized varus/valgus load of 9.8 [Nm] across the knee using a 4kg spring-load located at 25cm distal to the knee joint line.(Figure 1) Coronal plane laxity was defined as the absolute difference (in °) between the mean mechanical alignment angle obtained from applying a standardized varus and valgus stress at 0°, 30, 60° and 90°. Each measurement was performed three separate times and averaged.

The maximal extension angle achieved following each 2mm distal recut was also recorded. Two-tailed student's t-tests were performed to analyze whether there was difference in the mean laxity at each angle and if there was a significant improvement in maximal extension with each recut. P-values < 0.05 were considered significant.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 9 - 9
1 Sep 2012
Cross MB Plaskos C Nam D Egidy C Nguyen J Lyman S Pearle A Mayman DJ
Full Access

Purpose

Our aim was to compare the passive kinematics and coronal plane stability throughout flexion in the native and the replaced knee, using three different TKA designs: posterior stabilized (PS), bi-cruciate substituting (BCS), and ultracongruent (UC). Our hypotheses were: 1.) a guided motion knee replacement (BCS) offers the closest replication of native knee kinematics in terms of femoral rollback 2.) the replaced knee will be significantly more stable in the coronal plane than the native knee; 3.) No difference exists in coronal plane stability between the 3 implants/designs throughout flexion.

Methods

After IRB approval, two cadaveric specimens were used for a pilot study to determine sample size. Five fresh-frozen hip-to-toe cadaveric specimens then underwent TKA using an anatomic measured resection technique with a computer-navigated robotic femoral cutting-guide. The PS, BCS, and UC TKA designs were implanted in each knee using the same distal and posterior femoral cuts to standardize the position of the implants. Computer navigation was then utilized to record the varus/valgus laxity of each implant at 0°, 30°, 60° and 90° of flexion while applying a standardized 9.8Nm moment.

Passive tibiofemoral kinematics were measured in a continuous passive motion machine from 10° to 110°. Femoral rollback on the tibia was calculated for the native and replaced knees by measuring the closest point (CP) on the femoral condyle to a transverse plane perpendicular to the mechanical axis of the tibia at each flexion angle.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 7 | Pages 994 - 997
1 Jul 2012
Cross MB Nam D van der Meulen MCH Bostrom MPG

An 81-year-old woman presented with a fracture in the left femur. She had well-fixed bilateral hip replacements and had received long-term bisphosphonate treatment. Prolonged bisphosphonate use has been recently linked with atypical subtrochanteric and diaphyseal femoral fractures. While the current definition of an atypical fracture of the femur excludes peri-prosthetic fractures, this case suggests that they do occur and should be considered in patients with severe osteopenia. Union of the fracture followed cessation of bisphosphonates and treatment with teriparatide. Thus, this case calls into question whether prophylactic intramedullary nailing is sufficient alone to treat early or completed atypical femoral fractures.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 114 - 114
1 Mar 2010
Hwang D Nam D Kang C Lee H
Full Access

We evaluated the effects on infection control and clinical feasibility of a prosthesis with antibiotic-loaded acrylic cement(PROSTALAC) which was designed for treatment of infected total hip arthroplasty.

Thirty patients underwent two-staged exchange arthroplasty using the PROSTALAC for treatment of the infected total hip arthroplasty were analysed from March 1995 to February 2007. For shaping of the stem spacer, cement containing antibiotics were appropriately coated on stem spacer and push and pull movement was carried out within the medullary cavity of proximal femur until cement hardened. Also, for prevent of post surgical dislocation, a specially designed polyethylene liner was used. Postoperatively, antibiotics were administered for at least 6 weeks according to the results of erythrocyte sedimentation rate and C-reactive protein assessment.

Infection cure rated 83.3% (20 cases) and C-reactive protein normalized in an average of 5.6weeks (2wks~26wks) but ESR showed very variable score. Partial weight bearing with crutch was possible after 2 weeks postoperatively and lower-limb shortening averaged to 1.43 cm (0.5~3) with a mean bending range of 63.6 degrees (40~90). There were neither dislocations nor fractures during patient mobilization and 5 cases, especially in old age showed satisfactory results even without second staged revision. Recurred infection after PROSTALAC insertion occurred in 5 cases (15%).

Appropriate techniques of PROSTALAC insertion for stability allows us to adjust the reimplantation timing to the course of infection control.