header advert
Results 1 - 37 of 37
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 66 - 66
2 Jan 2024
Nikody M Li J Koper D Balmayor E Habibovic P Moroni L
Full Access

Critical-sized bone defects remain challenging in the clinical setting. Autologous bone grafting remains preferred by clinicians. However, the use of autologous tissue is associated with donor-site morbidity and limited accessibility to the graft tissue. Advances in the development of synthetic bone substitutes focus on improving their osteoinductive properties. Whereas osteoinductivity has been demonstrated with ceramics, it is still a challenge in case of polymeric composites. One of the approaches to improve the regenerative properties of biomaterials, without changing their synthetic character, is the addition of inorganic ions with known osteogenic and angiogenic properties. We have previously reported that the use of a bioactive composite with high ceramic content composed of poly(ethyleneoxide terephthalate)/poly(butylene terephthalate) (1000PEOT70PBT30, PolyActive, PA) and 50% beta-tricalcium phosphate (β-TCP) with the addition of zinc in a form of a coating of the TCP particles can enhance the osteogenic differentiation of human mesenchymal stromal cells (hMSCs) (3). To further support the regenerative properties of these scaffolds, inorganic ions with known angiogenic properties, copper or cobalt, were added to the coating solution.

β-TCP particles were immersed in a zinc and copper or zinc and cobalt solution with a concentration of 15 or 45 mM. 3D porous scaffolds composed of 1000PEOT70PBT30 and pure or coated β-TCP were additively manufactured by 3D fibre deposition. The osteogenic and angiogenic properties of the fabricated scaffolds were tested in vitro through culture with hMSCs and human umbilical vein endothelial cells, respectively. The materials were further evaluated through ectopic implantation in an in vivo mini-pig model. The early expression of relevant osteogenic gene markers (collagen-1, osteocalcin) of hMSCs was upregulated in the presence of lower concentration of inorganic ions. Further analysis will focus on the evaluation of ectopic bone formation and vascularisation of these scaffolds after implantation in a mini-pig ectopic intramuscular model.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 68 - 68
2 Jan 2024
Li J
Full Access

Applications of weightbearing computed tomography (WBCT) imaging in the foot and ankle have emerged over the past decade. However, the potential diagnostic benefits are scattered across the literature, and a concise overview is currently lacking. Therefore, we aimed to systematically review all reported diagnostic applications per anatomical region in the foot and ankle. A systematic literature search was performed in the electronic databases PubMed, EMBASE, Cochrane Library, and Web of Science. Search terms consisted of “weightbearing/standing CT and ankle, hind-, mid- or forefoot”. English language studies analyzing the diagnostic applications of WBCT were included. Studies were excluded if they simulated weightbearing CT, described normal subjects, included cadaveric samples or samples were case reports. The modified Methodological Index for Non-Randomized Studies (MINORS) was applied for quality assessment. The added value was defined as the review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines and registered in the Prospero database (CRD42019106980). A total of 48 studies (prospective N=8, retrospective N=36, cohort study N=1, diagnostic N=2, prognostic comparative study N=1) were found to be eligible for review. The following diagnostic applications were identified per anatomical area in the foot: ankle (osteoarthritis N=5, ligament injury N=6); hindfoot (deformity N=9); midfoot (Lisfranc injury N=2, flatfoot deformity N=13, osteoarthritis N=1); forefoot (hallux valgus N=12). The identified studies contained diagnostic applications that could not be used on plain radiographs. The mean MINORS equaled 10.1 on a total of 16 (range: 8 to 12). Diagnostic applications of weightbearing CT imaging are most frequently studied in hindfoot deformity, but other area's areas are on the rise. Post-processing of images was identified as the main added value compared to WBRX. However, the findings should be interpreted with caution as the average quality score was moderate. Therefore, future prospective studies are warranted to consolidate the role of WBCT in diagnostic and therapeutic algorithms.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 84 - 84
24 Nov 2023
Bärtl S Lovasz D Li J Alt V Rupp M
Full Access

Aim

Sepsis is a life-threatening complication of periprosthetic joint infections (PJI) that requires early and effective therapy. This study aims to investigate the epidemiology, associated risk factors, and outcome of sepsis in the context of periprosthetic joint infections (PJI).

Method

This single-center retrospective cohort study included patients treated for PJI from 2017 to 2020. Patients were classified based on the criteria of the European Bone and Joint Infection Society. The presence of sepsis was determined using the SOFA score and SIRS criteria. The cohort with PJI and sepsis (sepsis) was compared to patients with PJI without sepsis (non-sepsis). Risk factors considered were patient characteristics, affected joints, surgical therapy, microbiological findings, preexisting medical conditions, clinical symptoms, and symptom duration. Outcome parameters were mortality, length of hospital stay, and length of stay in the intensive care unit.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 72 - 72
1 Dec 2022
Lamer S Ma Z Mazy D Chung-Tze-Cheong C Nguyen A Li J Nault M
Full Access

Meniscal tears are the most common knee injuries, occurring in acute ruptures or in chronic degenerative conditions. Meniscectomy and meniscal repair are two surgical treatment options. Meniscectomy is easier, faster, and the patient can return to their normal activities earlier. However, this procedure has long-term consequences in the development of degenerative changes in the knee, potentially leading to knee replacement. On the other hand, meniscal repair can offer prolonged benefits to the patients, but it is difficult to perform and requires longer rehabilitation.

Sutures are used for meniscal repairs, but they have limitations. They induce tissue damage when passing through the meniscus. Furthermore, under dynamic loading of the knee, they can cause tissue shearing and potentially lead to meniscal repair failure.

Our team has developed a new technology of resistant adhesive hydrogels to coat the suture used to repair meniscal tissue.

The objective of this study is to biomechanically compare two suture types on bovine menisci specimens: 1) pristine sutures and 2) gel adhesive puncture sealing (GAPS) sutures, on a repaired radial tear under cyclic tensile testing.

Five bovine knees were dissected to retrieve the menisci. On the 10 menisci, a complete radial tear was performed. They were separated in two groups and repaired using either pristine (2-0 Vicryl) or GAPS (2-0 Vicryl coated with adhesive hydrogels) with a single stitch and five knots.

The repaired menisci were clamped on an Instron machine. The specimens were cyclically preconditioned between one and 10 newtons for 10 cycles and then cyclically loaded for 500 cycles between five and 25 newtons at a frequency of 0.16 Hz. The gap formed between the edges of the tear after 500 cycles was then measured using an electronic measurement device. The suture loop before and after testing was also measured to ensure that there was no suture elongation or loosening of the knot.

The groups were compared statistically using Mann-Whitney tests for nonparametric data. The level of significance was set to 0.05.

The mean gap formation of the pristine sutures was 5.61 mm (SD = 2.097) after 500 cycles of tensile testing and 2.38 mm (SD = 0.176) for the GAPS sutures. Comparing both groups, the gap formed with the coated sutures was significantly smaller (p = 0.009) than with pristine sutures. The length of the loop was equal before and after loading. Further investigation of tissue damage indicated that the gap was formed by suture filament cutting into the meniscal tissue.

The long-term objective of this research is to design a meniscal repair toolbox from which the surgeon can adapt his procedure for each meniscal tear. This preliminary experimentation on bovine menisci is promising because the new GAPS sutures seem to keep the edges of the meniscal tear together better than pristine sutures, with hopes of a clinical correlation with enhanced meniscal healing.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 66 - 66
1 Dec 2022
Lamer S Ma Z Mazy D Chung-Tze-Cheong C Nguyen A Li J Nault M
Full Access

Meniscal tears are the most common knee injuries, occurring in acute ruptures or in chronic degenerative conditions. Meniscectomy and meniscal repair are two surgical treatment options. Meniscectomy is easier, faster, and the patient can return to their normal activities earlier. However, this procedure has long-term consequences in the development of degenerative changes in the knee, potentially leading to knee replacement. On the other hand, meniscal repair can offer prolonged benefits to the patients, but it is difficult to perform and requires longer rehabilitation.

Sutures are used for meniscal repairs, but they have limitations. They induce tissue damage when passing through the meniscus. Furthermore, under dynamic loading of the knee, they can cause tissue shearing and potentially lead to meniscal repair failure.

Our team has developed a new technology of resistant adhesive hydrogels to coat the suture used to repair meniscal tissue.

The objective of this study is to biomechanically compare two suture types on bovine menisci specimens: 1) pristine sutures and 2) gel adhesive puncture sealing (GAPS) sutures, on a repaired radial tear under cyclic tensile testing.

Five bovine knees were dissected to retrieve the menisci. On the 10 menisci, a complete radial tear was performed. They were separated in two groups and repaired using either pristine (2-0 Vicryl) or GAPS (2-0 Vicryl coated with adhesive hydrogels) with a single stitch and five knots.

The repaired menisci were clamped on an Instron machine. The specimens were cyclically preconditioned between one and 10 newtons for 10 cycles and then cyclically loaded for 500 cycles between five and 25 newtons at a frequency of 0.16 Hz. The gap formed between the edges of the tear after 500 cycles was then measured using an electronic measurement device. The suture loop before and after testing was also measured to ensure that there was no suture elongation or loosening of the knot.

The groups were compared statistically using Mann-Whitney tests for nonparametric data. The level of significance was set to 0.05.

The mean gap formation of the pristine sutures was 5.61 mm (SD = 2.097) after 500 cycles of tensile testing and 2.38 mm (SD = 0.176) for the GAPS sutures. Comparing both groups, the gap formed with the coated sutures was significantly smaller (p = 0.009) than with pristine sutures. The length of the loop was equal before and after loading. Further investigation of tissue damage indicated that the gap was formed by suture filament cutting into the meniscal tissue.

The long-term objective of this research is to design a meniscal repair toolbox from which the surgeon can adapt his procedure for each meniscal tear. This preliminary experimentation on bovine menisci is promising because the new GAPS sutures seem to keep the edges of the meniscal tear together better than pristine sutures, with hopes of a clinical correlation with enhanced meniscal healing.


Bone & Joint Research
Vol. 11, Issue 12 | Pages 862 - 872
1 Dec 2022
Wang M Tan G Jiang H Liu A Wu R Li J Sun Z Lv Z Sun W Shi D

Aims

Osteoarthritis (OA) is a common degenerative joint disease worldwide, which is characterized by articular cartilage lesions. With more understanding of the disease, OA is considered to be a disorder of the whole joint. However, molecular communication within and between tissues during the disease process is still unclear. In this study, we used transcriptome data to reveal crosstalk between different tissues in OA.

Methods

We used four groups of transcription profiles acquired from the Gene Expression Omnibus database, including articular cartilage, meniscus, synovium, and subchondral bone, to screen differentially expressed genes during OA. Potential crosstalk between tissues was depicted by ligand-receptor pairs.


Bone & Joint Research
Vol. 11, Issue 10 | Pages 700 - 714
4 Oct 2022
Li J Cheung W Chow SK Ip M Leung SYS Wong RMY

Aims

Biofilm-related infection is a major complication that occurs in orthopaedic surgery. Various treatments are available but efficacy to eradicate infections varies significantly. A systematic review was performed to evaluate therapeutic interventions combating biofilm-related infections on in vivo animal models.

Methods

Literature research was performed on PubMed and Embase databases. Keywords used for search criteria were “bone AND biofilm”. Information on the species of the animal model, bacterial strain, evaluation of biofilm and bone infection, complications, key findings on observations, prevention, and treatment of biofilm were extracted.


Bone & Joint Research
Vol. 11, Issue 8 | Pages 594 - 607
17 Aug 2022
Zhou Y Li J Xu F Ji E Wang C Pan Z

Aims

Osteoarthritis (OA) is a common degenerative joint disease characterized by chronic inflammatory articular cartilage degradation. Long noncoding RNAs (lncRNAs) have been previously indicated to play an important role in inflammation-related diseases. Herein, the current study set out to explore the involvement of lncRNA H19 in OA.

Methods

Firstly, OA mouse models and interleukin (IL)-1β-induced mouse chondrocytes were established. Expression patterns of IL-38 were determined in the synovial fluid and cartilage tissues from OA patients. Furthermore, the targeting relationship between lncRNA H19, tumour protein p53 (TP53), and IL-38 was determined by means of dual-luciferase reporter gene, chromatin immunoprecipitation, and RNA immunoprecipitation assays. Subsequent to gain- and loss-of-function assays, the levels of cartilage damage and proinflammatory factors were further detected using safranin O-fast green staining and enzyme-linked immunosorbent assay (ELISA) in vivo, respectively, while chondrocyte apoptosis was measured using Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling (TUNEL) in vitro.


The Bone & Joint Journal
Vol. 104-B, Issue 8 | Pages 963 - 971
1 Aug 2022
Sun Z Liu W Liu H Li J Hu Y Tu B Wang W Fan C

Aims

Heterotopic ossification (HO) is a common complication after elbow trauma and can cause severe upper limb disability. Although multiple prognostic factors have been reported to be associated with the development of post-traumatic HO, no model has yet been able to combine these predictors more succinctly to convey prognostic information and medical measures to patients. Therefore, this study aimed to identify prognostic factors leading to the formation of HO after surgery for elbow trauma, and to establish and validate a nomogram to predict the probability of HO formation in such particular injuries.

Methods

This multicentre case-control study comprised 200 patients with post-traumatic elbow HO and 229 patients who had elbow trauma but without HO formation between July 2019 and December 2020. Features possibly associated with HO formation were obtained. The least absolute shrinkage and selection operator regression model was used to optimize feature selection. Multivariable logistic regression analysis was applied to build the new nomogram: the Shanghai post-Traumatic Elbow Heterotopic Ossification Prediction model (STEHOP). STEHOP was validated by concordance index (C-index) and calibration plot. Internal validation was conducted using bootstrapping validation.


Bone & Joint Research
Vol. 11, Issue 2 | Pages 49 - 60
1 Feb 2022
Li J Wong RMY Chung YL Leung SSY Chow SK Ip M Cheung W

Aims

With the ageing population, fragility fractures have become one of the most common conditions. The objective of this study was to investigate whether microbiological outcomes and fracture-healing in osteoporotic bone is worse than normal bone with fracture-related infection (FRI).

Methods

A total of 120 six-month-old Sprague-Dawley (SD) rats were randomized to six groups: Sham, sham + infection (Sham-Inf), sham with infection + antibiotics (Sham-Inf-A), ovariectomized (OVX), OVX + infection (OVX-Inf), and OVX + infection + antibiotics (OVX-Inf-A). Open femoral diaphysis fractures with Kirschner wire fixation were performed. Staphylococcus aureus at 4 × 104 colony-forming units (CFU)/ml was inoculated. Rats were euthanized at four and eight weeks post-surgery. Radiography, micro-CT, haematoxylin-eosin, mechanical testing, immunohistochemistry (IHC), gram staining, agar plating, crystal violet staining, and scanning electron microscopy were performed.


The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 103 - 111
1 Jan 2022
Li J Hu Z Qian Z Tang Z Qiu Y Zhu Z Liu Z

Aims

The outcome following the development of neurological complications after corrective surgery for scoliosis varies from full recovery to a permanent deficit. This study aimed to assess the prognosis and recovery of major neurological deficits in these patients, and to determine the risk factors for non-recovery, at a minimum follow-up of two years.

Methods

A major neurological deficit was identified in 65 of 8,870 patients who underwent corrective surgery for scoliosis, including eight with complete paraplegia and 57 with incomplete paraplegia. There were 23 male and 42 female patients. Their mean age was 25.0 years (SD 16.3). The aetiology of the scoliosis was idiopathic (n = 6), congenital (n = 23), neuromuscular (n = 11), neurofibromatosis type 1 (n = 6), and others (n = 19). Neurological function was determined by the American Spinal Injury Association (ASIA) impairment scale at a mean follow-up of 45.4 months (SD 17.2). the patients were divided into those with recovery and those with no recovery according to the ASIA scale during follow-up.


Bone & Joint Research
Vol. 10, Issue 11 | Pages 704 - 713
1 Nov 2021
Zhang H Li J Xiang X Zhou B Zhao C Wei Q Sun Y Chen J Lai B Luo Z Li A

Aims

Tert-butylhydroquinone (tBHQ) has been identified as an inhibitor of oxidative stress-induced injury and apoptosis in human neural stem cells. However, the role of tBHQ in osteoarthritis (OA) is unclear. This study was carried out to investigate the role of tBHQ in OA.

Methods

OA animal model was induced by destabilization of the medial meniscus (DMM). Different concentrations of tBHQ (25 and 50 mg/kg) were intraperitoneally injected in ten-week-old female mice. Chondrocytes were isolated from articular cartilage of mice and treated with 5 ng/ml lipopolysaccharide (LPS) or 10 ng/ml interleukin 1 beta (IL-1β) for 24 hours, and then treated with different concentrations of tBHQ (10, 20, and 40 μM) for 12 hours. The expression levels of malondialdehyde (MDA) and superoxide dismutase (SOD) in blood were measured. The expression levels of interleukin 6 (IL-6), IL-1β, and tumour necrosis factor alpha (TNF-α) leptin in plasma were measured using enzyme-linked immunoabsorbent assay (ELISA) kits. The expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) signalling pathway proteins, and macrophage repolarization-related markers, were detected by western blot.


The Bone & Joint Journal
Vol. 103-B, Issue 10 | Pages 1619 - 1626
1 Oct 2021
Bi M Zhou K Gan K Ding W Zhang T Ding S Li J

Aims

The aim of this study is to provide a detailed description of cases combining bridging patch repair with artificial ligament “internal brace” reinforcement to treat irreparable massive rotator cuff tears, and report the preliminary results.

Methods

This is a retrospective review of patients with irreparable massive rotator cuff tears undergoing fascia lata autograft bridging repair with artificial ligament “internal brace” reinforcement technique between January 2017 and May 2018. Inclusion criteria were: patients treated arthroscopically for an incompletely reparable massive rotator cuff tear (dimension > 5 cm or two tendons fully torn), stage 0 to 4 supraspinatus fatty degeneration on MRI according to the Goutallier grading system, and an intact or reparable infraspinatus and/or subscapularis tendon of radiological classification Hamada 0 to 4. The surgical technique comprised two components: first, superior capsular reconstruction using an artificial ligament as an “internal brace” protective device for a fascia lata patch. The second was fascia lata autograft bridging repair for the torn supraspinatus. In all, 26 patients with a mean age 63.4 years (SD 6.2) were included.


The Bone & Joint Journal
Vol. 103-B, Issue 8 | Pages 1421 - 1427
1 Aug 2021
Li J Lu Y Chen G Li M Xiao X Ji C Wang Z Guo Z

Aims

We have previously reported cryoablation-assisted joint-sparing surgery for osteosarcoma with epiphyseal involvement. However, it is not clear whether this is a comparable alternative to conventional joint arthroplasty in terms of oncological and functional outcomes.

Methods

A total of 22 patients who had localized osteosarcoma with epiphyseal involvement around the knee and underwent limb salvage surgery were allocated to joint preservation (JP) group and joint arthroplasty (JA) group. Subjects were followed with radiographs, Musculoskeletal Tumor Society (MSTS) score, and clinical evaluations at one, three, and five years postoperatively.


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 366 - 372
1 Feb 2021
Sun Z Li J Luo G Wang F Hu Y Fan C

Aims

This study aimed to determine the minimal detectable change (MDC), minimal clinically important difference (MCID), and substantial clinical benefit (SCB) under distribution- and anchor-based methods for the Mayo Elbow Performance Index (MEPI) and range of movement (ROM) after open elbow arthrolysis (OEA). We also assessed the proportion of patients who achieved MCID and SCB; and identified the factors associated with achieving MCID.

Methods

A cohort of 265 patients treated by OEA were included. The MEPI and ROM were evaluated at baseline and at two-year follow-up. Distribution-based MDC was calculated with confidence intervals (CIs) reflecting 80% (MDC 80), 90% (MDC 90), and 95% (MDC 95) certainty, and MCID with changes from baseline to follow-up. Anchor-based MCID (anchored to somewhat satisfied) and SCB (very satisfied) were calculated using a five-level Likert satisfaction scale. Multivariate logistic regression of factors affecting MCID achievement was performed.


Bone & Joint Research
Vol. 10, Issue 1 | Pages 41 - 50
1 Jan 2021
Wong RMY Choy VMH Li J Li TK Chim YN Li MCM Cheng JCY Leung K Chow SK Cheung WH

Aims

Fibrinolysis plays a key transition step from haematoma formation to angiogenesis and fracture healing. Low-magnitude high-frequency vibration (LMHFV) is a non-invasive biophysical modality proven to enhance fibrinolytic factors. This study investigates the effect of LMHFV on fibrinolysis in a clinically relevant animal model to accelerate osteoporotic fracture healing.

Methods

A total of 144 rats were randomized to four groups: sham control; sham and LMHFV; ovariectomized (OVX); and ovariectomized and LMHFV (OVX-VT). Fibrinolytic potential was evaluated by quantifying fibrin, tissue plasminogen activator (tPA), and plasminogen activator inhibitor-1 (PAI-1) along with healing outcomes at three days, one week, two weeks, and six weeks post-fracture.


Bone & Joint Research
Vol. 10, Issue 1 | Pages 51 - 59
1 Jan 2021
Li J Ho WTP Liu C Chow SK Ip M Yu J Wong HS Cheung W Sung JJY Wong RMY

Aims

The effect of the gut microbiota (GM) and its metabolite on bone health is termed the gut-bone axis. Multiple studies have elucidated the mechanisms but findings vary greatly. A systematic review was performed to analyze current animal models and explore the effect of GM on bone.

Methods

Literature search was performed on PubMed and Embase databases. Information on the types and strains of animals, induction of osteoporosis, intervention strategies, determination of GM, assessment on bone mineral density (BMD) and bone quality, and key findings were extracted.


Bone & Joint Research
Vol. 9, Issue 11 | Pages 751 - 760
1 Nov 2020
Li Y Lin X Zhu M Xun F Li J Yuan Z Liu Y Xu H

Aims

This study aimed to investigate the effect of solute carrier family 20 member 2 (SLC20A2) gene mutation (identified from a hereditary multiple exostoses family) on chondrocyte proliferation and differentiation.

Methods

ATDC5 chondrocytes were cultured in insulin-transferrin-selenium medium to induce differentiation. Cells were transfected with pcDNA3.0 plasmids with either a wild-type (WT) or mutated (MUT) SLC20A2 gene. The inorganic phosphate (Pi) concentration in the medium of cells was determined. The expression of markers of chondrocyte proliferation and differentiation, the Indian hedgehog (Ihh), and parathyroid hormone-related protein (PTHrP) pathway were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting.


Bone & Joint Open
Vol. 1, Issue 9 | Pages 576 - 584
18 Sep 2020
Sun Z Liu W Li J Fan C

Post-traumatic elbow stiffness is a disabling condition that remains challenging for upper limb surgeons. Open elbow arthrolysis is commonly used for the treatment of stiff elbow when conservative therapy has failed. Multiple questions commonly arise from surgeons who deal with this disease. These include whether the patient has post-traumatic stiff elbow, how to evaluate the problem, when surgery is appropriate, how to perform an excellent arthrolysis, what the optimal postoperative rehabilitation is, and how to prevent or reduce the incidence of complications. Following these questions, this review provides an update and overview of post-traumatic elbow stiffness with respect to the diagnosis, preoperative evaluation, arthrolysis strategies, postoperative rehabilitation, and prevention of complications, aiming to provide a complete diagnosis and treatment path.

Cite this article: Bone Joint Open 2020;1-9:576–584.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 41 - 41
1 Aug 2020
Zhang X Liu J Li J Chen X Qiao Z Xu J Xiao F Cui P
Full Access

Osteosarcoma (OS) is the most prevalent bone tumor in children and young adults. Most tumors arise from the metaphysis of the long bones and easily metastasize to the lungs. Current therapeutic strategies of osteosarcoma are routinely surgical resection and chemotherapy, which are limited to the patients suffering from metastatic recurrence. Therefore, to investigate molecular mechanisms that contribute to osteosarcoma progression is very important and may shed light on targeted therapeutic approach to improve the survival of patients with this disease. Several miRNAs have been found expressed differentially in osteosarcoma (OS), In this study, we found that miR-144 significantly suppresses osteosarcoma cell proliferation, migration andinvasion ability in vitro, and inhibited tumor growth and metastasisin vivo. The function and molecular mechanism of miR-144 in Osteosarcoma was further investigated.

Tissue samples from fifty-one osteosarcoma patients were obtained from Shanghai Ninth People's Hospital. The in vitro function of miR-144 in Osteosarcoma was investigated by cell viability assay, wound healing assay, invasion assay, the molecular mechanism was identified by Biotin-coupled miRNA capture, Dual-luciferase reporter assays, etc. the in vivo function of miR-144 in osteosarcoma was confirmed by osteosarcoma animal model and miR-144−/− zebrafish model.

Mechanically, we demonstrated that Ras homolog family member A (RhoA) and its pivotal downstream effector Rho-associated, coiled-coil containing protein kinase 1 (ROCK1) were both identified as direct targets of miR-144. Moreover, the negative co-relation between downregulated miR-144 and upregulated ROCK1/RhoA was verified both in the osteosarcoma cell lines and clinical patients' specimens. Functionally, RhoA with or without ROCK1 co-overexpression resulted a rescue phenotype on the miR-144 inhibited cell growth, migration and invasion abilities, while individual overexpression of ROCK1 had no statistical significance compared with control in miR-144 transfected SAOS2 and U2-OS cells.

This study demonstrates that miR-144 inhibited tumor growth and metastasis in osteosarcoma via dual-suppressing of RhoA and ROCK1, which could be a new therapeutic approach for the treatment ofosteosarcoma.


Aims

The use of frozen tumour-bearing autograft combined with a vascularized fibular graft (VFG) represents a new technique for biological reconstruction of massive bone defect. We have compared the clinical outcomes between this technique and Capanna reconstruction.

Methods

From June 2011 to January 2016 a retrospective study was carried out of patients with primary osteosarcoma of lower limbs who underwent combined biological intercalary reconstruction. Patients were categorized into two groups based on the reconstructive technique: frozen tumour-bearing autograft combined with concurrent VFG (Group 1) and the Capanna method (Group 2). Demographics, operating procedures, oncological outcomes, graft union, limb function, and postoperative complications were compared.


The Bone & Joint Journal
Vol. 101-B, Issue 9 | Pages 1160 - 1167
1 Sep 2019
Wang WT Li YQ Guo YM Li M Mei HB Shao JF Xiong Z Li J Canavese F Chen SY

Aims

The aim of this study was to clarify the factors that predict the development of avascular necrosis (AVN) of the femoral head in children with a fracture of the femoral neck.

Patients and Methods

We retrospectively reviewed 239 children with a mean age of 10.0 years (sd 3.9) who underwent surgical treatment for a femoral neck fracture. Risk factors were recorded, including age, sex, laterality, mechanism of injury, initial displacement, the type of fracture, the time to reduction, and the method and quality of reduction. AVN of the femoral head was assessed on radiographs. Logistic regression analysis was used to evaluate the independent risk factors for AVN. Chi-squared tests and Student’s t-tests were used for subgroup analyses to determine the risk factors for AVN.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_13 | Pages 61 - 61
1 Oct 2018
Hannon CP Calkins TE Li J Culvern C Darrith B Nam D Gerlinger TL Della Valle CJ
Full Access

Introduction

Opioids are an important component of multimodal analgesia, but improper utilization places patients at risk for overdose and addiction. The purpose of this randomized controlled trial is to determine whether the quantity of opioid pills prescribed at discharge is associated with the total amount of opioids consumed or unused by patients after total hip (THA) and knee (TKA) arthroplasty.

Methods

304 Opioid naïve patients undergoing THA or TKA were randomized to receive a prescription for either 30 or 90 5mg oxycodone immediate release (OxyIR) tablets at discharge. All patients received acetaminophen, meloxicam, tramadol and gabapentin perioperatively. Daily opioid consumption, reported in morphine equivalent dose (MED), number of unused OxyIR, and pain scores were calculated for 30 days postoperatively with a patient-completed medication diary. The number of OxyIR refills and total MED received were recorded for 90 days postoperatively. Power analysis determined that 141 patients per group were necessary to detect a 25% reduction in means in opiate consumption between groups. Statistical analysis involved t-test, rank sum, and chi-squared tests with alpha=0.05.


Bone & Joint Research
Vol. 7, Issue 6 | Pages 397 - 405
1 Jun 2018
Morcos MW Al-Jallad H Li J Farquharson C Millán JL Hamdy RC Murshed M

Objectives

Bone fracture healing is regulated by a series of complex physicochemical and biochemical processes. One of these processes is bone mineralization, which is vital for normal bone development. Phosphatase, orphan 1 (PHOSPHO1), a skeletal tissue-specific phosphatase, has been shown to be involved in the mineralization of the extracellular matrix and to maintain the structural integrity of bone. In this study, we examined how PHOSPHO1 deficiency might affect the healing and quality of fracture callus in mice.

Methods

Tibial fractures were created and then stabilized in control wild-type (WT) and Phospho1-/- mice (n = 16 for each group; mixed gender, each group carrying equal number of male and female mice) at eight weeks of age. Fractures were allowed to heal for four weeks and then the mice were euthanized and their tibias analyzed using radiographs, micro-CT (μCT), histology, histomorphometry and three-point bending tests.


Bone & Joint Research
Vol. 6, Issue 10 | Pages 602 - 609
1 Oct 2017
Jin A Cobb J Hansen U Bhattacharya R Reinhard C Vo N Atwood R Li J Karunaratne A Wiles C Abel R

Objectives

Bisphosphonates (BP) are the first-line treatment for preventing fragility fractures. However, concern regarding their efficacy is growing because bisphosphonate is associated with over-suppression of remodelling and accumulation of microcracks. While dual-energy X-ray absorptiometry (DXA) scanning may show a gain in bone density, the impact of this class of drug on mechanical properties remains unclear. We therefore sought to quantify the mechanical strength of bone treated with BP (oral alendronate), and correlate data with the microarchitecture and density of microcracks in comparison with untreated controls.

Methods

Trabecular bone from hip fracture patients treated with BP (n = 10) was compared with naïve fractured (n = 14) and non-fractured controls (n = 6). Trabecular cores were synchrotron scanned and micro-CT scanned for microstructural analysis, including quantification of bone volume fraction, microarchitecture and microcracks. The specimens were then mechanically tested in compression.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 20 - 20
1 Jan 2017
Pai S Li J Wang Y Lin C Kuo M Lu T
Full Access

Knee ligament injury is one of the most frequent sport injuries and ligament reconstruction has been used to restore the structural stability of the joint. Cycling exercises have been shown to be safe for anterior cruciate ligament (ACL) reconstruction and are thus often prescribed in the rehabilitation of patients after ligament reconstruction. However, whether it is safe for posterior cruciate ligament (PCL) reconstruction remains unclear. Considering the structural roles of the PCL, backward cycling may be more suitable for rehabilitation in PCL reconstruction. However, no study has documented the differences in the effects on the knee kinematics between forward and backward pedaling. Therefore, the current study aimed to measure and compare the arthrokinematics of the tibiofemoral joint between forward and backward pedaling using a biplane fluoroscope-to- computed tomography (CT) registration method.

Eight healthy young adults participated in the current study with informed written consent. Each subject performed forward and backward pedaling with an average resistance of 20 Nm, while the motion of the left knee was monitored simultaneously by a biplane fluoroscope (ALLURA XPER FD, Philips) at 30 fps and a 14-camera stereophotogrammetry system (Vicon, OMG, UK) at 120 Hz. Before the motion experiment, the knee was CT and magnetic resonance scanned, which enabled the reconstruction of the bones and articular cartilage. The bone models were registered to the fluoroscopic images using a volumetric model-based fluoroscopy-to-CT registration method, giving the 3-D poses of the bones. The bone poses were then used to calculate the rigid-body kinematics of the joint and the arthrokinematics of the articular cartilage. In this study, the top dead center of the crank was defined as 0° so forward pedaling sequence would begin from 0° to 360°.

Compared with forward pedaling, for crank angles from 0° to 180°, backward pedaling showed significantly more tibial external rotation. Moreover, both the joint center and contact positions in the lateral compartment were more anterior while the contact positions in the medial compartment was more posterior, during backward pedaling. For crank angles from 180° to 360°, the above-observed phenomena were generally reversed, except for the anterior-posterior component of the contact positions in the medial compartment.

Forward and backward pedaling displayed significant differences in the internal/external rotations while the rotations in the sagittal and frontal planes were similar. Compared with forward cycling, the greater tibial external rotation for crank angles from 0° to 180° during backward pedaling appeared to be the main reason for the more anterior contact positions in the lateral compartment and more posterior contact positions in the medial compartment.

Even though knee angular motions during forward and backward pedaling were largely similar in the sagittal and frontal planes, significant differences existed in the other components with different contact patterns. The current results suggest that different pedaling direction may be used in rehabilitation programs for better treatment outcome in future clinical applications.


The Bone & Joint Journal
Vol. 98-B, Issue 6 | Pages 829 - 833
1 Jun 2016
Hou Y Nie L Pan X Si M Han Y Li J Zhang H

Aims

In order to evaluate the effectiveness of the Mobi-C implant in cervical disc degeneration, a randomised study was conducted, comparing the Mobi-C prosthesis arthroplasty with anterior cervical disc fusion (ACDF) in patients with single level cervical spondylosis.

Patients and Methods

From January 2008 to July 2009, 99 patients were enrolled and randomly divided into two groups, those having a Mobi-C implant (n = 51; 30 men, 21 women) and those undergoing ACDF (n = 48; 28 men, 20 women).The patients were followed up for five years, with the primary outcomes being the Japanese Orthopaedic Association score, visual analogue scale for pain and the incidence of further surgery. The secondary outcomes were the Neck Disability Index and range of movement (ROM) of the treated segment.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 134 - 134
1 Jul 2014
Cai Y Li J Tan H Thian E Fuh JH Tay B Wang W
Full Access

Summary Statement

A three dimensional meniscal scaffold with controlled fibre diameter and orientation was fabricated by an improved E-Jetting system that mimic the internal structure of natural meniscus. In vitro cellular tests proved its feasibility in meniscal tissue engineering applications.

Introduction

Current surgical and repair methods for complex meniscal injuries still do not often give satisfactory long-term results. Thus, scaffold-based grafts are the subject of much research interest. However, one major hurdle is that current techniques are unable to replicate the precise 3D microstructure of meniscus, nor the variations in the fibrillar structure and tissue content from layer to layer. In this work, an improved electrohydrodynamic jet printing system (E-Jetting system) was developed to fabricate biomimetic meniscal scaffold for tissue regeneration.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 118 - 118
1 Dec 2013
Li G Li J Hosseini A Kwon Y Rubash HE
Full Access

Due to technology advancement, many studies have reported on in-vivo human knee kinematics recently (Dannis, 2005; Moro-oka, 2008; Tashman, 2003; Koo, 2008). This abstract summarized the joint kinematics during three motions usually seen in our daily living, i.e. gait, step-up (stair ascending) and single-legged lunge that was measured using a combined dual-fluoroscopic imaging system and MRI based modeling technique (Li, 2008). Cartilage contacts or condylar motion using transepicondylar axis (TEA)/geometric center axis (GCA) were used to describe the motion characters of the knee during these motions.

In the treadmill gait, the movement of the medial femoral condyle along the anteroposterior direction was significantly greater than that of the lateral femoral condyle during the stance phase using either TEA (9.7 ± 0.7 mm vs. 4.0 ± 1.7 mm, respectively; p < 0.01; Fig. 1A) or GCA (17.4 ± 2.0 mm vs. 7.4 ± 6.1 mm, respectively; p < 0.01; Fig. 1B). A “lateral-pivoting” of the knee was observed (Kozanek, 2009).

In the step-up motion, both medial and lateral contact points moved anteriorly on the tibial articular surfaces along the step-up motion path. The contact points on the medial and lateral tibial plateau moved anteriorly (13.5 ± 3.2 mm vs. 10.7 ± 5.0 mm, respectively; p > 0.05; Fig. 2A) with knee extension. Using the TEA (Fig. 2B), the femoral condylar motions presented a similar pattern as the contact points; nonetheless, using the GCA (Fig. 2C), the femoral condylar motion pattern was dramatically different. The medial condyle moved anteriorly, while the lateral condyle shifted posteriorly. However, none of them showed a significant pivoting phenomenon (Li, 2013).

In the single-legged lunge, both medial and lateral contact points moved similarly before 120° of knee flexion, but the lateral contact moved posteriorly and significantly more than the medial compartment in high flexion (1.9 ± 2.1 mm vs. 4.8 ± 2 mm, respectively; p < 0.05). The single-legged lunge didn't show a single motion pattern (Fig. 3) (Qi, 2013).

These data provide baseline knowledge for the understanding of normal physiological function of the knee during gait, step-up and lunge activities. The findings of these studies demonstrated that knee joint kinematics is activity-dependent and indicated that the knee joint motions could not be described using a single motion character such as “medial-pivoting” that has recently been popularized in total knee arthroplasty design areas.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 89 - 89
1 Sep 2012
Ackermann P Schizas N Bring D Li J Andersson T Fahlgren A Aspenberg P
Full Access

Introduction

Traumatized musculoskeletal tissue often exhibits prolonged time to healing, mostly due to low blood flow and innervation. Intermittent Pneumatic Compression (IPC) increases blood flow and decreases thromboembolic event after orthopedic surgery,[1] however little is known about healing effects.[2] We hypothesized that IPC could stimulate tissue repair: 1.) blood flow 2.) nerve ingrowth 3.) tissue proliferation and during immobilisation enhance 4.) biomechanical tissue properties.

Methods

Study 1: In 104 male Sprague Dawley (SD) rats the right Achilles tendon was ruptured and the animals freely mobilized. Half the group received daily IPC-treatment, using a pump and cuff over the hindpaw that inflates/deflates cyclicly, 0–55mmHg (Biopress SystemTM, Flexcell Int.), and the other half received sham-treatment. Healing was assessed at 1,3,6 weeks by perfusion-analysis with laser doppler scanner (Perimed, Sweden), histology and biomechanical testing.

Study 2: 48 male SD-rats were ruptured as above. Three groups of each 16 rats were either mobilized, immobilized or immobilized with IPC treatment. Immobilization was performed by plaster cast. Healing was assessed at 2 weeks with histology and biomechanical testing.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 75 - 75
1 May 2012
Li J Evans S Blain E Piccinelli S Holt C Dini D Accardi M
Full Access

Patient specific knee modelling has the potential to help understand the development of the mechanically induced degenerative disease, Osteoarthritis. A full joint contact model of the knee involves modelling the bones, ligaments, articular cartilage (AC) and meniscus, as well as, the kinematics and geometry of real joints. These finite element models will inevitably require great computational resource to run and it is desirable to find resource effective material model formulations which can accurately describe the mechanical behaviour of the soft tissues. Biphasic models (BIMs) have long been established as an effective formulation for modelling AC. However, the swelling behaviour caused by changes in the ionic phase is a major recovery mechanism and is neglected in the BIMs. It is therefore believed that BIMs alone are insufficient to fully describe the mechanical behaviour of AC. Instead, a thermal analogy method which is generically a BIM that includes the swelling behaviour has been thought to be suitable and has been validated against literature data using material parameters optimized to match the numerical and experimental results. To ensure the model is suitable for patient specific modelling where it will have the ability to reflect the individual AC material properties of the patients in the mechanical behaviour it predicts, two experiments have been planned and are currently being carried out using bovine AC. The first experiment is to investigate the diffusivity of the tissue in solutions of different molarity by measuring the change in tissue weight over time. Eleven explants are taken from the same bovine articular joint using a 6mm biopsy punch and are left in 10mM of PBS overnight to ensure ionic equilibrium has been reached before experiments are carried out. The explants are then placed in PBS solutions of molarities ranging from 0mM to 10mM and weighed at regular time intervals. In the final stage, the explants are then lyophilized and weighed for determining the volume of water in the tissues. Using Archimedes principle, the change in porosity of the tissue is found. A preliminary study has shown that explants submerged in a solution of 5mM has an approximately 4% change in weight after the first 24h and a further 1.73% change in the following 24h. Control specimens left in a solution of 10mM had a 0% change in weight. The second experiment is to carry out mechanical loading on the AC specimens while submerged in a solution of different ion concentrations. Experiments with various loading conditions are being investigated to explore their efficacy for validation. Preliminary compression tests have been carried out where steps of 1% strain was applied, giving a total of 10% strain. Between each step, strain was held constant until full relaxation has been achieved. The reaction force measured from the second experiment in conjunction with data collected from the first experiment will be compared to results predicted in the numerical model. This will allow the determination of whether thermal analogy is adequate or whether more complex triphasic models need to be considered. Furthermore, the development of these experimental methods will contribute to the validation of other AC material models in the future.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 30 - 30
1 May 2012
Harrison A Kobla V Sandy J Li J Plaas A
Full Access

Background

Osteoarthritis (OA), is characterised with a loss of cartilage and pain in affected joints. It is this pain which most patients associate with their condition. Intra-articular (IA) hyaluronan (HA) has been shown to reduce the pain associated with OA both in animal models and in clinical trials. There are purified HA available and in recent years hyaluronan hydrogels, where the material has been cross-linked into networks, have become available. One of these cross-linked HA hydrogels is Durolane¯. This study has sought to evaluate the effect of Durolane in an in vivo model of osteoarthritis.

Methods

Mice (C57BL/6, 12 weeks) were obtained from Jackson Labs and all protocols were approved by Rush IACUC. Joint injury was initiated by TGFb1 injection as described [1]. Mice were given IA injections of 200 ng TGFb1, at days 1 and 3 delivered in a 6 ul volume into the rear right knee joint only. Twenty four hours after the second injection of TGFb1 10 ul of Durolane was injected into the same knee joint. All animals were exercised daily on a treadmill to induce tissue degeneration. Three groups of animals were evaluated: Naïve (n = 4), TGFb1 + saline (n = 5) and TGFb1 + Durolane (n = 5). Running performance was monitored daily and 15 days post injections, gait was assessed quantitatively using the TreadScan gait analysis system (CleverSys).


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 423 - 423
1 Nov 2011
Tong P Zhang S Jin H Chen L Ji W Li J
Full Access

The purpose of this study was to analyze the long-term effect of arterial perfusion of drugs and bone marrow stromal cells (bMSCs) on osteonecrosis of femoral head (ONFH). From Jan 1997 to Mar 2004, one hundred and seventeen patients with ONFH were consecutively enrolled to receive a digital subtraction angiography (DSA) in arteriae circumflexa femoris medialis and arteriae circumflexa femoris lateralis. In DSA, a dosage of drugs (urokinase, salvia injection, and tetramethylpyrazine) and autologous bMSCs or only the drugs were perfused into the arteries. The morphological changes of the arteries in DSA after perfusion were recorded. Symptoms radiographs, and the Harris hip-rating score were determined preoperatively and at each follow-up examination at one month, six months, one year, 2 years and 5 years after the treatment. 83 patients were followed up for more than five years. The median follow-up period was 7.9 years.

After the drugs had been perfuse, the arteries became thicker, and more than 2 branches appeared in DSA. Five years after the operation, the Harris hip score of 32 patients (38 hips) treated by arterial perfusion of simplex drugs (group A) increased from 59.24±5.28 to 71.80±6.37 (p< 0.01), and the excellent and good rate of centesimal evaluation was 57.9%. The Harris hip score of 51 patients (59 hips) treated by arterial perfusion of drugs and autologous bMSCs (group B) increased from 59.52±4.85 to 78.29±6.05 (p< 0.01), and the excellent and good rate was 78.0% which was significantly higher than that of group A (p=0.035). Since two years after operation, the Harris hip score of group A was significantly higher than that of group B (p< 0.01).

Among the patients in group B, the rate of excellent and good in early stages (˜,˜ a and ˜ b according to Ficat classifying, 50 hips) was 84.0%, which was better than the rate in the terminal stage (Ficat III, 9 hips, the excellent and good rate was 44.4%)(p = 0.028), and the rate of excellent and good in low age group (< 40 years, 33 hips) was also better than that in high age group (≥ 40 years, 26 hips)(p=0.038).

We conclude that arterial perfusion of drugs and autologous bMSCs treating osteonecrosis of femoral head is safe and effective. The long-term therapeutic effect is more satisfactory than that of simplex arterial perfusion of drugs.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 141 - 141
1 Mar 2010
Tong P He B Jin H Li J Xiao L Ma Z
Full Access

To investigate the effect of bilateral total hip replacement for patients with ankylosed hip joints caused by late ankylosing spondylitis (AS) and to discuss its related pre- and post-operation rehabilitation problems.

Data of 20 patients with ankylosed hip joints caused by late AS undergone total hip replacement (40 hips) were reviewed. Among the total 14 patients (28 hips) undergone bilateral total hip replacement, other 6 patients (12 hips) undergone twice operations. We used Harris score, assessment of the joint pain, range of motion to make sure the curative effect of the operative strategy.

The mean duration of follow-up was 3. 8 years, all hip joints function was improved, and the flexion deformity of the involved hips were disappeared. The range of hip flexion were 75°–105°(average 86. 2°), and the range of hip extension were 5°–15°(average 8. 7°), the average Harris score was from 32.8 pre-operation improved to 88.2 post-operation, the patients experienced no pain on their hips, the pain of the knee and the lower back complained before the treatment were obviously relieved.

Bilateral total hip replacement is an effective treatment for ankylosed hip joint caused by late ankylosing spondylitis, early rehabilitation intervention is useful for the functional recovery of the joints

Bipolar Hemiarthroplasty Using Non-cemented Femoral Stem in Non-traumatic Osteonecrosis of the Femoral Head Nine to Nineteen years Follow-up


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 459 - 459
1 Sep 2009
Ahmed AS Li J Ahmed M Bakalkin G Stark A
Full Access

Rheumatoid arthritis (RA) is a chronic inflammatory disease of unknown aetiology. In RA, inflammation and pain are initial symptoms followed by bone and cartilage destruction. Proinflammatory cytokines play a significant role in the initiation and progress of inflammation and tissue destruction. Sensory neuropeptide substance P (SP) participates not only in nociception but also in pro-inflammatory processes by enhancing vasodilatation and recruitment of inflammatory cells. Ubiquitin proteasome system (UPS) activates a transcription factor, NF-κB which regulates the synthesis of proinflammatory mediators like cytokines; however its role in regulating pro inflammatory sensory neuropeptides is unknown. A number of proteasome inhibitors have been shown to down regulate the activity of NF-κB and hence reduce inflammation. In the present study, the effect of proteasome inhibitor (MG 132) on the severity of arthritis and pain was observed along with the expression of SP-positive nerve fibres in the ankle joint in a chronic inflammatory model of rat adjuvant arthritis.

Histology and mechanical pain tests showed a significant reduction in inflammation and pain in ankle joint by daily administration of proteasome inhibitor MG132 at the dose of 1mg/kg body weight compared to untreated groups. Radiographic analysis of ankle joints indicated a reduction in soft tissue swelling and joint destruction in the treatment group. A marked reduction in the NF-κB activity was observed by EMSA. Furthermore, proteasome inhibition resulted in the normalization of up regulated neuronal response occurred during inflammation by significantly reducing the expression of SP-positive fibres in the ankle joint as demonstrated by immunohistochemistry.

Our data provide the evidence that proteasome inhibitor MG132 can reduce severity of arthritis and reverse inflammatory pain behaviour by influencing the peripheral sensory nervous system. The drugs targeting UPS can be developed for treatment of chronic inflammatory joint disorders.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 7 | Pages 935 - 942
1 Jul 2009
Hu S Zhang Z Hua Y Li J Cai Z

We performed a meta-analysis to evaluate the relative efficacy of regional and general anaesthesia in patients undergoing total hip or knee replacement. A comprehensive search for relevant studies was performed in PubMed (1966 to April 2008), EMBASE (1969 to April 2008) and the Cochrane Library. Only randomised studies comparing regional and general anaesthesia for total hip or knee replacement were included.

We identified 21 independent, randomised clinical trials. A random-effects model was used to calculate all effect sizes. Pooled results from these trials showed that regional anaesthesia reduces the operating time (odds ratio (OR) −0.19; 95% confidence interval (CI) −0.33 to −0.05), the need for transfusion (OR 0.45; 95% CI 0.22 to 0.94) and the incidence of thromboembolic disease (deep-vein thrombosis OR 0.45, 95% CI 0.24 to 0.84; pulmonary embolism OR 0.46, 95% CI 0.29 to 0.80).

Regional anaesthesia therefore seems to improve the outcome of patients undergoing total hip or knee replacement.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 348 - 349
1 May 2009
Li J Tan D Miao S Crawford R Xiao Y
Full Access

To regenerate the complex tissue such as bone-cartilage construct using tissue engineering approaches, controllable differentiation of mesenchymal stem cells (BMSCs) into chondrogenic and osteogenic lineages is crucially important. Although bilayered scaffolds have been investigated in vitro and in vivo, no culture system is available to test BMSCs differentiation into bone and cartilage simultaneously in bilayered scaffolds. This study investigated a defined culture media, which supported osteoblast and chondrocyte differentiation depending on growth factors implemented in biomaterials. In 2-dimensional culture, BMSCs differentiated to chondrocytes when transforming growth factor-beta 3 (TGF-β3) was added to the defined media, whereas osteogenic differentiation was induced by adding bone morphogenetic protein 7 (BMP-7). BMSC differentiation to osteogenic and chondrogenic lineages was further strengthen in 3-dimensional culture. Proteoglycan formation, type II collagen, and aggrecan were upregulated in the defined media when BMSCs were mixed with fibrin gel impregnated with TGF-β3. Mineralization and the expression of osteogenic markers such as alkaline phosphatase, osteopontin, and osteoclacin were noticeable when BMSCs cultured in hydroxyapatite-tricalcium phosphate (HA/TCP) scaffolds coated with BMP-7.

This study generated and tested a growth media, which could induce osteogenic and chondrogenic differentiation of BMSCs in one culture system. These results will help the development of tissue substitutes for multi-complexed tissues such as subchondral replacement.