header advert
Results 1 - 33 of 33
Results per page:
Bone & Joint Research
Vol. 13, Issue 4 | Pages 193 - 200
23 Apr 2024
Reynolds A Doyle R Boughton O Cobb J Muirhead-Allwood S Jeffers J

Aims

Manual impaction, with a mallet and introducer, remains the standard method of installing cementless acetabular cups during total hip arthroplasty (THA). This study aims to quantify the accuracy and precision of manual impaction strikes during the seating of an acetabular component. This understanding aims to help improve impaction surgical techniques and inform the development of future technologies.

Methods

Posterior approach THAs were carried out on three cadavers by an expert orthopaedic surgeon. An instrumented mallet and introducer were used to insert cementless acetabular cups. The motion of the mallet, relative to the introducer, was analyzed for a total of 110 strikes split into low-, medium-, and high-effort strikes. Three parameters were extracted from these data: strike vector, strike offset, and mallet face alignment.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 16 - 16
1 Dec 2021
Munford M Stoddart J Liddle A Cobb J Jeffers J
Full Access

Abstract

Objectives

Unicompartmental and total knee arthroplasty (UKA and TKA) are successful treatments for osteoarthritis, but monolithic implants disrupt the natural homeostasis of bone which leads to bone loss over time. This can cause problems if the implant needs to be revised. This study aimed to demonstrate that tibial implants made from titanium lattice could replace the tibial condyle surface while minimising disruption of the bone's natural mechanical loading environment. A secondary aim was to determine whether implants perform better if they replicate more closely bone's mechanical modulus, anisotropy and spatial heterogeneity. This study was conducted in a human cadaveric model.

Methods

In a cadaveric model, UKA and TKA procedures were performed on 8 fresh-frozen knee specimens by a board-certified consultant orthopaedic surgeon, using tibial implants made from conventional monolithic material and titanium lattice structures. Stress at the bone-implant interfaces was measured with pressure film and compared to the native knee.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_9 | Pages 11 - 11
1 Jun 2021
Munford M Jeffers J
Full Access

OSSTEC is a pre-spin-out venture at Imperial College London seeking industry feedback on our orthopaedic implants which maintain bone quality in the long term. Existing orthopaedic implants provide successful treatment for knee osteoarthritis, however, they cause loss of bone quality over time, leading to more dangerous and expensive revision surgeries and high implant failure rates in young patients.

OSSTEC tibial implants stimulate healthy bone growth allowing simple primary revision surgery which will provide value for all stakeholders. This could allow existing orthopaedics manufacturers to capture high growth in existing and emerging markets while offering hospitals and surgeons a safer revision treatment for patients and a 35% annual saving on lifetime costs. For patients, our implant technology could mean additional years of quality life by revising patients to a primary TKA before full revision surgery.

Our implants use patent-filed additive manufacturing technology to restore a healthy mechanical environment in the proximal tibia; stimulating long term bone growth. Proven benefits of this technology include increased bone formation and osseointegration, shown in an animal model, and restoration of native load transfer, shown in a human cadaveric model.

This technology could help capture the large annual growth (24%) currently seen in the cementless knee reconstruction market, worth $1.2B. Furthermore, analysis suggests an additional market of currently untreated younger patients exists, worth £0.8B and growing by 18% annually. Making revision surgery and therefore treatment of younger patients easier would enable access to this market. We aim to offer improved patient treatment via B2B sales of implants to existing orthopaedic manufacturer partners, who would then provide them with instrumentation to hospitals and surgeons.

Existing implant materials provide good options for patient treatments, however OSSTEC's porous titanium structures offer unique competitive advantages; combining options for modular design, cementless fixation, initial bone fixation and crucially long term bone maintenance.

Speaking to surgeons across global markets shows that many surgeons are keen to pursue bone preserving surgeries and the use of porous implants. Furthermore, there is a growing demand to treat young patients (with 25% growth in patients younger than 65 over the past 10 years) and to use cementless knee treatments, where patient volume has doubled in the past 4 years and is following trends in hip treatments.

Our team includes engineers and consultant surgeons who have experience developing multiple orthopaedic implants which have treated over 200,000 patients. To date we have raised £175,000 for the research and development of these implants and we hope to gain insight from industry professionals before further development towards our aim to begin trials for regulatory approval in 2026.

OSSTEC implants provide a way to stimulate bone growth after surgery to reduce revision risk. We hope this could allow orthopaedic manufactures to explore high growth markets while meaning surgeons can treat younger patients in a cost effective way and add quality years to patients' lives.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 35 - 35
1 Mar 2021
Ng G Bankes M Daou HE Beaulé P Cobb J Jeffers J
Full Access

Abstract

OBJECTIVES

Although surgical periacetabular osteotomy (PAO) for hip dysplasia aims to optimise acetabular coverage and restore hip function, it is unclear how surgery affects capsular mechanics and joint stability. The purpose was to examine how the reoriented acetabular coverage affects capsular mechanics and joint stability in dysplastic hips.

METHODS

Twelve cadaveric dysplastic hips (n = 12) were denuded to the capsule and mounted onto a robotic tester. The robot positioned each hip in multiple flexion angles (Extension, Neutral 0°, Flexion 30°, Flexion 60°, Flexion 90°) and performed internal-external rotations and abduction-adduction to 5 Nm in each rotational or planar direction. Each hip underwent a PAO, preserving the capsule, and was retested postoperatively in the robot. Paired sample t-tests compared the range of motion before and after PAO surgery (CI = 95%).


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 40 - 40
1 Mar 2021
Karunaseelan KJ van Arkel R Jeffers J
Full Access

Abstract

Objectives

Hip joint laxity after total hip arthroplasty (THA) has been considered to cause microseparation and lead to complications, including wear and dislocation. In the native hip, the hip capsular ligaments may tighten at the limits of range of hip motion and provide a passive stabilising force preventing edge loading and reduce the risk of dislocation. Previous attempts to characterise mechanical properties of hip capsular ligaments have been largely variable and there are no cadaveric studies quantifying the force contributions of each ligament in different hip positions. In this study we quantify the passive force contribution of the hip capsular ligaments throughout a complete range of motion (ROM).

Methods

Nine human cadaveric hip specimens (6 males and 3 females) with mean age of (76.4 ± 9.0 years) were skeletonised, preserving the capsular ligaments. Prepared specimens were tested in a 6 degree of freedom system to assess ROM with 5 Nm torque applied in external and internal rotation throughout hip flexion and extension. Capsular ligaments were resected in a stepwise fashion to assess internal force contributions of the iliofemoral (superior and inferior), pubofemoral, and ischiofemoral ligaments during ROM.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 18 - 18
1 Mar 2021
Ng G Bankes M Grammatopoulos G Jeffers J Cobb J
Full Access

Abstract

OBJECTIVES

Cam femoroacetabular impingement (FAI – femoral head-neck deformity) and developmental dysplasia of the hip (DDH – insufficient acetabular coverage) constitute a large portion of adverse hip loading and early degeneration. Spinopelvic anatomy may play a role in hip stability thus we examined which anatomical relationships can best predict range of motion (ROM).

METHODS

Twenty-four cadaveric hips with cam FAI or DDH (12:12) were CT imaged and measured for multiple femoral (alpha angles, head-neck offset, neck angles, version), acetabular (centre-edge angle, inclination, version), and spinopelvic features (pelvic incidence). The hips were denuded to the capsule and mounted onto a robotic tester. The robot positioned each hip in multiple flexion angles (Extension, Neutral 0°, Flexion 30°, Flexion 60°, Flexion 90°); and performed internal-external rotations to 5 Nm in each position. Independent t-tests compared the anatomical parameters and ROM between FAI and DDH (CI = 95%). Multiple linear regressions determined which anatomical parameters could predict ROM.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 44 - 44
1 Mar 2021
Clark J Tavana S Jeffers J Hansen U
Full Access

Abstract

OBJECTIVES

An unresolved challenge in osteoarthritis research is characterising the localised intra-tissue mechanical response of articular cartilage. The aim of this study was to explore whether laboratory micro-computed tomography (micro-CT) and digital volume correlation (DVC) permit non-destructive visualisation of three-dimensional (3D) strain fields in human articular cartilage.

METHODS

Human articular cartilage specimens were harvested from the knee (n=4 specimens from 2 doners), mounted into a loading device and imaged in the loaded and unloaded state using a micro-CT scanner. Strain was calculated throughout the volume of the cartilage using the CT image data.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 60 - 60
1 Mar 2021
Munford M Ng G Jeffers J
Full Access

Abstract

Objectives

This study aids the control of remodelling and strain response in bone; providing a quantified map of apparent modulus and strength in the proximal tibia in 3 anatomically relevant directions in terms of apparent density and factor groups.

Methods

7 fresh-frozen cadaveric specimens were quantified computed tomography (qCT) scanned, segmented and packed with 3 layers of 9mm side length cubic cores aligned to anatomical mechanical axes. Cores were removed with printed custom cutting and their densities found from qCT. Cores (n = 195) were quasi-statically compression tested. Modulus was estimated from a load cycle hysteresis loop, between 40% and 20% of yield stress. Sequential testing order in 3 orthogonal directions was randomised. Group differences were identified via an analysis of variance for the factors density, age, gender, testing order, subchondral depth, condyle and sub-meniscal location. Regression models were fit for significant factor sub-groups, predicting properties from density.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 17 - 17
1 Mar 2021
Hossain U Ghouse S Nai K Jeffers J
Full Access

Abstract

Objectives

Additive manufacturing (AM) enables fine control over the architecture of porous lattice structures, and the resulting mechanical performance. Orthopaedic implants may benefit from the tailored stiffness/elastic modulus of these AM biomaterials, as the stiffness can be made to closer match the properties of the replaced trabecular bone.

Methods

This study used laser powder bed fusion (PBF) to create stochastic porous lattice structures in stainless steel (SS316L) and titanium alloy (Ti6Al4V), with modifications that aimed to overcome PBF manufacturing limitations of build angles. The structures were tested in uni-axial compression (n = 5) in 10 load orientations relative to the structure, including the three orthogonal axes.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 48 - 48
1 Jul 2020
Ng G Daou HE Bankes M y Baena FR Jeffers J
Full Access

Surgical management of cam-type femoroacetabular impingement (FAI) aims to preserve the native hip, restore joint function, and delay the onset of osteoarthritis. However, it is unclear how surgery affects joint mechanics and hip joint stability. The aim was to examine the contributions of each surgical stage (i.e., intact cam hip, capsulotomy, cam resection, capsular repair) towards hip joint centre of rotation and microinstability.

Twelve fresh, frozen cadaveric hips (n = 12 males, age = 44 ± 9 years, BMI = 23 ± 3 kg/m2) were skeletonized to the capsule and included in this study. All hips indicated cam morphology on CT data (axial α = 63 ± 6°, radial α = 74 ± 4°) and were mounted onto a six-DOF industrial robot (TX90, Stäubli). The robot positioned each hip in four sagittal angles: 1) Extension, 2) Neutral 0°, 3) Flexion 30°, and 4) Flexion 90°, and performed internal and external hip rotations until a 5-Nm torque was reached in each direction, while recording the hip joint centre's neutral path of translation. After the (i) intact hip was tested, each hip underwent a series of surgical stages and was retested after each stage: (ii) T-capsulotomy (incised lateral iliofemoral capsular ligament), (iii) cam resection (removed morphology), and (iv) capsular repair (sutured portal incisions). Eccentricity of the hip joint centre was quantified by the microinstability index (MI = difference in rotational foci / femoral head radius). Repeated measures ANOVA and post-hoc paired t-tests compared the within-subject differences in hip joint centre and microinstability index, between the testing stages (CI = 95%, SPSS v.24, IBM).

At the Extension and Neutral positions, the hip joint centre rotated concentrically after each surgical stage. At Flexion 30°, the hip joint centre shifted inferolaterally during external rotation after capsulotomy (p = 0.009), while at Flexion 90°, the hip joint centre further shifted inferolaterally during external rotation (p = 0.005) and slightly medially during internal rotation after cam resection, compared to the intact stages. Consequently, microinstability increased after the capsulotomy at Flexion 30° (MI = +0.05, p = 0.003) and substantially after cam resection at Flexion 90° (MI = +0.07, p = 0.007). Capsular repair was able to slightly restrain the rotational centre and decrease microinstability at the Flexion 30° and 90° positions (MI = −0.03 and −0.04, respectively).

Hip microinstability occurred at higher amplitudes of flexion, with the cam resection providing more intracapsular volume and further lateralizing the hip joint during external rotation. Removing the cam deformity and impingement with the chondrolabral junction also medialized the hip during internal rotation, which can restore more favourable joint loading mechanics and stability. These findings support the pathomechanics of cam FAI and suggest that iatrogenic microinstability may be due to excessive motions, prior to post-operative restoration of static (capsular) and dynamic (muscle) stability. In efforts to limit microinstability, proper nonsurgical management and rehabilitation are essential, while activities that involve larger amplitudes of hip flexion and external rotation should be avoided immediately after surgery.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 14 - 14
1 Feb 2020
Munford M Hossain U Jeffers J
Full Access

Introduction

Integrating additively manufactured structures, such as porous lattices into implants has numerous potential benefits, such as custom mechanical properties, porosity for osseointegration/fluid flow as well as improved fixation features.

Component anisotropic stiffness can be controlled through varying density and lattice orientation. This is useful due to the influence of load on bone remodelling. Matching implant and bone anisotropy/stiffness may help reduce problems such as stress shielding and prevent implant loosening. It is therefore beneficial to be able to design AM parts with a desired anisotropic stiffness.

In this study we present a method that predicts the anisotropic stiffness of an additively manufactured lattice structure from its CAD data, and validate this model with experimental testing. The model predicts anisotropic stiffness in terms of density (ρ), fabric (M) and fabric eigen values (m) and is matched to stiffness data of the structure in 3 principal directions, based on an orthotropic assumption. This model was described in terms of 10 constants and had the form shown in Equation 1.

S = i , j = 1 i , j = 3 λ ( i , j ) ρ k m ( i ) 1 ( i ) m ( j ) 1 ( i ) | M i M j ' | 2

Methods

A stochastic line structure was formed in CAD by joining pseudo-random points generated using the Poisson-disk method Lines at an angle lower than 30° to the x-y plane removed to allow for AM manufacturing. Lines were converted to struts with 330 µm diameter.

Second order fabric tensors were determined from CAD files of the AM specimens using the mean intercept length (MIL), the gold standard for determining a measure of the ‘average orientation’ of material within trabecular bone structures.

10 × 10 × 12 mm specimens of the CAD model were manufactured on a Renishaw AM250 powder bed fusion machine. The structure was built in 10 different orientations to enable stiffness measurement in 10 different directions (n=5 for each direction). Compression testing in a servohydraulic materials testing machine was performed according to ISO13314 with LVDTs used to measure displacement to remove compliance effects. Stress-strain curves were obtained and elastic moduli were estimated from a hysteresis loop in the load application, from 70% to 20% of the plateau stress.

Specimen density and fabric data were fit to the observed stiffnesses using least squares linear regression. Experimental stiffnesses of the structure in 10 directions were compared to the model to evaluate the accuracy of model predictions.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 98 - 98
1 Feb 2020
Doyle R van Arkel R Jeffers J
Full Access

Background

Cementless acetabular cups rely on press-fit fixation for initial stability; an essential pre-requisite to implant longevity. Impaction is used to seat an oversized implant in a pre-prepared bone cavity, generating bone strain, and ‘grip’ on the implant. In certain cases (such as during revision) initial fixation is more difficult to obtain due to poorer bone quality. This increases the chance of loosening and instability. No current study evaluates how a surgeon's impaction technique (mallet mass, mallet velocity and number of strikes) may be used to maximise cup fixation and seating.

Questions/purposes

(1) How does impaction technique affect a) bone strain & fixation and b) seating in different density bones? (2) Can an impaction technique be recommended to minimize risk of implant loosening while ensuring seating of the acetabular cup?


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 121 - 121
1 Apr 2019
Doyle R Jeffers J
Full Access

Incidence of intraoperative fracture during cementless Total Hip Arthroplasty (THA) is increasing. This is attributed to factors such as an increase in revision procedures and the favour of cementless fixation. Intraoperative fractures often occur during the seating of cementless components. A surgical mallet and introducer are used to generate the large impaction forces necessary to seat the component, sometimes leading to excessive hoop strain in the bone. The mechanisms of bone strain during impaction are complex and occur over very short timeframes. For this reason experimental and simulation models often focus on strain shortly after the implant is introduced, or seat it quasi-statically. This may not produce a realistic representation of the magnitude of strain in the bone and dangerously under-represent fracture risk.

This in-vitro study seeks to determine whether strain induced during impaction is similar both during the strike (dynamic strain) and shortly after the strike has occurred (post-strike strain). It is also asked whether post-strike strain is a reliable predictor of dynamic strain.

A custom drop tower was used to seat acetabular components in 45 Sawbones models (SKU: 1522–02, Malmo, Sweden), CNC milled to represent the acetabular cavity. Ten strikes were used to seat each cup. 3 strike velocities (1.5 m/s, 2.75 m/s, 4 m/s) and 3 impact masses (600 g, 1.2 kg, 1.8 kg) were chosen to represent 9 different surgical scenarios. Two strain gages per Sawbone were mounted on the surface of the block, 2 mm from the rim of the cavity. Strain data was acquired at 50 khz. Each strain trace was then analysed to determine the peak dynamic strain during mallet strike and the static strain post-strike.

A typical strain pattern was observed during seating. An initial pre-strike strain is followed by a larger dynamic peak as the implant is progressed into the bone cavity. Strain subsequently settles at a lower (tensile) value than peak dynamic post-strike, but higher than pre-strike strain. Over the 450 strikes conducted dynamic strain was on average 3.39 times larger than post-strike strain. A statistically significant linear relationship was observed between the magnitude of post-strike and dynamic strain (adjusted R2=0.391, p<0.005). This indicates that, for a known scenario, post-strike strain can be used as an indicator for dynamic peak strain. However when only the maximum dynamic and post-strike strains were taken from across the 10 strikes used to seat the implant, the relationship between the two strains was not significant (R2=0.300, p=0.73). This may be due to the fact that the two maximums did not often occur on the same strike. On average, max dynamic strain occurred 1.7 strikes after max post-strike strain.

We conclude that peak dynamic strain is much larger than the strain immediately post-strike in a synthetic bone model. It is shown that post-strike strain is not a good predictor of dynamic strain when the max strain during any strike to seat the component is considered, or variables (such as mallet mass or velocity) are changed. It is important to consider dynamic strain in bone as well as post-strike strain in experimental or simulated bone models to ensure the most reliable prediction of fracture.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 123 - 123
1 Apr 2019
Doyle R Jeffers J
Full Access

Initial stability of cementless components in bone is essential for longevity of Total Hip Replacements. Fixation is provided by press-fit: seating an implant in an under-reamed bone cavity with mallet strikes (impaction). Excessive impaction energy has been shown to increase the risk of periprosthetic fracture of bone. However, if implants are not adequately seated they may lack the stability required for bone ingrowth. Ideal fixation would maximise implant stability but would minimise peak strain in bone, reducing the risk of fracture.

This in-vitro study examines the influence of impaction energy and number of seating strikes upon implant push-out force (indicating stability) and peak dynamic strain in bone substitute (indicating likelihood of fracture). The ratio of these factors is given as an indicator of successful impaction strategy.

A custom drop tower with simulated hip compliance was used to seat acetabular cups in 30 Sawbone blocks with CNC milled acetabular cavities. 3 impaction energies were selected; low (0.7j), medium (4.5j) and high (14.4j), representing the wide range of values measured during surgery. Each Sawbone was instrumented with strain gauges, secured on the block surface close to the acetabular cavity (Figure 1). Strain gauge data was acquired at 50 khz with peak tensile strain recorded for each strike. An optical tracker was used to determine the polar gap between the cup and Sawbone cavity during seating. Initially 10 strikes were used to seat each cup. Tracking data were then used to determine at which strike the cups progressed less than 10% of the final polar gap. This value was taken as number of strikes to complete seating. Tests were repeated with fresh Sawbone, striking each cup the number of times required to seat. Following each seating peak push-out forces of the cups were recorded using a compression testing machine.

10, 5 and 2 strikes were required to seat the acetabular cups for the low, medium and high energies respectively. It was found that strain in the Sawbone peaked around the number of strikes to complete seating and subsequently decreased. This trend was particularly pronounced in the high energy group. An increase in Sawbone strain during seating was observed with increasing energy (270 ± 29 µε [SD], 519 ± 91 µε and 585 ± 183 µε at low, medium and high energies respectively). The highest push-out force was achieved at medium strike energy (261 ± 46N). The ratio between push-out and strain was highest for medium strike energy (0.50 ± 0.095 N/µε). Push-out force was similar after 5 and 10 strikes for the medium energy strike. However push-out recorded at ten strikes for the high energy group was significantly lower than for 2 strikes (<40 ± 19 N, p<0.05).

These results indicate that a medium strike energy with an appropriate number of seating strikes maximizes initial implant stability for a given peak bone strain. It is also shown that impaction with an excessive strike energy may greatly reduce fixation strength while inducing a very high peak dynamic strain in the bone. Surgeons should take care to avoid an excessive number of impaction strikes at high energy.

For any figures or tables, please contact the authors directly.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 1 - 1
1 Jan 2019
Logishetty K Van Arkel R Muirhead-Allwood S Ng G Cobb J Jeffers J
Full Access

The hip's capsular ligaments (CL) passively restrain extreme range of motion (ROM) by wrapping around the native femoral head/neck, and protect against impingement and instability. We compared how CL function was affected by device (hip resurfacing arthroplasty, HRA; dual mobility total hip arthroplasty, DM-THA; and conventional THA, C-THA), and surgical approach (anterior and posterior), with and without CL surgical-repair. We hypothesized that CL function would only be preserved when native head-size (HRA/DM-THA) was restored.

CL function was quantified on sixteen cadaveric hips, by measuring ROM by internally (IR) and externally rotating (ER) the hip in six functional positions, ranging from full extension with abduction to full flexion with adduction (squatting). Native ROM was compared to ROM after posterior capsulotomy (right hips) or anterior capsulotomy (left hips), and HRA, and C-THA and DM-THA, before and after CL repair.

Independent of approach, ROM increased most following C-THA (max 62°), then DM-THA (max 40°), then HRA (max 19°), indicating later CL engagement and reduced biomechanical function with smaller head-size. Dislocations also occurred in squatting after C-THA and DM-THA. CL-repair following HRA restored ROM to the native hip (max 8°). CL-repair following DM-THA reduced ROM hypermobility in flexed positions only and prevented dislocation (max 36°). CL-repair following C-THA did not reduce ROM or prevent dislocation.

For HRA and repair, native anatomy was preserved and ligament function was restored. For DM-THA with repair, ligament function depended on the movement of the mobile-bearing, with increased ROM in positions when ligaments could not wrap around head/neck. For C-THA, the reduced head-size resulted in inferior capsular mechanics in all positions as the ligaments remained slack, irrespective of repair.

Choosing devices with anatomic head-sizes (HRA/DM-THA) with capsular repair may have greater effect than surgical approach to protect against instability in the early postoperative period.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_11 | Pages 11 - 11
1 Aug 2018
Muirhead-Allwood S Logishetty K van Arkel R Ng G Cobb J Jeffers J
Full Access

The hip joint capsular ligaments (CL) passively restrain extreme range of motion (ROM) by wrapping around the native femoral head, and protect against impingement, edge loading wear and dislocation. This study compared how ligament function was affected by device (hip resurfacing arthroplasty, HRA; dual mobility total hip arthroplasty, DM-THA; and conventional THA, C-THA), with and without CL repair. It was hypothesized that ligament function would only be preserved when native anatomy was preserved: with restoration of head-size (HRA or DM-THA) and repair.

Eight normal male cadaveric hips were skeletonised, retaining the hip capsule. CL function was quantified by measuring ROM by internally (IR) and externally rotating (ER) the hip in six functional positions, ranging from full extension with abduction to full flexion with adduction (squatting). Native ROM was compared to ROM after posterior capsulotomy and HRA, and C-THA and DM-THA, before and after surgical CL repair.

ROM increased most following C-THA (max 62°), then DM-THA (max 40°), then HRA (max 19°), indicating later engagement of the capsule and reduced biomechanical function with smaller head-size. Dislocations also occurred in squatting after C-THA and DM-THA. CL-repair following HRA restored ROM to the native hip (max 8°). CL-repair following DM-THA reduced ROM hypermobility in flexed positions only and prevented dislocation (max 36°). CL-repair following C-THA did not reduce ROM or prevent dislocation.

When HRA was combined with repair, native anatomy was preserved and ligament function was restored. For DM-THA with repair, ligament function depended on the movement of the mobile bearing resulting in near-native function in some positions, but increased ROM when ligaments were unable to wrap around the head/neck. Following C-THA, the reduced head-size resulted in inferior capsular mechanics in all positions as the ligaments remained slack, irrespective of repair.

Choosing devices with anatomic head-sizes (resurfacing or dual-mobility) and repairing the capsular ligaments may protect against instability in the early postoperative period.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_11 | Pages 4 - 4
1 Aug 2018
Cobb J Clarke S Halewood C Wozencroft R Jeffers J Logishetty K Keane B Johal H
Full Access

We aimed to demonstrate the clinical safety of a novel anatomic cementless ceramic hip resurfacing device. Concerns around the safety of metal on metal arthroplasty have made resurfacing less attractive, while long term function continues to make the concept appealing. Biolox Delta ceramic is now used in more than 50% of all hip arthroplasties, suggesting that it's safety profile is acceptable. We wondered if a combination of these concepts might work?

The preclinical testing of anatomic hip resurfacing device developed by our group was presented last year. A twenty patient safety study was designed. Patients had to be between the ages of 18 and 70. The initial size range was restricted to femoral heads between 46 and 54, representing the common sizes of hip resurfacing. The primary outcomes were clinical safety, PROMs and radiological control. Secondary outcomes include CTRSA and metal ion levels.

20 patients were recruited, aged 30–69. 7 were women and 13 were men. There were no operative adverse events in their operations undertaken between September 2017 and February 2018. One patient had a short episode of atrial fibrillation on the second postoperative day, and no other complications. At three months the median oxford hip score had risen from 27 (range 14–38) to 46 (31–48). Cobalt and chromium levels were almost undetectable at 3 months. Fixation appeared satisfactory in all patients, with no migration detected in either component. CTRSA is in process.

The initial safety of a novel cementless ceramic resurfacing device is demonstrated by this data. The 10 year, 250 case efficacy study will continue in 5 other European centres.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 83 - 83
1 Apr 2018
van Arkel R Ng K Muirhead-Allwood S Jeffers J
Full Access

Background

The hip joint capsular ligaments passively restrain extreme range of motion (ROM), protecting the native hip against impingement, subluxation, edge loading and dislocation. This passive protection against instability would be beneficial following total hip arthroplasty (THA), however the reduced femoral head diameter postoperatively may prevent a wrapping mechanism that is essential to capsular ligament function in the native hip. Therefore we hypothesized that, post-THA, the reduced femoral head size would prevent the capsular ligaments protective biomechanical function.

Methods

In vitro, THA was performed through the acetabular medial wall preserving the entire capsule, avoiding targeting a particular surgical approach. Eight fresh-frozen cadaveric hips were examined and capsular function was measured by internally/externally rotating the hip in five positions ranging from full extension with abduction, to full flexion with adduction. Three head sizes (28, 32, 36 mm) with three neck lengths (restored native 0, +5, +10 mm) were compared.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 29 - 29
1 Jan 2018
Cobb J Clarke S Jeffers J Wozencroft R Halewood C Amis A
Full Access

Hip resurfacing remains a safe and effective option according to registry data. Results in women were less reliable, in part owing to soft tissue impingement. Biolox Delta ceramic bearing couples are now in widespread use with very low complication rates. We set about merging these three elements to develop a novel hip resurfacing arthroplasty.

Contours of both acetabular and femoral components were generated from biometric data, adapted to the constraints of ceramic machining, to ensure that radii blended from the bearing surface avoiding any sharp boundaries. Plasma spray coating with titanium and hydroxyapatite direct onto ceramic was developed and tested using shear, tensile and taber abrasion testing. Wear testing was carried out to 5 million cycles according to the ASTM. Destructive testing was carried out in a variety of test conditions and angles.

Cadaveric testing demonstrated stability using a single use disposable instruments for both conventional and patient specific procedures. Very low dose CT enabled the entire interface to be observed as the Ceramic is radiolucent, enhancing migration analysis, which will be undertaken at 4 intervals to confirm stability. Functional scores and gait analysis will be used in the safety study.

The CE study recruitment is underway, with first in human trials starting in summer 2017. PMA submission will follow the safety study. Commercial release of the device in Europe is unlikely before 2019, and in the USA may not be until 2027. The path to novel device development in 2017 is very costly in time and money.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 62 - 62
1 Jan 2018
Muirhead-Allwood S Jeffers J
Full Access

The hip joint capsule passively restrains extreme range of motion protecting against impingement, dislocation and possibly edge loading. These functions would be advantageous following total hip arthroplasty (THA) however the degree of capsular excision, preservation and/or repair greatly varies between surgeons/approaches. Therefore, we asked: how does THA affect capsular ligamentous biomechanics? Which factors have the biggest influence?

For this laboratory based, cadaveric model, THA was performed through the acetabular medial wall, thus preserving the entire hip capsule. A previously published testing rig was used to measure capsular function by internally and externally rotating the hip in each of five hip positions (standing, sitting, gait heel strike, and two impingement risk positions, full flexion with adduction & extension with abduction). N=8 hips were tested both before and after THA allowing for repeated measurements between the native and replaced hip.

The ROM before the capsule engaged increased following THA (p<0.05), indicating reduced biomechanical function. Internal rotation was affected more than external rotation. Increasing neck length restored the ROM more towards the native condition. Increasing head size also had a small positive effect, but less than neck length.

Following THA, the capsular ligaments were no longer able to wrap around the smaller femoral head thereby limiting their ability to restrain excessive hip movement. The anterior capsule is affected less than the posterior, and may benefit from being preserved length. A repair to the posterior capsule should compensate for the reduced THA head size in order to restore function.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 59 - 59
1 Mar 2017
van Arkel R Ghouse S Ray S Nai K Jeffers J
Full Access

Implant loosening is one of the primary mechanisms of failure for hip, knee, ankle and shoulder arthroplasty. Many established implant fixation surfaces exist to achieve implant stability and fixation. More recently, additive manufacturing technology has offered exciting new possibilities for implant design such as large, open, porous structures that could encourage bony ingrowth into the implant and improve long-term implant fixation. Indeed, many implant manufacturers are exploiting this technology for their latest hip or knee arthroplasty implants. The purpose of this research is to investigate if the design freedoms offered by additive manufacturing could also be used to improve initial implant stability – a precursor to successful long-term fixation. This would enable fixation equivalent to current technology, but with lower profile fixation features, thus being less invasive, bone conserving and easier to revise.

250 cylindrical specimens with different fixation features were built in Ti6Al4V alloy using a Renishaw AM250 additive manufacturing machine, along with 14 specimens with a surface roughness similar to a conventional titanium fixation surface. Pegs were then pushed into interference fit holes in a synthetic bone material using a dual-axis materials testing machine equipped with a load/torque-cell (figure 1). Specimens were then either pulled-out of the bone, or rotated about their cylindrical axis before being pulled out to quantify their ability to influence initial implant stability.

It was found that additively manufactured fixation features could favourably influence push-in/pull-out stability in one of two-ways: firstly the fixation features could be used to increase the amount pull-out force required to remove the peg from the bone. It was found that the optimum fixation feature for maximising pull-out load required a pull-out load of 320 N which was 6× greater than the least optimum design (54 N) and nearly 3× the maximum achieved with the conventional surface (120 N). Secondly, fixation features could also be used to decrease the amount of force required to insert the implant into bone whilst improving fixation (figure 2). Indeed, for some designs the ratio of push-in to pull-out was as high as 2.5, which is a dramatic improvement on current fixation surface technology, which typically achieved a ratio between 0.3–0.6 depending on the level of interference fit. It was also found that the additively manufactured fixation features could influence the level of rotational stability with the optimum design resisting 3× more rotational torque compared to the least optimum design.

It is concluded that additive manufacturing technology could be used to improve initial implant stability either by increasing the anchoring force in bone, or by reducing the force required to insert an implant whilst maintaining a fixed level of fixation. This defines a new set of rules for implant fixation using smaller low profile features, which are required for minimally invasive device design.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 77 - 77
1 Mar 2017
Parkes M Sayer K Goldhofer M Cann P Walter W Jeffers J
Full Access

Introduction

The continued improvement of ceramic materials for total hip arthroplasty led to the development of Zirconia and Zirconia toughened Alumina materials such as BIOLOX® delta. Zirconia exists in a tetragonal phase in new ceramic heads and can transform to a monoclinic phase in response to loading giving the material improved fracture toughness. It is known that surface transformation occurs in this material under hydrothermal conditions (i.e. in vivo condition), and ISO standards recommend parts are artificially aged prior to testing to include any effect of surface transformation on new designs. Accelerated aging procedures have been used to predict the amount of phase transformation that will occur in vivo, but validation of these models requires the study of retrieved hip joints. Here 26 BIOLOX® delta retrievals are analysed to determine the degree of phase transformation that occurs in vivo. The levels of phase transformation measured are compared with those predicted based on accelerated aging tests.

Methods

Twenty-six retrieved BIOLOX® delta (CeramTec AG, Germany) femoral heads were investigated. Retrievals were obtained after implantation of between 1 month and 7 years with an average follow-up of 1.5 years. All retrievals were from ceramic-on-ceramic hip joints that were implanted between 2004 and 2012. Mean patient age was 69 years (range 48–87 years).

Raman spectra were collected using a confocal Raman spectrometer (WITec Gmbh, Germany) a laser wavelength of 532nm, a 50× objective and a 100μm pinhole. Twenty-five measurements were made on each retrieval at random locations outside any visible wear scars and inside visible wear scars. The average monoclinic content was calculated based on the method of Clarke and Adar [1]. For comparison 5 new BIOLOX® delta femoral head resurfacings were measured using the same procedure.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 136 - 136
1 Feb 2017
Ghouse S van Arkel R Babu S Nai K Hooper P Jeffers J
Full Access

Orthopaedic reconstruction procedures to combat osteoarthritis, inflammatory arthritis, metabolic bone disease and other musculoskeletal disorders have increased dramatically, resulting in high demand on the advancement of bone implant technology. In the past, joint replacement operations were commonly performed primarily on elderly patients, in view of the prosthesis survivorship. With the advances in surgical techniques and prosthesis technology, younger patients are undergoing surgeries for both local tissue defects and joint replacements. This patient group is now more active and functionally more demanding after surgery. Today, implanted prostheses need to be more durable (load-bearing), they need to better match the patient's original biomechanics and be able to survive longer.

Additive manufacturing (AM) provides new possibilities to further combat the problem of stress-shielding and promote better bone remodelling/ingrowth and thus long term fixation. This can be accomplished by matching the varying strain response (stiffness) of trabecular or subchondral bone locally at joints. The purpose of this research is therefore to determine whether a porous structure can be produced that can match the required behaviour and properties of trabecular bone regardless of skeletal location and can it be incorporated into a long-term implant.

A stochastic structure visually similar to trabecular bone was designed and optimised for AM (Figure 1) and produced over a range of porosities in multiple materials, Stainless Steel 316, Titanium (Grade 23 – Ti6Al4V ELI) and Commercially Pure Titanium (Grade 2) using a Renishaw AM250 metal additive manufacturing system. Over 150 cylindrical specimens were produced per material and subjected to a compression test to determine the specimens' Elastic Modulus (Stiffness) and Compressive Yield Strength. Micro-CT scans and gravimetric analysis were also performed to determine and validate the specimens' porosity. Results were then graphed on a Strength vs. Stiffness Ashby plot (Figure 2) comparing the values to those of trabecular bone in the tibia and femur.

It was found that AM can produce porous structures with an elastic modulus as low as 100 MPa up to 2.7 GPa (the highest stiffness investigated in this study). Titanium structures with a stiffness <500MPa had compressive strengths towards the bottom range of similar stiffness trabecular bone. Between 500 MPa − 1 GPa Titanium AM porous structures match the compressive strength of equivalent stiffness trabecular bone and from 1 GPa − 2 GPa the Ti structures exceed the strength of equivalent stiffness trabecular bone up to ∼2.5 times and consequently increase by a power law.

These results show that AM can produce structures with similar stiffness to trabecular bone over a range of skeletal locations whilst matching or exceeding the compressive strength of bone. The results have not yet taken into account fatigue life with the fatigue life of these types of structures tending to be between 0.1 – 0.4 of their compressive strength. This means that a titanium porous structure would need to be 2.5 – 10 times stiffer or stronger than the portion of trabecular bone it is replacing. This data is highly encouraging for AM manufactured, bone stiffness matched implant technology.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 103 - 103
1 Feb 2017
Doyle R Boughton O Plant D Desoutter G Cobb J Jeffers J
Full Access

Appropriate seating of acetabular and femoral components during total hip arthroplasty (THA) surgery is essential for implant longevity. Additionally, the appropriate assembly of components is essential for proper function, for example to prevent taper corrosion or acetabular component disassembly. However the current understanding of the forces and energies imparted during surgery is sparse. Perhaps more importantly, there exists a risk that much of the preclinical testing performed to develop implants and surgical techniques do not apply the appropriate boundary conditions to surgical impaction and component assembly, leading to the possibility of huge overestimations in impaction force.

This in-vitro study examines the influence of mechanical boundary condition parameters that affect the forces imparted to implant and patient during THA surgery; including the attenuation of two common types of acetabular cup introducer and the hard tissue (pelvic) boundary conditions.

A drop tower test-rig that allows full customisation of impaction and implantation parameters was built, with pelvis boundary conditions simulated with silicone cylinders using adjustable geometry to vary stiffness and damping. The least stiff setup represented a large, unbolstered patient on the operating table. A medium stiffness setup represented a slim, well bolstered patient. An extremely stiff, metal boundary was selected to replicate the pre-clinical testing conditions usually employed in implant or instrument testing, where impact testing takes place in a vice, or metal test frame. For each of these stiffness scenarios, piezo-load cells and LVDTs were used to measure forces and displacement of the pelvis model. We also investigated the use of two common implant introducers; a straight and a bent introducer. The latter is often used for large patients or for specific approaches (e.g. direct anterior). In total, 180 drop weight tests and 120 strikes by an orthopaedic surgeon were measured.

For the drop weight testing the peak force measured varied between 7.6kN and 0.4kN for stiffest and softest support conditions respectively. When the surgeon applied the impact strike manually, the range was between 13.2kN and 0.8kN for the stiffest and softest support conditions respectively (Figure 1). Using the bent introducer attenuated the load by between 13.0% and 115% compared to the straight introducer (Figure 1).

Pelvic boundary conditions are overlooked in much of the literature on implant seating or assembly in THA surgery. In laboratory settings with impaction performed on a workbench or frame of a materials testing machine, high forces may be sufficient to seat or assemble implants. However our data show that these high forces will not be replicated in vivo, and this could be a causative factor in poor assembly of acetabular components or femoral head/stem tapers, which can lead to clinical problems like disassembly or crevice corrosion.

We found the geometry of the introducer and the stiffness of the pelvis support had significant attenuating influence. We also found that the surgeon does not compensate for these differences, resulting in vast differences in the delivered strike force. It is recommended these factors are carefully considered when designing surgical tools and in particular conducting pre-clinical testing.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 45 - 45
1 Nov 2016
Leong A Amis A Jeffers J Cobb J
Full Access

Are there any patho-anatomical features that might predispose to primary knee OA? We investigated the 3D geometry of the load bearing zones of both distal femur and proximal tibias, in varus, straight and valgus knees. We then correlated these findings with the location of wear patches measured intra-operatively.

Patients presenting with knee pain were recruited following ethics approval and consent. Hips, knees and ankles were CT-ed. Straight and Rosenburg weight bearing X-Rays were obtained. Excluded were: Ahlbäck grade “>1”, previous fractures, bone surgery, deformities, and any known secondary causes of OA. 72 knees were eligible. 3D models were constructed using Mimics (Materialise Inc, Belgium) and femurs oriented to a standard reference frame. Femoral condyle Extension Facets (EF) were outlined with the aid of gaussian curvature analysis, then best-fit spheres attached to the Extension, as well as Flexion Facets(FF). Resected tibial plateaus from surgery were collected and photographed, and Matlab combined the average tibia plateau wear pattern.

Of the 72 knees (N=72), the mean age was 58, SD=11. 38 were male and 34 female. The average hip-knee-ankle (HKA) angle was 1° varus (SD=4°). Knees were assigned into three groups: valgus, straight or varus based on HKA angle. Root Mean Square (RMS) errors of the medial and lateral extension spheres were 0.4mm and 0.2mm respectively. EF sphere radii measurements were validated with Bland-Altman Plots showing good intra- and interobserver reliability (+/− 1.96 SD). The radii (mm) of the extension spheres were standardised to the medial FF sphere. Radii for the standardised medial EF sphere were as follows; Valgus (M=44.74mm, SD=7.89, n=11), Straight (M=44.63mm, SD=7.23, n=38), Varus (M=50.46mm, SD=8.14, n=23). Ratios of the Medial: Lateral EF Spheres were calculated for the three groups: Valgus (M=1.35, SD=.25, n=11), Straight (M=1.38, SD=.23, n=38), Varus (M=1.6, SD=.38, n=23). Data was analysed with a MANOVA, ANOVA and Fisher's pairwise LSD in SPSS ver 22, reducing the chance of type 1 error. The varus knees extension facets were significantly flatter with a larger radius than the straight or valgus group (p=0.004 and p=0.033) respectively. In the axial view, the medial extension facet centers appear to overlie the tibial wear patch exactly, commonly in the antero-medial aspect of the medial tibial plateau.

For the first time, we have characterised the extension facets of the femoral condyles reliably. Varus knees have a flatter medial EF even before the onset of bony attrition. A flatter EF might lead to menisci extrusion in full extension, and early menisci failure. In addition, the spherical centre of the EF exactly overlies the wear patch on the antero-medial portion of the tibia plateau, suggesting that a flatter medial extension facet may be causally related to the generation of early primary OA in varus knees.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 16 - 16
1 May 2016
Alidousti H Emery R Amis A Jeffers J
Full Access

In shoulder arthroplasty, humeral resurfacing or short stem devices rely on the proximal humeral bone for fixation and load transfer. For resurfacing designs, the fixation takes place above the anatomical neck, whilst for short stem designs the resection is made at the anatomical neck and fixation is achieved in the bone distal to that resection. The aim of the study is to investigate the bone density in these proximal areas to provide information for implant design and guidance on appropriate positions to place implant fixation entities.

CT scans of healthy humeri were used to map bone density distribution in the humeral head. CT scans were manually segmented and a solid model of the proximal humerus was discretised into 1mm tetrahedral elements. Each element centroid was then assigned an apparent bone density based on CT scan Grey values. Matlab was used to sort data in spatial groups according to element centroid position to map bone density distribution. The humeral head was divided into twenty 2mm thick slices parallel to the humeral neck starting from the most proximal region of the humeral head to distal regions beneath epiphyseal plate (Fig 1a). Each slice was then radially divided into 30 concentric circles and each circle was angularly divided into 12 regions (Fig 1b). The bone density for each of these regions was calculated by averaging density values of element centroid residing in each region.

Average bone density in each slice indicates that bone density decreases from proximal region to distal regions below the epiphyseal plate and higher bone density was measured proximal to the anatomical neck of the humerus (Fig2). Figure 3 shows that, both above and below the anatomical neck, bone density increases from central to peripheral regions where eventually cortical bone occupies the space. This trend is more pronounced in regions below the anatomical neck and above the epiphyseal plate. In distal slices below the anatomical neck, a higher bone density distribution in inferior (calcar) regions was also observed.

Current generation short stem designs require a resection at the anatomical neck of the humerus and a cruciform keel to fix the implant in the distal bone. In the example in Figure 3, the anatomical neck resection corresponds to the 18 mm slice, with the central cruciform keel engaging between slices 18 mm and 27 mm. The data indicates that this keel should make use of the denser bone by the calcar for fixation, suggesting a crucifix orientation as highlighted in Figure 3. The current generation of proximally fixed humeral components are less invasive than conventional long-stemmed designs, but the disadvantage is that they must achieve fixation over a smaller surface area and with a less advantageous lever arm down the shaft of the humerus. By presenting a spatial density map of the proximal humerus, the current study may help improve fixation of proximally fixed designs, with a simple modification of implant rotational orientation to make use of the denser bone in the calcar region for fixation and load transfer.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 46 - 46
1 May 2016
Sopher R Amis A Calder J Jeffers J
Full Access

Introduction

Survival rates of recent total ankle replacement (TAR) designs are lower than those of other arthroplasty prostheses. Loosening is the primary indication for TAR revisions [NJR, 2014], leading to a complex arthrodesis often involving both the talocrural and subtalar joints. Loosening is often attributed to early implant micromotion, which impedes osseointegration at the bone-implant interface, thereby hampering fixation [Soballe, 1993]. Micromotion of TAR prostheses has been assessed to evaluate the stability of the bone-implant interface by means of biomechanical testing [McInnes et al., 2014]. The aim of this study was to utilise computational modelling to complement the existing data by providing a detailed model of micromotion at the bone-implant interface for a range of popular implant designs, and investigate the effects of implant misalignment during surgery.

Methods

The geometry of the tibial and talar components of three TAR designs widely used in Europe (BOX®, Mobility® and SALTO®; NJR, 2014) was reverse-engineered, and models of the tibia and talus were generated from CT data. Virtual implantations were performed and verified by a surgeon specialised in ankle surgery. In addition to the aligned case, misalignment was simulated by positioning the talar components in 5° of dorsi- or plantar-flexion, and the tibial components in ± 5° and 10° varus/valgus and 5° and 10° dorsiflexion; tibial dorsiflexed misalignement was combined with 5° posterior gap to simulate this misalignment case. Finite element models were then developed to explore bone-implant micromotion and loads occurring in the bone in the implant vicinity.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 150 - 150
1 May 2016
Geraldes D Jeffers J Hansen U Amis A
Full Access

Most glenoid implants rely on centrally located large fixation features to avoid perforation of the glenoid vault in its peripheral regions [1]. Upon revision of such components there may not be enough bone left for the reinsertion of an anatomical prosthesis, resulting in a large cavity that resembles a sink hole. Multiple press-fit small pegs would allow for less bone resection and strong anchoring in the stiffer and denser peripheral subchondral bone [2], whilst producing a more uniform stress distribution and increased shear resistance per unit volume [3] and avoiding the complications from the use of bone cement. This study assessed the best combination of anchoring strength, assessed as the ratio between push in and pull out forces (Pin/Pout), and spring-back, measured as the elastic displacement immediately after insertion, for five different small press-fitted peg configurations (Figure 1, left) manufactured out of UHMWPE cylinders (5 mm diameter and length).

16 specimens for each configuration were tested in two types of Sawbones solid bone substitute: hard (40 PCF, 0.64 g/cm3, worst-case scenario of Pin) and soft (15 PCF, 0.24 g/cm3, worst-case scenario of spring-back and Pout). Two different interference-fits, Ø, were studied by drilling holes with 4.7 mm and 4.5 mm diameter (Ø 0.3 and Ø 0.5, respectively). A maximum Pin per peg of 50 N was defined, in order to avoid fracture of the glenoid bone during insertion of multiple pegs. The peg specimens were mounted into the single-axis screw-driven Instron through a threaded fixture. A schematic of the experimental set up is made available (Figure 1, centre). The peg was pushed in vertically for a maximum of 5 mm at a 1 mm/s rate, under displacement control, recording Pin. The spring-back effect was assessed by switching to load control and reducing the load to zero. The peg was then pulled out at a rate of 1 mm/s, recording Pout. The test profile is depicted in Figure 1 (right).

Average Pout/Pin, spring back (in mm) and force-displacement curves for all 80 specimens tested are shown in Figure 2. These were split into groups according to the type of bone substitute and interference-fit, with the right column showing the average values for the Pin. High repeatability among samples of the same configuration tested is noted. Configurations #1, #3 and #5 all exceed the maximum Pin per peg for at least one type of bone. Configuration #2 has the lowest Pin of all (best thread aspect ratio), followed by configuration #4 (thinner threads). The peg configurations #4 and #2 had the highest Pin/Pout. The peg configurations with lowest spring-back after insertion were configuration #2 and #4. Interference fit of Ø 0.3 mm was shown to reduce Pin below maximum limit of 50 N without great influence in spring-back.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 107 - 107
1 Jan 2016
Darton H Cegla F Vaidyanathan R Jeffers J
Full Access

Objectives

Implant loosening is the most common reason for revision of total or partial knee replacement, but the patient complains of pain-not a loose implant. It would be a useful diagnostic tool to interrogate the implant to ascertain whether it remains well fixed or not, thus either confirming or eliminating this mode of failure. For such technology to be adopted by manufacturers, it must be extremely low cost and simple to build into an implant. We aim to develop a sensor that meets these requirements and, when embedded in an implant, can provide information on its fixation to the underlying bone. We have previously proven that, through impedance analysis of passive piezoelectric sensors, it is possible for such sensors to determine the cured state of cement with good correlation (0.7) to a surgeon's judgement (Darton et al, 2014). In this study we now look at how the impedance trances of the sensors can be interpreted to distinguish between tibial trays that are securely cemented in sawbone blocks and those with no cement in loose fitting sawbone blocks.

Method

Small piezoelectric sensors (12 mm diameter, 0.6 mm thickness) were attached using ethyl cyanoacrylate to the top of a small metal tibial tray analogue and wired to an Impedance Analyzer (AEA Technology Inc). The sensor was swept with an alternating current between 100KHz and 400KHz. Three readings were taken using a custom-built code in MATLAB and an average impedance trace was calculated. A pre-calibrated servo-mechanical testing machine (Instron) was used to carry out a pull-out test of the tray from the sawbone block. The force required to completely disengage the tray was recorded. The same tibial tray was then cemented to the same sawbone block using PMMA. Once cured, the same impedance readings were taken before a pull out test was performed on the cemented case. This was repeated on 6 different sawbone blocks

The impedance plots were differentiated to exaggerate the jagged nature of the impedance trace, representative of multiple modes of vibration following which the mean of their differential values was calculated. The average pull out force for cemented trays was approximately 20 times greater than the un-cemented.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 73 - 73
1 Jan 2016
van Arkel Justin Cobb R Amis A Jeffers J
Full Access

This in-vitro study finds which hip joint soft tissues act as primary and secondary passive internal and external rotation restraints so that informed decisions can be made about which soft tissues should be preserved or repaired during hip surgery. The capsular ligaments provide primary hip rotation restraint through a complete hip range of motion protecting the labrum from impingement. The labrum and ligamentum teres only provided secondary stability in a limited number of positions. Within the capsule, the iliofemoral lateral arm and ischiofemoral ligaments were primary restraints in two-thirds of the positions tested and so preservation/repair of these tissues should be a priority to prevent excessive hip rotation and subsequent impingement/instability for both the native hip and after hip arthroplasty.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 74 - 74
1 Jan 2016
Geraldes D Hansen U Jeffers J Amis A
Full Access

Common post-operative problems in shoulder arthroplasty such as glenoid loosening and joint instability can be reduced by improvements in glenoid design shape, material choice and fixation method [1]. Innovation in shoulder replacement is usually carried out by introducing incremental changes to functioning implants [2], possibly overlooking other successful design combinations.

We propose an automated framework for parametric analysis of implant design in order to efficiently assess different possible glenoid configurations. Parametric variations of reference geometries of a glenoid implant were automatically generated in SolidWorks. The different implants were aligned and implanted with repeatability using Rhino. The glenoid-bone models were meshed in Abaqus, and boundary conditions and loading applied via a custom-made Python script. Finally, another MATLAB script integrated and automated the different steps, extracted and analysed the results.

This study compared the influence of reference shape (keel vs. 2-pegged) and material on the von Mises stresses and tensile and compressive strains of glenoid components with bearing surface thickness and fixation feature width of 3, 4, 5 or 6 mm. A total of 96 different glenoid geometries were implanted into a bone cube (E = 300 MPa, ν = 0.3). Fixed boundary conditions were applied at the distal surface of the cube and a contact force of 1000 N was distributed between the central nodes on the bearing surface. The implants were assigned UHMWPE (E = 1 GPa, ν = 0.46), Vitamin E PE (E = 800 MPa, ν = 0.46), CFR-PEEK (E = 18 GPa, ν = 0.41) or PCU (E = 2 GPa, ν = 0.38) material properties and the bone-implant surface was tied (Figure 1). The von Mises stresses, compressive and tensile strains for the different models were extracted. The influence of design parameters in the mechanical environment of the implant could be assessed. In this particular example, the 95th percentile values of the tensile and compressive strains induced by modifications in reference shape could be evaluated for all the different geometries simultaneously in form of radar plots. 2-pegged geometries (green) consistently produced lower tensile and compressive strains than the keeled (blue) configurations (Figure 2). Vitamin E PE and PCU glenoids also produced lower maximum von Mises stresses values than CFR-PEEK and UHMWPE designs (Figure 3).

The developed method allows for simple, direct, rapid and repeatable comparison of different design features, material choices or fixation methods by analysing how they influence the mechanical environment of the bone surrounding the implant. Such tool can provide invaluable insight in implant design optimisation by screening through multiple potential design modifications at an early design evaluation stage and highlighting the best performing combinations. Future work will introduce physiological bone geometries and loading, a wider variety of reference geometries and fixation features, and look at bone/interface strength and osteointegration predictions.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 72 - 72
1 Jan 2016
van Arkel R Cobb J Amis A Jeffers J
Full Access

Hip impingement causes clinical problems for both the native hip, where labral or chondral damage can cause severe pain, and in the replaced hip, where subluxation can cause squeaking/metallosis through edge loading, or can cause dislocation. There is much research into bony/prosthetic hard impingements showing that anatomical variation/component mal-positioning can increase the risk of impingement. However, there is a lack of basic science describing the role of the hip capsule and its intertwined ligaments in restraining range of motion, ROM, and so it is unclear if careful preservation/repair of the capsular ligaments would offer clinical benefits to young adults, or could also help prevent edge loading in addition to reducing the postoperative dislocation rate in older adults.

This in-vitro study quantifies the ROM where the capsule passively stabilises the hip and compares this to hip kinematics during daily activities at risk for hip subluxation.

Ten cadaveric left hips were skeletonised preserving the joint capsule and mounted in a testing rig that allowed application of loads, torques and rotations in all six-degrees of freedom (Figure 1). At 27 positions encompassing a complete hip ROM, the passive rotation resistance of each hip was recorded. The gradient of the torque-rotation profiles was used to quantify where the capsule is taut/slack and after resecting the capsule, where labral impingement occur. The ROM measurements were compared against hip kinematics from daily activities.

The capsule tightly restrains the hip in full flexion/extension with large slack regions in mid-flexion. Whilst ligament recruitment varies throughout hip ROM, the magnitude of restraint provided is constant (0.82 ± 0.31 Nm/degree). This restraint acts to prevent or reduce loading of the labrum in the native hip (Figure 2). The measured passive rotational stability envelope is less than clinical ROM measurements indicating the capsule does provide restraint to the joint within a relevant ROM. Activities such as pivoting, stooping, shoe tying and rolling over in bed all would recruit the capsular ligaments in a stabilising role.

The fine-tuned anatomy of the hip capsule provides a consistent contribution to hip rotational restraint within a functionally relevant ROM for normal activities protecting the hip against impingement. Capsulotomy should be kept to a minimum and routinely repaired in the native hip to maintain natural hip mechanics. Restoring its native function following hip replacement surgery may provide a method to prevent subluxation and edge loading in the replaced hip.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 89 - 89
1 Dec 2013
Puthumanapully PK Amis A Harris S Cobb J Jeffers J
Full Access

Introduction:

Varus alignment of the knee is common in patients undergoing unicondylar knee replacement. To measure the geometry and morphology of these knees is to know whether a single unicondylar knee implant design is suitable for all patients, i.e. for patients with varus deformity and those without. The aim of this study was to identify any significant differences between normal and varus knees that may influence unicondylar implant design for the latter group.

Methodology:

56 patients (31 varus, 25 normal) were evaluated through CT imaging. Images were segmented to create 3D models and aligned to a tri-spherical plane (centres of spheres fitted to the femoral head and the medial and lateral flexion facets). 30 key co-ordinates were recorded per specimen to define the important axes, angles and shapes (e.g. spheres to define flexion and extension facet surfaces) that describe the femoral condylar geometry using in-house software. The points were then projected in sagittal, coronal and transverse planes. Standardised distance and angular measurements were then carried out between the points and the differences between the morphology of normal and varus knee summarised. For the varus knee group, trends were investigated that could be related to the magnitude of varus deformity.