header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

An Elevated Joint Line After TKA Leads to Increased Mid-Flexion Laxity

International Society for Technology in Arthroplasty (ISTA) 2012 Annual Congress



Abstract

Introduction

The aim of this study was to quantitatively analyze the amount coronal plane laxity in mid-flexion that occurs in a well-balanced knee with an elevated joint line of 4 mm. In the setting an elevated joint line, we hypothesized that we would observe an increased varus and/or valgus laxity throughout mid flexion.

Methods

After obtaining IRB approval, nine fresh-frozen cadaver legs from hip-to-toe underwent TKA with a posterior stabilized implant (APEX PS, OMNIlife Science, Inc.) using a computer navigation system equipped with a robotic cutting-guide, in this controlled laboratory cadaveric study. After the initial tibial and femoral resections were performed, the flexion and extension gaps were balanced using navigation, and a 4 mm recut was made in the distal femur. The remaining femoral cuts were made, the femoral component was downsized by resecting an additional 4 mm of bone off the posterior condyles, and the polyethylene was increased by 4 mm to create a situation of a well-balanced knee with an elevated joint line. Real implants were used in the study to eliminate any inherent error or laxity in the trials. The navigation system was used to measure overall coronal plane laxity by measuring the mechanical alignment angle at maximum extension, 30, 45, 60 and 90 degrees of flexion, when applying a standardized varus/valgus load of 9.8 [Nm] across the knee using a 4 kg spring-load located at 25 cm distal to the knee joint line (Figure 1). Coronal plane laxity was defined as the absolute difference (in degrees) between the mean mechanical alignment angle obtained from applying a standardized varus and valgus stress at 0, 30, 45, 60 and 90 degrees. Each measurement was performed three separate times.

Two tailed student t-tests were performed to analyze whether there was difference in the mean mechanical alignment angle at 0°, 30°, 45°, 60°, and 90° between the well balanced scenario and following a 4 mm joint line elevation with an otherwise well balanced knee.

Results

In the setting of a 4 mm elevated joint line, overall coronal-plane laxity was increased by a mean of 1.5° at 45° of flexion, and 1.3° at 60° of flexion (p < 0.05 for each flexion angle). (Figure 2) However, there was no difference at 0° and 90° in the coronal plane laxity between the well-balanced TKA and the TKA that was well balanced but had a 4 mm elevated joint line.

Conclusions

Using a reliable, accurate, and reproducible method of measuring coronal plane laxity, we have shown that in the setting of a an elevated joint during total knee arthroplasty, regardless if the knee is well balanced in full extension and 90° of flexion, coronal plane laxity will be significantly higher in mid-flexion compared to the well balanced state.