header advert
Results 1 - 20 of 70
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 77 - 77
2 Jan 2024
Gueorguiev B Varga P
Full Access

Intramedullary nails (IMNs) are the current gold standard for treatment of long bone diaphyseal and selected metaphyseal fractures. Their design has undergone many revisions to improve fixation techniques, conform to the bone shape with appropriate anatomic fit, reduce operative time and radiation exposure, and extend the indication of the same implant for treatment of different fracture types with minimal soft tissue irritation.

The IMNs are made or either titanium alloy or stainless steel and work as load-sharing internal splints along the long bone, usually accommodating locking elements – screws and blades, often featuring angular stability and offering different configurations for multiplanar fixation – to secure secondary fracture healing with callus formation in a relative-stability environment. Bone cement augmentation of the locking elements can modulate the construct stiffness, increase the surface area at the bone-implant interface, and prevent cut-through of the locking elements.

The functional requirements of IMNs are related to maintaining fracture reduction in terms of length, alignment and rotation to enhance fracture healing. The load distribution during patient's activities is along the entire bone-nail interface, with nail length and anatomic fit being important factors to avoid stress risers.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 107 - 107
2 Jan 2024
Pastor T Zderic I Berk T Souleiman F Vögelin E Beeres F Gueorguiev B Pastor T
Full Access

Recently, a new generation of superior clavicle plates was developed featuring the variable-angle locking technology for enhanced screw positioning and optimized plate-to-bone fit design. On the other hand, mini-fragment plates used in dual plating mode have demonstrated promising clinical results. However, these two bone-implant constructs have not been investigated biomechanically in a human cadaveric model. Therefore, the aim of the current study was to compare the biomechanical competence of single superior plating using the new generation plate versus dual plating with low-profile mini-fragment plates.

Sixteen paired human cadaveric clavicles were assigned pairwise to two groups for instrumentation with either a 2.7 mm Variable Angle Locking Compression Plate placed superiorly (Group 1), or with one 2.5 mm anterior plate combined with one 2.0 mm superior matrix mandible plate (Group 2). An unstable clavicle shaft fracture AO/OTA15.2C was simulated by means of a 5 mm osteotomy gap. All specimens were cyclically tested to failure under craniocaudal cantilever bending, superimposed with bidirectional torsion around the shaft axis and monitored via motion tracking.

Initial stiffness was significantly higher in Group 2 (9.28±4.40 N/mm) compared to Group 1 (3.68±1.08 N/mm), p=0.003. The amplitudes of interfragmentary motions in terms of craniocaudal and shear displacement, fracture gap opening and torsion were significantly bigger over the course of 12500 cycles in Group 1 compared to Group 2; p≤0.038. Cycles to 2 mm shear displacement were significantly lower in Group 1 (22792±4346) compared to Group 2 (27437±1877), p=0.047.

From a biomechanical perspective, low-profile 2.5/2.0 dual plates demonstrated significantly higher initial stiffness, less interfragmentary movements, and higher resistance to failure compared to 2.7 single superior variable-angle locking plates and can therefore be considered as a useful alternative for diaphyseal clavicle fracture fixation especially in unstable fracture configurations.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 80 - 80
2 Jan 2024
Mischler D Windolf M Gueorguiev B Varga P
Full Access

Osteosynthesis aims to maintain fracture reduction until bone healing occurs, which is not achieved in case of mechanical fixation failure. One form of failure is plastic plate bending due to overloading, occurring in up to 17% of midshaft fracture cases and often necessitating reoperation. This study aimed to replicate in-vivo conditions in a cadaveric experiment and to validate a finite element (FE) simulation to predict plastic plate bending.

Six cadaveric bones were used to replicate an established ovine tibial osteotomy model with locking plates in-vitro with two implant materials (titanium, steel) and three fracture gap sizes (30, 60, 80 mm). The constructs were tested monotonically until plastic plate deformation under axial compression. Specimen-specific FE models were created from CT images. Implant material properties were determined using uniaxial tensile testing of dog bone shaped samples. The experimental tests were replicated in the simulations. Stiffness, yield, and maximum loads were compared between the experiment and FE models.

Implant material properties (Young's modulus and yield stress) for steel and titanium were 184 GPa and 875 MPa, and 105 GPa and 761 MPa, respectively. Yield and maximum loads of constructs ranged between 469–491 N and 652–683 N, and 759–995 N and 1252–1600 N for steel and titanium fixations, respectively. FE models accurately and quantitatively correctly predicted experimental results for stiffness (R2=0.96), yield (R2=0.97), and ultimate load (R2=0.97).

FE simulations accurately predicted plastic plate bending in osteosynthesis constructs. Construct behavior was predominantly driven by the implant itself, highlighting the importance of modelling correct material properties of metal. The validated FE models could predict subject-specific load bearing capacity of osteosyntheses in vivo in preclinical or clinical studies.

Acknowledgements: This study was supported by the AO Foundation via the AOTRAUMA Network (Grant No.: AR2021_03).


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 31 - 31
2 Jan 2024
Ernst M Windolf M Varjas V Gehweiler D Gueorguiev-Rüegg B Richards R
Full Access

In absence of available quantitative measures, the assessment of fracture healing based on clinical examination and X-rays remains a subjective matter. Lacking reliable information on the state of healing, rehabilitation is hardly individualized and mostly follows non evidence-based protocols building on common guidelines and personal experience. Measurement of fracture stiffness has been demonstrated as a valid outcome measure for the maturity of the repair tissue but so far has not found its way to clinical application outside the research space. However, with the recent technological advancements and trends towards digital health care, this seems about to change with new generations of instrumented implants – often unfortunately termed “smart implants” – being developed as medical devices.

The AO Fracture Monitor is a novel, active, implantable sensor system designed to provide an objective measure for the assessment of fracture healing progression (1). It consists of an implantable sensor that is attached to conventional locking plates and continuously measures implant load during physiological weight bearing. Data is recorded and processed in real-time on the implant, from where it is wirelessly transmitted to a cloud application via the patient's smartphone. Thus, the system allows for timely, remote and X-ray free provision of feedback upon the mechanical competence of the repair tissue to support therapeutic decision making and individualized aftercare.

The device has been developed according to medical device standards and underwent extensive verification and validation, including an in-vivo study in an ovine tibial osteotomy model, that confirmed the device's capability to depict the course of fracture healing as well as its long-term technical performance. Currently a multi-center clinical investigation is underway to demonstrate clinical safety of the novel implant system. Rendering the progression of bone fracture healing assessable, the AO Fracture Monitor carries potential to enhance today's postoperative care of fracture patients.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 26 - 26
2 Jan 2024
Jacob A Heumann M Zderic I Varga P Caspar J Lauterborn S Haschtmann D Fekete T Gueorguiev B Loibl M
Full Access

Stand-alone anterior lumbar interbody fusion (ALIF) provides the opportunity to avoid supplemental posterior fixation. This may reduce morbidity and complication rate, which is of special interest in patients with reduced bone mineral density (BMD). This study aims to assess immediate biomechanical stability and radiographic outcome of a stand-alone ALIF device with integrated screws in specimens of low BMD.

Eight human cadaveric spines (L4-sacrum) were instrumented with SynFix-LR™ (DePuy Synthes) at L5/S1. Quantitative computed tomography was used to measure BMD of L5 in AMIRA. Threshold values proposed by the American Society of Radiology 80 and 120 mg CaHa/mL were used to differentiate between Osteoporosis, Osteopenia, and normal BMD. Segmental lordosis, anterior and posterior disc height were analysed on pre- and postoperative radiographs (Fig 1). Specimens were tested intact and following instrumentation using a flexibility protocol consisting of three loading cycles to ±7.5 Nm in flexion-extension, lateral bending, and axial rotation. The ranges of motion (ROM) of the index level were assessed using an optoelectronic system.

BMD ranged 58–181mg CaHA/mL. Comparison of pre- and postoperative radiographs revealed significant increase of L5/S1 segmental lordosis (mean 14.6°, SD 5.1, p < 0.001) and anterior disc height (mean 5.8mm, SD 1.8, p < 0.001), but not posterior disc height. ROM of 6 specimens was reduced compared to the intact state. Two specimens showed destructive failure in extension. Mean decrease was most distinct in axial rotation up to 83% followed by flexion-extension.

ALIF device with integrated screws at L5/S1 significantly increases segmental lordosis and anterior disc height without correlation to BMD. Primary stability in the immediate postoperative situation is mostly warranted in axial rotation. The risk of failure might be increased in extension for some patients with reduced lumbar BMD, therefore additional posterior stabilization could be considered.

For any figures or tables, please contact the authors directly.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 39 - 39
2 Jan 2024
Pastor T Cattaneo E Pastor T Gueorguiev B Windolf M Buschbaum J
Full Access

Freehand distal interlocking of intramedullary nails remains a challenging task. If not performed correctly it can be a time consuming and radiation expensive procedure. Recently, the AO Research Institute developed a new training device for Digitally Enhanced Hands-on Surgical Training (DEHST) that features practical skills training augmented with digital technologies, potentially improving surgical skills needed for distal interlocking. Aim of the study: To evaluate weather training with DEHST enhances the performance of novices without surgical experience in free-hand distal nail interlocking compared to a non-trained group of novices.

20 novices were assigned in two groups and performed distal interlocking of a tibia nail in an artificial bone model. Group 1: DEHST trained novices (virtual locking of five nail holes during one hour of training). Group 2: untrained novices without DEHST training. Time, number of x-rays, nail hole roundness, critical events and success rates were compared between the groups.

Time to complete the task (sec.) and x-ray exposure (µGcm2) were significantly lower in Group1 414.7 (290–615) and 17.8 (9.8–26.4) compared to Group2 623.4 (339–1215) and 32.6 (16.1–55.3); p=0.041 and 0.003. Perfect circle roundness (%) was 95.0 (91.1–98.0) in Group 1 and 80.8 (70.1–88.9) in Group 2; p<0.001. In Group 1 90% of the participants achieved successful completion of the task (hit the nail with the drill), whereas only 60% of the participants in group 2 achieved this; p=0.121.

Training with DEHST significantly enhances the performance of novices without surgical experience in distal interlocking of intramedullary nails. Besides radiation exposure and operation time the com-plication rate during the operation can be significantly reduced.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 56 - 56
2 Jan 2024
Zderic I Warner S Stoffel K Woodburn W Castle R Penman J Saura-Sanchez E Helfet D Gueorguiev B Sommer C
Full Access

Treatment of both simple and complex patella fractures is a challenging clinical problem. The aim of this study was to investigate the biomechanical performance of recently developed lateral rim variable angle locking plates versus tension band wiring used for fixation of simple and complex patella fractures.

Twelve pairs of human anatomical knees were used to simulate either two-part transverse simple AO/OTA 34C1 or five-part complex AO/OTA 34C3 patella fractures by means of osteotomies, with each fracture model created in six pairs. The complex fracture pattern was characterized by a medial and a lateral proximal fragment, together with an inferomedial, an inferolateral, and an inferior fragment mimicking comminution around the distal patellar pole. The specimens with simple fractures were pairwise assigned for fixation with either tension band wiring through two parallel cannulated screws, or a lateral rim variable angle locking plate. The knees with complex fractures were pairwise treated with either tension band wiring through two parallel cannulated screws plus circumferential cerclage wiring, or a lateral rim variable angle locking plate.

Each specimen was tested over 5000 cycles by pulling on the quadriceps tendon, simulating active knee extension and passive knee flexion within the range of 90° flexion to full knee extension. Interfragmentary movements were captured via motion tracking.

For both fracture types, the longitudinal and shear articular displacements measured between the proximal and distal fragments at the central patella aspect between 1000 and 5000 cycles, together with the relative rotations of these fragments around the mediolateral axis were all significantly smaller following the lateral rim variable angle locked plating compared with tension band wiring, p<0.01.

Lateral rim locked plating of both simple and complex patella fractures provides superior construct stability versus tension band wiring under dynamic loading.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 82 - 82
2 Jan 2024
Barcik J Ernst M Buchholz T Constant C Mys K Epari D Zeiter S Gueorguiev B Windolf M
Full Access

Secondary bone healing is impacted by the extent of interfragmentary motion at the fracture site. It provides mechanical stimulus that is required for the formation of fracture callus. In clinical settings, interfragmentary motion is induced by physiological loading of the broken bone – for example, by weight-bearing. However, there is no consensus about when mechanical stimuli should be applied to achieve fast and robust healing response. Therefore, this study aims to identify the effect of the immediate and delayed application of mechanical stimuli on secondary bone healing.

A partial tibial osteotomy was created in twelve Swiss White Alpine sheep and stabilized using an active external fixator that induced well-controlled interfragmentary motion in form of a strain gradient. Animals were randomly assigned into two groups which mimicked early (immediate group) and late (delayed group) weight-bearing. The immediate group received daily stimulation (1000 cycles/day) from the first day post-op and the delayed group from the 22nd day post-op. Healing progression was evaluated by measurements of the stiffness of the repair tissue during mechanical stimulation and by quantifying callus area on weekly radiographs. At the end of the five weeks period, callus volume was measured on the post-mortem high-resolution computer tomography (HRCT) scan.

Stiffness of the repair tissue (p<0.05) and callus progression (p<0.01) on weekly radiographs were significantly larger for the immediate group compared to the delayed group. The callus volume measured on the HRCT was nearly 3.2 times larger for the immediate group than for the delayed group (p<0.01).

This study demonstrates that the absence of immediate mechanical stimuli delays callus formation, and that mechanical stimulation already applied in the early post-op phase promotes bone healing.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 25 - 25
2 Jan 2024
Pastor T Zderic I Varga P Gueorguiev B Pastor T
Full Access

The number of seven needed knots to provide secure hold of high strength sutures was previously reported. New technologies like tape sutures and sutures with a salt infused silicon core have been developed, potentially reducing the number of needed knots. Study aims: To investigate the influence of (1) throw number and (2) different ambient conditions on knot security in two different high-strength sutures, and (3) to compare their biomechanical competence.

Two sutures (SutureTape (FT); n=56 and DynaTape (DT); n=56) were assigned for knot tying. Specimens were exposed to different media during tying, namely air, saline solution, and fat. A monotonic tensile ramp was applied. For each suture and ambient condition, seven specimens with 3 to 7 throws each were tested (n=7), evaluating their slippage and ultimate force to failure. The minimum number of throws preventing suture unraveling was determined in each suture and condition.

For each suture type and condition failure occurred via rupturing in all specimens for the following minimum number of throws: FT: dry–6, wet–6, fatty-wet–6; DT: dry–6; wet–4; fatty-wet–5. No significant differences were found comparing ultimate load to rupture of the two groups with minimum number of needed throws in each media. (FT dry-6 vs. DT dry-6; p<0.07); (FT wet-6 vs. DT wet-4; p<0.20); (FT fat-6 vs. DT fat-5; p<0.58). Knot slippage of DT was significantly higher in wet and fatty conditions compared to ST p<0.001 and p<0.004.

In fatty-wet conditions DT requires 5 throws to achieve a secure knot. In wet conditions this number can be reduced to 4 throws. FT needs 6 throws to provide a stable knot in all conditions. The biomechanical competence of both sutures in terms of knot slippage and peak force are comparable.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_15 | Pages 68 - 68
7 Nov 2023
Hohmann E Paschos N Keough N Molepo M Oberholster A Erbulut D Tetsworth K Glat V Gueorguiev B
Full Access

The purpose of this study was to develop a quality appraisal tool for the assessment of laboratory basic science biomechanical studies.

Materials andScore development comprised of the following phases: item identification/development, item reduction, content/face/criterion validity, weighting, test-retest reliability and internal consistency. For item identification/development, the panel was asked to independently list criteria and factors they considered important for cadaver study and generate items that should be used to appraise cadaver study quality. For content validity, the content validity ratio (CVR) was calculated. The minimum accepted content validity index (CVI) was set to 0.85. For weighting, equal weight for each item was 6.7% [15 items]. Based on these figures the panel was asked to either upscale or downscale the weight for each item ensuring that the final sum for all items was 100%. Face validity was assessed by each panel member using a Likert scale from 1–7. Strong face validity was defined as a mean score of >5. Test-retest reliability was assessed using 10 randomly selected studies. Criterion validity was assessed using the QUACS scale as standard. Internal consistency was assessed using Cronbach's alpha.

Five items reached a CVI of 1 and 10 items a CVI of 0.875. For weighting five items reached a final weight of 10% and ten items 5%. The mean score for face validity was 5.6. Test-retest reliability ranged from 0.78–1.00 with 9 items reaching a perfect score. Criterion validity was 0.76 and considered to be strong. Cronbach's alpha was calculated to be 0.71 indicating acceptable internal consistency.

The new proposed quality score for basic science studies consists of 15 items and has been shown to be reliable, valid and of acceptable internal consistency. It is suggested that this score should be utilised when assessing basic science studies.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 50 - 50
11 Apr 2023
Souleiman F Zderic I Pastor T Gehweiler D Gueorguiev B Galie J Kent T Tomlinson M Schepers T Swords M
Full Access

The quest for optimal treatment of acute distal tibiofibular syndesmotic disruptions is still in progress. Using suture-button repair devices is one of the dynamic stabilization options, however, they may not be always appropriate for stabilization of length-unstable syndesmotic injuries. Recently, a novel screw-suture repair system was developed to address such issues. The aim of this study was to investigate the performance of the novel screw-suture repair system in comparison to a suture-button stabilization of unstable syndesmotic injuries.

Eight pairs of human cadaveric lower legs were CT scanned under 700 N single-leg axial loading in five foot positions – neutral, 15° external/internal rotation and 20° dorsi-/plantarflexion – in 3 different states: (1) pre-injured (intact); (2) injured, characterized by complete syndesmosis and deltoid ligaments cuts simulating pronation-eversion injury types III and IV as well as supination-eversion injury type IV according to Lauge-Hansen; (3) reconstructed, using a screw-suture (FIBULINK, Group 1) or a suture-button (TightRope, Group 2) implants for syndesmotic stabilization, placed 20 mm proximal to the tibia plafond. Following, all specimens were: (1) biomechanically tested over 5000 cycles under combined 1400 N axial and ±15° torsional loading; (2) rescanned. Clear space (diastasis), anterior tibiofibular distance, talar dome angle and fibular shortening were measured radiologically from CT scans. Anteroposterior (AP), axial, mediolateral and torsional movements at the distal tibiofibular joint level were evaluated biomechanically via motion tracking.

In each group clear space increased significantly after injury (p ≤ 0.004) and became significantly smaller in reconstructed compared with both pre-injured and injured states (p ≤ 0.041). In addition, after reconstruction it was significantly smaller in Group 1 compared to Group 2 (p < 0.001). AP and axial movements were significantly smaller in Group 1 compared with Group 2 (p < 0.001). No further significant differences were identified/detected between the groups (p ≥ 0.113).

Although both implant systems demonstrate ability for stabilization of unstable syndesmotic injuries, the screw-suture reconstruction provides better anteroposterior translation and axial stability of the tibiofibular joint and maintains it over time under dynamic loading. Therefore, it could be considered as a valid option for treatment of syndesmotic disruptions.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 88 - 88
11 Apr 2023
Souleiman F Heilemann M Hennings R Hepp P Gueorguiev B Richards G Osterhoff G Gehweiler D
Full Access

The aim of this study was to investigate the effect of different loading scenarios and foot positions on the configuration of the distal tibiofibular joint (DTFJ).

Fourteen paired human cadaveric lower legs were mounted in a loading frame. Computed tomography scans were obtained in unloaded state (75 N) and single-leg loaded stand (700 N) of each specimen in five foot positions: neutral, 15° external rotation, 15° internal rotation, 20° dorsiflexion, and 20° plantarflexion. An automated three-dimensional measurement protocol was used to assess clear space (diastasis), translational angle (rotation), and vertical offset (fibular shortening) in each foot position and loading condition.

Foot positions had a significant effect on the configuration of DTFJ. Largest effects were related to clear space increase by 0.46 mm (SD 0.21 mm) in loaded dorsal flexion and translation angle of 2.36° (SD 1.03°) in loaded external rotation, both versus loaded neutral position. Loading had no effect on clear space and vertical offset in any position. Translation angle was significantly influenced under loading by −0.81° (SD 0.69°) in internal rotation only.

Foot positioning noticeably influences the measurement when evaluating the configuration of DTFJ. The influence of the weightbearing seems to have no relevant effect on native ankles in neutral position.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 25 - 25
11 Apr 2023
Richter J Ciric D Kalchschmidt K D'Aurelio C Pommer A Dauwe J Gueorguiev B
Full Access

Reorientating pelvic osteotomies are performed to improve femoral head coverage and secondary degenerative arthritis. A rectangular triple pelvic innominate osteotomy (3PIO) is performed in symptomatic cases. However, deciding optimal screw fixation type to avoid complications is questionable. Therefore, this study aimed to investigate the biomechanical behavior of two different acetabular screw configurations used for rectangular 3PIO osteosynthesis. It was hypothesized that bi-directional screw fixation would be biomechanically superior to mono-axial screw fixation technique.

A rectangular 3PIO was performed in twelve right-side artificial Hemi-pelvises. Group 1 (G1) had two axial and one transversal screw in a bi-directional orientation. Group 2 (G2) had three screws in the axial direction through the iliac crest. Acetabular fragment was reoriented to 10.5° inclination in coronal plane, and 10.0° increased anteversion along axial plane. Specimens were biomechanically tested until failure under progressively increasing cyclic loading at 2Hz, starting at 50N peak compression, increasing 0.05N/cycle. Stiffness was calculated from machine data. Acetabular anteversion, inclination and medialization were evaluated from motion tracking data from 250-2500 at 250 cycle increments. Failure cycles and load were evaluated for 5° change in anteversion.

Stiffness was higher in G1 (56.46±19.45N/mm) versus G2 (39.02±10.93N/mm) but not significantly, p=0.31. Acetabular fragment anteversion, inclination and medialization increased significantly each group (p≤0.02) and remained non-significantly different between the groups (p≥0.69). Cycles to failure and failure load were not significantly different between G1 (4406±882, 270.30±44.10N) and G2 (5059±682, 302.95±34.10N), p=0.78.

From a biomechanical perspective, the present study demonstrates that a bi-directional screw orientation does not necessarily advantageous versus mono-axial alignment when the latter has all three screws evenly distributed over the osteotomy geometry. Moreover, the 3PIO fixation is susceptible to changes in anteversion, inclination and medialization of the acetabular fragment until the bone is healed. Therefore, cautious rehabilitation with partial weight-bearing is recommended.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 81 - 81
11 Apr 2023
Antonacci P Dauwe J Varga P Ciric D Gehweiler D Gueorguiev B Mys K
Full Access

Cartilage diseases have a significant impact on the patient's quality of life and are a heavy burden for the healthcare system. Better understanding, early detection and proper follow-up could improve quality of life and reduce healthcare related costs. Therefore, the aim of this study was to evaluate if difference between osteoarthritic (OA) and non-osteoarthritic (non-OA) knees can be detected quantitatively on cartilage and subchondral bone levels with advanced but clinical available imaging techniques.

Two OA (mean age = 88.3 years) and three non-OA (mean age = 51.0 years) human cadaveric knees were scanned two times. A high-resolution peripheral quantitative computed tomography (HR-pQCT) scan (XtremeCT, Scanco Medical AG, Switzerland) was performed to quantify the bone microstructure. A contrast-enhanced clinical CT scan (GE Revolution Evo, GE Medical Systems AG, Switzerland) was acquired with the contrast agent Visipaque 320 (60 ml) to measure cartilage. Subregions dividing the condyle in four parts were identified semi-automatically and the images were segmented using adaptive thresholding. Microstructural parameters of subchondral bone and cartilage thickness were quantified.

The overall cartilage thickness was reduced by 0.27 mm between the OA and non-OA knees and the subchondral bone quality decreased accordingly (reduction of 33.52 % in BV/TV in the layer from 3 to 8 mm below the cartilage) for the femoral medial condyle. The largest differences were observed at the medial part of the femoral medial condyle both for cartilage and for bone parameters, corresponding to clinical observations.

Subchondral bone microstructural parameters and cartilage thickness were quantified using in vivo available imaging and apparent differences between the OA and non-OA knees were detected. Those results may improve OA follow-up and diagnosis and could lead to a better understanding of OA. However, further in vivo studies are needed to validate these methods in clinical practice.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 35 - 35
11 Apr 2023
Pastor T Knobe M Ciric D Zderic I van de Wall B Rompen I Visscher L Link B Babst R Richards G Gueorguiev B Beeres F
Full Access

Implant removal after clavicle plating is common. Low-profile dual mini-fragment plate constructs are considered safe for fixation of diaphyseal clavicle fractures. The aim of this study was to investigate: (1) the biomechanical competence of different dual plate designs from stiffness and cycles to failure, and (2) to compare them against 3.5mm single superoanterior plating.

Twelve artificial clavicles were assigned to 2 groups and instrumented with titanium matrix mandible plates as follows: group 1 (G1) (2.5mm anterior+2.0mm superior) and group 2 (G2) (2.0mm anterior+2.0mm superior). An unstable clavicle shaft fracture (AO/OTA15.2C) was simulated. Specimens were cyclically tested to failure under craniocaudal cantilever bending, superimposed with torsion around the shaft axis and compared to previous published data of 6 locked superoanterior plates tested under the same conditions (G3).

Displacement (mm) after 5000 cycles was highest in G3 (10.7±0.8) followed by G2 (8.5±1.0) and G1 (7.5±1.0), respectively. Both outcomes were significantly higher in G3 as compared to both G1 and G2 (p≤0.027). Cycles to failure were highest in G3 (19536±3586) followed by G1 (15834±3492) and G2 (11104±3177), being significantly higher in G3 compared to G2 (p=0.004). Failure was breakage of one or two plates at the level of the osteotomy in all specimens. One G1 specimen demonstrated failure of the anterior plate. Both plates in other G1 specimens. Majority of G2 had fractures in both plates. No screw pullout or additional clavicle fractures were observed among specimens.

Low-profile 2.0/2.0 dual plates demonstrated similar initial stiffness compared to 3.5mm single plates, however, had significantly lower failure endurance. Low-profile 2.5/2.0 dual plates showed significant higher initial stiffness and similar resistance to failure compared to 3.5mm single locked plates and can be considered as a useful alternative for diaphyseal clavicle fracture fixation. These results complement the promising results of several clinical studies.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 82 - 82
11 Apr 2023
Souleiman F Zderic I Pastor T Varga P Helfen T Richards G Gueorguiev B Theopold J Osterhoff G Hepp P
Full Access

Glenohumeral joint injuries frequently result in shoulder instability. However, the biomechanical effect of cartilage loss on shoulder stability remains unknown. The aim of the current study was to investigate biomechanically the effect of two severity stages of cartilage loss in different dislocation directions on shoulder stability. Joint dislocation was provoked for 11 human cadaveric glenoids in seven different dislocation directions between 3 o'clock (anterior) to 9 o'clock (posterior) dislocation. Shoulder stability ratio (SSR) and concavity gradient were assessed in intact condition, and after 3 mm and 6 mm simulated cartilage loss. The influence of cartilage loss on SSR and concavity gradient was statistically evaluated. Between intact state and 6 mm cartilage loss, both SSR and concavity gradient decreased significantly in every dislocation direction (p≤0.038), except the concavity gradient in 4 o'clock dislocation direction (p=0.088). Thereby, anterior-inferior dislocation directions were associated with the highest loss of SSR and concavity gradient of up to 59.0% and 49.4%, respectively, being significantly higher for SSR compared to all other dislocation directions (p≤0.04). The correlations between concavity gradient and SSR for pooled dislocation directions were significant for all three conditions of cartilage loss (p<0.001). From a biomechanical perspective, articular cartilage of the glenoid contributes significantly to the concavity gradient, correlating strongly with the associated loss in glenohumeral joint stability. The highest effect of cartilage loss was observed in anterior-inferior dislocation directions, suggesting that surgical intervention should be considered for recurrent shoulder dislocations in the presence of cartilage loss.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 5 - 5
11 Apr 2023
Mischler D Tenisch L Schader J Dauwe J Gueorguiev B Windolf M Varga P
Full Access

Despite past advances of implant technologies, complication rates of fixations remain high at challenging sites such as the proximal humerus [1]. These may not only be owed to the implant itself but also to dissatisfactory surgical execution of fracture reduction and implant positioning. Therefore, the aim of this study was to quantify the instrumentation accuracy of a highly standardised and guided procedure and its influence on the biomechanical outcome and predicted failure risk.

Preoperative planning of osteotomies creating an unstable 3-part fracture and fixation with a locking plate was performed based on CT scans of eight pairs of low-density proximal humerus samples from elderly female donors (85.2±5.4 years). 3D-printed subject-specific guides were used to osteotomise and instrument the samples according to the pre-OP plan. Instrumentation accuracies in terms of screw lengths and orientations were evaluated by comparing post-OP CT scans with the pre-OP plan. The fixation constructs were biomechanically tested until cyclic cut-out failure [2]. Failure risks of the planned and the post-OP configurations were predicted using a validated sample-specific finite element (FE) simulation approach [2] and correlated with the experimental outcomes.

Small deviations were found for the instrumented screw trajectories compared to the planned configuration in the proximal-distal (0.3±1.3º) and anterior-posterior directions (-1.7±1.8º), and for screw tip to joint distances (-0.3±1.1 mm). Significantly higher failure risk was predicted for the post-OP compared to the planned configurations (p<0.01) via FE. When incorporating the instrumentation inaccuracies, the biomechanical results could be predicted well with FE (R2=0.70).

Despite the high instrumentation accuracy achieved using sophisticated subject-specific 3D-printed guides, even minor deviations from the pre-OP plan significantly increased the FE-predicted risk of failure. This underlines the importance of intraoperative guiding technology [3] in tandem with careful pre-OP planning to assist surgeons to achieve optimal outcomes.

Acknowledgements

This study was performed with the assistance of the AO Foundation via the AOTRAUMA Network.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 86 - 86
11 Apr 2023
Souleiman F Zderic I Pastor T Varga P Gueorguiev B Richards G Osterhoff G Hepp P Theopold J
Full Access

Osteochondral glenoid loss is associated with recurrent shoulder instability. The critical threshold for surgical stabilization is multidimensional and conclusively unknown. The aim of this work was to provide a well- measurable surrogate parameter of an unstable shoulder joint for the frequent anterior-inferior dislocation direction.

The shoulder stability ratio (SSR) of 10 paired human cadaveric glenoids was determined in anterior-inferior dislocation direction. Osteochondral defects were simulated by gradually removing osteochondral structures in 5%-stages up to 20% of the intact diameter. The glenoid morphological parameters glenoid depth, concavity gradient, and defect radius were measured at each stage by means of optical motion tracking. Based on these parameters, the osteochondral stability ratio (OSSR) was calculated. Correlation analyses between SSR and all morphological parameters, as well as OSSR were performed.

The loss of SSR, concavity gradient, depth and OSSR with increasing defect size was significant (all p<0.001). The loss of SSR strongly correlated with the losses of concavity gradient (PCC = 0.918), of depth (PCC = 0.899), and of OSSR (PCC = 0.949). In contrast, the percentage loss based on intact diameter (defect size) correlated weaker with SSR (PCC=0.687). Small osteochondral defects (≤10%) led to significantly higher SSR decrease in small glenoids (diameter <25mm) compared to large (≥ 25mm) ones (p ≤ 0.009).

From a biomechanical perspective, the losses of concavity gradient, glenoid depth and OSSR correlate strong with the loss of SSR. Therefore, especially the loss of glenoidal depth may be considered as a valid and reliable alternative parameter to describe shoulder instability. Furthermore, smaller glenoids are more vulnerable to become unstable in case of small osteochondral loosening. On the other hand, the standardly used percentage defect size based on intact diameter correlates weaker with the magnitude of instability and may therefore not be a valid parameter for judgement of shoulder instability.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 63 - 63
11 Apr 2023
Pastor T Knobe M Kastner P Souleiman F Pastor T Gueorguiev B Windolf M Buschbaum J
Full Access

Freehand distal interlocking of intramedullary nails is technical demanding and prone to handling issues. It requires the surgeon to precisely place a screw through the nail under x-ray. If not performed accurately it can be a time consuming and radiation expensive procedure. The aims of this study were to assess construct and face validity of a new training device for distal interlocking of intramedullary nails.

53 participants (29 novices and 24 experts) were included. Construct validity was evaluated by comparing simulator metrics (number of x-rays, nail hole roundness, drill tip position and accuracy of the drilled hole) between experts and novices. Face validity was evaluated by means of a questionnaire concerning training potential and quality of simulated reality using a 7-point Likert scale (range 1-7).

Mean realism of the training device was rated 6.3 (range 4-7) and mean training potential as well as need for distal interlocking training was rated 6.5 (range 5-7) with no significant differences between experts and novices, p≥0.236. All participants stated that the simulator is useful for procedural training of distal nail interlocking, 96% would like to have it at their institution and 98% would recommend it to their colleagues. Total number of x-rays were significantly higher for novices (20.9±6.4 vs. 15.5±5.3), p=0.003. Successful task completion (hit the virtual nail hole with the drill) was significantly higher in experts (p=0.04; novices hit: n=12; 44,4%; experts hit: n=19; 83%).

The evaluated training device for distal interlocking of intramedullary nails yielded high scores in terms of training capability and realism. Furthermore, construct validity was established as it reliably discriminates between experts and novices. Participants see a high further training potential as the system may be easily adapted to other surgical task requiring screw or pin position with the help of x-rays.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 41 - 41
4 Apr 2023
Benca E Zderic I van Knegsel K Caspar J Hirtler L Fuchssteiner C Strassl A Gueorguiev B Widhalm H Windhager R Varga P
Full Access

Odontoid fracture of the second cervical vertebra (C2) is the most common spinal fracture type in elderly patients. However, very little is known about the biomechanical fracture mechanisms, but could play a role in fracture prevention and treatment. This study aimed to investigate the biomechanical competence and fracture characteristics of the odontoid process.

A total of 42 human C2 specimens (14 female and 28 male, 71.5 ± 6.5 years) were scanned via quantitative computed tomography, divided in 6 groups (n = 7) and subjected to combined quasi-static loading at a rate of 0.1 mm/s until fracturing at inclinations of −15°, 0° and 15° in sagittal plane, and −50° and 0° in transverse plane. Bone mineral density (BMD), specimen height, fusion state of the ossification centers, stiffness, yield load, ultimate load, and fracture type according to Anderson and d'Alonzo were assessed.

While the lowest values for stiffness, yield, and ultimate load were observed at load inclination of 15° in sagittal plane, no statistically significant differences could be observed among the six groups (p = 0.235, p = 0.646, and p = 0.505, respectively). Evaluating specimens with only clearly distinguishable fusion of the ossification centers (n = 26) reveled even less differences among the groups for all mechanical parameters. BMD was positively correlated with yield load (R² = 0.350, p < 0.001), and ultimate load (R² = 0.955, p < 0.001), but not with stiffness (p = 0.070). Type III was the most common fracture type (23.5%).

These biomechanical outcomes indicate that load direction plays a subordinate role in traumatic fractures of the odontoid process in contrast to BMD which is a strong determinant of stiffness and strength. Thus, odontoid fractures appear to result from an interaction between load magnitude and bone quality.