header advert
Results 1 - 20 of 4365
Results per page:
Bone & Joint 360
Vol. 13, Issue 2 | Pages 47 - 49
1 Apr 2024
Burden EG Krause T Evans JP Whitehouse MR Evans JT


Bone & Joint 360
Vol. 13, Issue 1 | Pages 44 - 45
1 Feb 2024
Marson BA

This edition of the Cochrane Corner looks at the three reviews that were published in the second half of 2023: surgical versus non-surgical interventions for displaced intra-articular calcaneal fractures; cryotherapy following total knee arthroplasty; and physical activity and education about physical activity for chronic musculoskeletal pain in children and adolescents.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 88 - 88
2 Jan 2024
Kim M Kim, K
Full Access

There is still no consensus on which concentration of mesenchymal stem cells (MSCs) to use for promoting fracture healing in a rat model of long bone fracture.

To assess the optimal concentration of MSCs for promoting fracture healing in a rat model.

Wistar rats were divided into four groups according to MSC concentrations: Normal saline (C), 2.5 × 106 (L), 5.0 × 106 (M), and 10.0 × 106 (H) groups. The MSCs were injected directly into the fracture site. The rats were sacrificed at 2 and 6 자 post-fracture. New bone formation [bone volume (BV) and percentage BV (PBV)] was evaluated using micro-computed tomography (CT). Histological analysis was performed to evaluate fracture healing score. The protein expression of factors related to MSC migration [stromal cell-derived factor 1 (SDF-1), transforming growth factor-beta 1 (TGF-β1)] and angiogenesis [vascular endothelial growth factor (VEGF)] was evaluated using western blot analysis. The expression of cytokines associated with osteogenesis [bone morphogenetic protein-2 (BMP-2), TGF-β1 and VEGF] was evaluated using real-time polymerase chain reaction.

Micro-CT showed that BV and PBV was significantly increased in groups M and H compared to that in group C at 6 wk post-fracture (P = 0.040, P = 0.009; P = 0.004, P = 0.001, respectively). Significantly more cartilaginous tissue and immature bone were formed in groups M and H than in group C at 2 and 6 wk post-fracture (P = 0.018, P = 0.010; P = 0.032, P = 0.050, respectively). At 2 wk post fracture, SDF-1, TGF-β1 and VEGF expression were significantly higher in groups M and H than in group L (P = 0.031, P = 0.014; P < 0.001, P < 0.001; P = 0.025, P < 0.001, respectively). BMP-2 and VEGF expression were significantly higher in groups M and H than in group C at 6 wk postfracture (P = 0.037, P = 0.038; P = 0.021, P = 0.010). Compared to group L, TGF-β1 expression was significantly higher in groups H (P = 0.016). There were no significant differences in expression levels of chemokines related to MSC migration, angiogenesis and cytokines associated with osteogenesis between M and H groups at 2 and 6 wk post-fracture.

The administration of at least 5.0 × 106 MSCs was optimal to promote fracture healing in a rat model of long bone fractures.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 45 - 45
2 Jan 2024
Gilsing R Hoogeveen M Boers H van der Weegen W
Full Access

Knee swelling is common after injury or surgery, resulting in pain, restricted range of movement and limited mobility. Accurately measuring knee swelling is critical to assess recovery. However, current measurement methods are either unreliable or expensive [1,2]. Therefore, a new measurement method is developed. This wearable (the ‘smart brace’) has shown the ability to distinguish a swollen knee from a not swollen knee using multi-frequency-bio impedance analysis (MF-BIA) [3].

This study aimed to determine the accuracy of this smart brace. The study involved 25 usable measurements on patients treated for unilateral knee osteoartritis with a 5mL injection of Lidocaïne + DepoMedrol (1:4). MF-BIA measurements were taken before and after the injection, both on the treated and untreated knee. The smart brace accurately measured the effect of the injection by a decrease in resistance of up to 2.6% at 100kHz (p<0.01), where commonly used gel electrodes were unable to measure the relative difference. Remarkably, both the smart brace and gel electrodes showed a time component in the MF-BIA measurements.

To further investigate this time component, 10 participants were asked to lie down for 30 minutes, with measurements taken every 3 minutes using both gel electrodes and the smart brace on both legs. The relative change between each time step was calculated to determine changes over time. The results showed presence of a physiological aspect (settling of knee fluids), and for the brace also a mechanical aspect (skin-electrode interface) [4]. The mechanical aspect mainly interfered with reactance values.

Overall, the smart brace is a feasible method for quantitatively measuring knee swelling as a relative change over time. However, the skin-electrode interface should be improved for reliable measurements at different moments in time. The findings suggest that the smart brace could be a promising tool for monitoring knee swelling during rehabilitation.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 91 - 91
2 Jan 2024
Graça A Rodrigues M Domingues R Gomes M Gomez-Florit M
Full Access

Macrophages play a critical role in innate immunity by promoting or inhibiting tissue inflammation and repair. Classically, macrophages can differentiate into either pro-inflammatory (M1) or pro-reparative (M2) phenotypes in response to various stimuli. Therefore, this study aimed to address how extracellular vesicles (EVs) derived from polarized macrophages can affect the inflammatory response of tendon cells.

For that purpose, human THP-1 cells were stimulated with lipopolysaccharide (LPS), and interleukins -4 and -13 (IL- 4, IL-13), to induce macrophages polarization into M1, M2, and hybrid M1/M2 phenotypes. Subsequently, the EVs were isolated from the culture medium by ultracentrifugation. The impact of these nanovesicles on the inflammation and injury scenarios of human tendon-derived cells (hTDCs), which had previously been stimulated with interleukin- 1 beta (IL-1ß) to mimic an inflammatory scenario, was assessed.

We were able to isolate three different nanovesicles populations, showing the typical shape, size and surface markers of EVs. By extensively analyzing the proteomic expression profiles of M1, M2, and M1/M2, distinct proteins that were upregulated in each type of macrophage-derived EVs were identified. Notably, most of the detected pro- inflammatory cytokines and chemokines had higher expression levels in M1-derived EVs and were mostly absent in M2-derived EVs. Hence, by acting as a biological cue, we observed that M2 macrophage-derived EVs increased the expression of the tendon-related marker tenomodulin (TNMD) and tended to reduce the presence of pro-inflammatory markers in hTDCs. Overall, these preliminary results show that EVs derived from polarized macrophages might be a potential tool to modulate the immune system responses becoming a valuable asset in the tendon repair and regeneration fields worthy to be further explored.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 50 - 50
2 Jan 2024
Teixeira G
Full Access

Back pain is a leading cause of disability worldwide and it is primarily considered to be triggered by intervertebral disc (IVD) degeneration (IVDD). Current treatments may improve pain and mobility, but carry high costs and fail to address IVD repair or regeneration. As no effective therapeutic approach has been proposed to restore inflamed and degenerated IVDs, there is the urgent need to clarify the key pathomechanism of IVDD, the involvement of inflammation, particularly complement activation in matrix catabolism, and how to target them towards tissue repair/regeneration. Mesenchymal stem cell (MSC)-based therapies have become the focus of several regenerative IVD studies. Although patients in clinical trials reported less pain after cell therapy, the long-term success of cell engraftment is unclear due to the hostile IVD environment. The mechanism-of-action of MSCs is mostly dependent on the secreted soluble factors. Moreover, priming of MSC with interleukin (IL)-1β modulates the secretome content, improving its anti-inflammatory and regenerative effect on IVDD organ culture models. MSC-derived extracellular vesicles (EVs) have also been shown to modulate human IVD cells towards a healthy IVD phenotype in vitro. However, the mechanisms involved in the effect of secretome and EVs, particularly with regard to immunomodulation and matrix metabolism, are not fully understood. Our work investigates the effects of secretome and EVs secreted by IL-1β-primed MSCs to impair IVD matrix degradation and/or improve matrix formation in IVDD.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 94 - 94
2 Jan 2024
Graça A Domingues R Docheva D Gomez-Florit M Gomes M
Full Access

Worldwide, tendon disorders are one of the main causes of disability that decrease the quality of life of individuals and represent a substantial economic burden on society. Currently, the main therapies used for tendon injuries are not able to restore tendon functionality, and due to tendons' hypovascular and hypocellular nature, they present a reduced healing capacity, which also limits the success of the available therapies. In order to discover new therapies, extracellular vesicles (EVs), key players in cell-cell communication, have been widely explored for tissue engineering and regenerative medicine applications. Thus, the aim of this study is to assess the role of EVs derived from platelets in stem cell tenogenic commitment using a bioengineered tendon in vitro model for potential use as tendon therapeutic agents. Biomimetic platelet-derived EVs were produced by freeze-thaw cycles of platelets and isolation at different centrifugation speed. To recreate the architecture of tendons, a 3D system consisting of electrospun anisotropic nanofiber scaffolds coated with collagen encapsulating human adipose stem cells (hASCs) and different types of platelet-derived EVs, were produced. Then, the influence of the tendon-mimetic constructs and the distinct EVs populations in the hASCs tenogenic differentiation were assessed over culture time. We observed that the hASCs on the nanofibrous tendon scaffolds, show high cytoskeleton anisotropic organization that is characteristic of tenocytes. Moreover, acting as biological cues, platelet-derived EVs boosted hASCs tenogenic commitment, supported by the increased gene expression of tendon-related markers (SCX and TNMD). Additionally, EVs enhanced the deposition of tendon like extracellular matrix (ECM), as evidenced by the increased gene expression of ECM-related markers such as COL1, COL3, DCN, TNC, and MMP-3, which are fundamental for ECM synthesis and degradation balance. Moreover, EVs induced lower collagen matrix contraction on hASCs, which has been related with lower myofibroblast differentiation. Overall, the results revealed that EVs are capable of modulating stem cells' behavior boosting their tenogenic commitment, through the increased expression of healthy tendon cell markers, potentiating ECM deposition and decreasing cell contractility. Therefore, platelet EVs are a promising biochemical tool, worthy to be further explored, as paracrine signaling that might potentiate tendon repair and regeneration.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 51 - 51
2 Jan 2024
Grad S
Full Access

Mechanical loading is important to maintain the homeostasis of the intervertebral disc (IVD) under physiological conditions but can also accelerate cell death and tissue breakdown in a degenerative state. Bioreactor loaded whole organ cultures are instrumental for investigating the effects of the mechanical environment on the IVD integrity and for preclinical testing of new therapies under simulated physiological conditions. Thereby the loading parameters that determine the beneficial or detrimental reactions largely depend on the IVD model and its preparation. Within this symposium we are discussing the use of bovine caudal IVD culture models to reproduce tissue inflammation or matrix degradation with or without bioreactor controlled mechanical loading. Furthermore, the outcome parameters that define the degenerative state of the whole IVD model will be outlined. Besides the disc height, matrix integrity, cell viability and phenotype expression, the tissue secretome can provide indications about potential interactions of the IVD with other cell types such as neurons. Finally, a novel multiaxial bioreactor setup capable of mimicking the six degrees-of-freedom loading environment of IVDs will be introduced that further advances the relevance of preclinical ex-vivo testing.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 95 - 95
2 Jan 2024
Gjerde C
Full Access

The aim of the ongoing projects was to demonstrate the efficacy of autologous bone marrow derived stem cells (MSC) combined with biomaterial to induced new bone formation in a randomized multicenter controlled clinical trial.

Patients with a need for bone reconstruction of residual edentulous ridges in both the mandible and maxilla due to bone defects with a vertical loss of alveolar bone volume and/or knife edge ridges (≤ than 4,5 mm) unable to provide adequate primary stabilization for dental implants were included in the clinical study. Autologous bone marrow MSC were expanded, loaded on BCP and used to augment the alveolar ridges. After five months bone biopsies were harvested at the implant position site and implants were installed in the regenerated bone. The implants were loaded after 8–12 weeks. Safety, efficacy, quality of life and success/survival were assessed. Five clinical centers, 4 different countries participated. Bone grafts harvested from the ramus of the mandibles were used as control in the projects.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 136 - 136
2 Jan 2024
Manferdini C Gabusi E Dolzani P Trucco D Lenzi E D'Atri G Vannozzi L Cafarelli A Ricotti L Lisignoli G
Full Access

In cartilage tissue engineering (TE),new solutions are needed to effectively drive chondrogenic differentiation of mesenchymal stromal cells in both normal and inflammatory milieu. Ultrasound waves represent an interesting tool to facilitate chondrogenesis. In particular, low intensity pulsed ultrasound (LIPUS)has been shown to regulate the differentiation of adipose mesenchymal stromal cells. Hydrogels are promising biomaterials capable of encapsulating MSCs by providing an instructive biomimetic environment, graphene oxide (GO) has emerged as a promising nanomaterial for cartilage TE due to its chondroinductive properties when embedded in polymeric formulations, and piezoelectric nanomaterials, such as barium titanate nanoparticles (BTNPs),can be exploited as nanoscale transducers capable of inducing cell growth/differentiation. The aim of this study was to investigate the effect of dose-controlled LIPUS in counteracting inflammation and positively committing chondrogenesis of ASCs embedded in a 3D piezoelectric hydrogel.

ASCs at 2*106 cells/mL were embedded in a 3D VitroGel RGD® hydrogel without nanoparticles (Control) or doped with 25 µg/ml of GO nanoflakes and 50 µg/ml BTNPs.The hydrogels were exposed to basal or inflammatory milieu (+IL1β 10ng/ml)and then to LIPUS stimulation every 2 days for 10 days of culture. Hydrogels were chondrogenic differentiated and analyzed after 2,10 and 28 days. At each time point cell viability, cytotoxicity, gene expression and immunohistochemistry (COL2, aggrecan, SOX9, COL1)and inflammatory cytokines were evaluated.

Ultrasound stimulation significantly induced chondrogenic differentiation of ASCs loaded into 3D piezoelectric hydrogels under basal conditions: COL2, aggrecan and SOX9 were significantly overexpressed, while the fibrotic marker COL1 decreased compared to control samples. LIPUS also has potent anti-inflammatory effects by reducing IL6 and IL8 and maintaining its ability to boost chondrogenesis.

These results suggest that the combination of LIPUS and piezoelectric hydrogels promotes the differentiation of ASCs encapsulated in a 3D hydrogel by reducing the inflammatory milieu, thus representing a promising tool in the field of cartilage TE.

Acknowledgements: This work received funding from the European Union's Horizon 2020 research and innovation program, grant agreement No 814413, project ADMAIORA (AdvanceD nanocomposite MAterIals for in situ treatment and ultRAsound-mediated management of osteoarthritis).


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 100 - 100
2 Jan 2024
Jahr H
Full Access

Degeneration of the intervertebral disc (IVD), and subsequent low back pain, is an almost inevitable cause of disability. The underlying mechanisms are complex and current therapeutic strategies mainly focus on symptomatic relief rather than on the intrinsic regeneration of the IVD. This talk will provide an overview of special anatomical features and the composition of the IVD as well as its cellular microenvironment. Selected promising conceptional regenerative approaches will be discussed.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 58 - 58
2 Jan 2024
Camarero-Espinosa S
Full Access

The anterior cruciate ligament (ACL) is the connective tissue located at the end of long bones providing stability to the knee joint. After tear or rupture clinical reconstruction of the tissue remains a challenge due to the particular mechanical properties required for proper functioning of the tissue. The outstanding mechanical properties of the ACL are characterized by a viscoelastic behavior responsible of the dissipation of the loads that are transmitted to the bone. These mechanical properties are the result of a very specialized graded extracellular matrix that transitions smoothly between the heterotypic cells, stiffness and composition of the ACL and the adjacent bone. Thus, mimicking the zonal biochemical composition, cellular phenotype and organization are key to reset the proper functioning of the ACL.

We have previously shown how the biochemical composition presented to cells in electrospun scaffolds results in haptokinesis, reverting contact-guidance effects.[1] Here, we demonstrate that contact guidance can also be disrupted by structural parameters in aligned wavy scaffolds. The presentation of a wavy fiber arrangement affected the cell organization and the deposition of a specific ECM characteristic of fibrocartilage. Cells cultured in wavy scaffolds grew in aggregates, deposited an abundant ECM rich in fibronectin and collagen II, and expressed higher amounts of collagen II, X and tenomodulin as compared to aligned scaffolds. In-vivo implantation in rabbits of triphasic scaffolds accounting for aligned-wavy-aligned zones showed a high cellular infiltration and the formation of an oriented ECM, as compared to traditional aligned scaffolds.[2]


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 73 - 73
2 Jan 2024
Vinhas A Rodrigues M Gonçalves A Gomes M
Full Access

Common tendon injuries impair healing, leading to debilitation and an increased re-rupture risk. The impact of oxygen-sensing pathways on repair mechanisms, vital in regulating inflammation and fibrosis, remains unclear despite their relevance in tendon pathologies. Recent studies show that pulsed electromagnetic field (PEMF) reduce inflammation in human tendon cells (hTDCs) and in hypoxia-induced inflammation. We investigated the hypoxia's impact (1% and 2% oxygen tension) using magnetic cell sheet constructs (IL-1β-magCSs) primed with IL-1β. IL-1β-magCSs were exposed to low OT (1h, 4h,6h) in a hypoxic chamber. To confirm the role of PEMF (5Hz, 4mT, 50% duty cycle) on hypoxia modulation, IL-1β-magCSs, previously exposed to OT, were 1h-stimulated with PEMF. Our results show a significant increase in HIF- 1a and HIF-2a expression on IL-1β-magCSs after exposure to 2%-OT at all time points, compared to 1%- OT and normoxia. TNFa, IL-6, and IL-8 expression increased after 6 hours of 1%-OT exposure. PEMF stimulation of hypoxic IL-1β-magCSs led to decreased pro-inflammatory genes and increased anti-inflammatory (IL-4,IL-10) expression compared to unstimulated magCSs. IFN-g, TNF-α, and IL-6 release increased after 6 hours, regardless of %-OT, while IL-10 levels tended to rise after PEMF stimulation at 2%-OT. Also, NFkB expression was increased on IL-1β-magCSs exposed to 4 h and 6 h of 2%-OT, suggesting a link between NFkB and the production of pro-inflammatory factors. Moreover, PEMF stimulation showed a significantly decreased NFkB level in IL-1β-magCSs.

Overall, low OT enhances expression of hypoxia-associated genes and inflammatory markers in IL-1β-magCSs with the involvement of NFkB. PEMF modulates the response of magCSs, previously conditioned to hypoxia and to inflammatory triggers, favouring expression of anti-inflammatory genes and proteins, supporting PEMF impact in pro-regenerative tendon strategies.

Acknowledgements: ERC CoG MagTendon(No.772817), FCT under the Scientific Employment Stimulus-2020.01157.CEECIND. Thanks to Hospital da Prelada for providing tendon tissue samples (Portugal), and TERM

RES Hub (Norte-01-0145-FEDER-022190).


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 29 - 29
2 Jan 2024
Klatte-Schulz F Gehlen T Bormann N Tsitsilonis S Manegold S Schmock A Melzer J Schmidt-Bleek K Geißler S Duda G Sawitzki B Wildemann B
Full Access

Early identification of patients at risk for impaired tendon healing and corresponding novel therapeutic approaches are urgent medical needs. This study aimed to clarify the role of CD3+ T-cells during acute Achilles tendon (AT) healing. Blood and hematoma aspirate were taken from 26 patients during AT reconstruction, and additional blood samples were obtained during clinical follow-up at 6, 26 and 52 weeks after surgery. T-cell subsets were analyzed by flow cytometry using CD3, CD4, CD8, CD11a, CD57 and CD28 antibodies. Clinical follow-up included functional tests, MRI assessments, and subjective questionnaires. In vitro, the functional behavior of patient-derived tenocytes was investigated in co-cultures with autologous unpolarized CD4+ or CD8+ T-cells, or IFNy-polarized CD8+ or IL17-polarized CD4+ Tcells (n=5-6). This included alterations in gene expression (qPCR), MMP secretion (ELISA), migration rate (scratch wound healing assay) or contractility (collagen gels). Analysis revealed that elevated CD4+ T-cell levels and reduced CD8+ T-cell levels (increased CD4/CD8 ratio) in hematoma aspirate and pre-operative blood were associated with inferior clinical outcomes regarding pain and function at 26 and 52 weeks. Increased levels of CD8+ -memory T-cell subpopulations in blood 6 weeks after surgery were associated with less tendon elongation. In vitro, tenocytes showed increased MMP1/2/3 levels and collagen III/I ratio in co-culture with unpolarized and/or IL17-polarized CD4+ T-cells compared to unpolarized CD8+ T-cells. This coincided with increased IL17 receptor expression in tenocytes co-cultured with CD4+ T-cells. Exposure of tenocytes to IL17-polarized CD4+ T-cells decreased their migration rate and increased their matrix contractility, especially compared to IFNy-polarized CD8+ T-cells. The CD4+ /CD8+ T-cell ratio could serve as prognostic marker for early identification of patients with impaired AT healing potential. Local reduction of CD4+ T-cell levels or their IL17 secretion represent a potential therapeutic approach to improve AT healing and to prevent weakening of the tendon ECM.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 76 - 76
2 Jan 2024
Zamboulis D Ali F Thorpe C
Full Access

Energy storing tendons such as the human Achilles and equine superficial digital flexor tendon (SDFT) are prone to age-related injury. Tendons have poor healing capacity and a lack of effective treatments can lead to ongoing pain, reduced function and re-injury. It is therefore important to identify the mechanisms underpinning age-related tendinous changes in order to develop more effective treatments. Our recent single cell sequencing data has shown that tendon cell populations have extensive heterogeneity and cells housed in the tendon interfascicular matrix (IFM) are preferentially affected by ageing. There is, however, a lack of established surface markers for cell populations in tendon, limiting the capacity to isolate distinct cell populations and study their contribution to age-related tendon degeneration. Here, we investigate the presence of the cell surface proteins MET proto-oncogene (MET), integrin subunit alpha 10 (ITGA10), fibroblast activation protein alpha (FAP) and platelet derived growth factor receptor alpha (PDGFRA) in the equine SDFT cell populations and their co-localisation with known markers.

Using Western blot we validated the specificity of selected antibodies in equine tissue before performing immunohistochemistry to establish the location of the respective proteins in the SDFT. We subsequently used double labelling immunofluorescence with the established mural cell marker desmin (DES) to distinguish between tenocyte and mural cell populations.

In situ, MET, ITGA10, and FAP presence was found in cells throughout the tendon whereas PDGFRA was present in cells within the IFM. Double labelling immunofluorescence with the mural cell marker DES showed lack of co-localisation between PDGFRA and DES suggesting PDGFRA is labelling an IFM cell population distinct from those associated with blood vessels.

PDGFRA is a promising target for the specific cell sorting of IFM-localised tenocytes, enabling their isolation and subsequent characterisation.

Acknowledgments: The authors acknowledge the Biotechnology and Biological Sciences Research Council (BB/W007282/1) for funding this work.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 77 - 77
2 Jan 2024
Gueorguiev B Varga P
Full Access

Intramedullary nails (IMNs) are the current gold standard for treatment of long bone diaphyseal and selected metaphyseal fractures. Their design has undergone many revisions to improve fixation techniques, conform to the bone shape with appropriate anatomic fit, reduce operative time and radiation exposure, and extend the indication of the same implant for treatment of different fracture types with minimal soft tissue irritation.

The IMNs are made or either titanium alloy or stainless steel and work as load-sharing internal splints along the long bone, usually accommodating locking elements – screws and blades, often featuring angular stability and offering different configurations for multiplanar fixation – to secure secondary fracture healing with callus formation in a relative-stability environment. Bone cement augmentation of the locking elements can modulate the construct stiffness, increase the surface area at the bone-implant interface, and prevent cut-through of the locking elements.

The functional requirements of IMNs are related to maintaining fracture reduction in terms of length, alignment and rotation to enhance fracture healing. The load distribution during patient's activities is along the entire bone-nail interface, with nail length and anatomic fit being important factors to avoid stress risers.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 78 - 78
2 Jan 2024
Ponniah H Edwards T Lex J Davidson R Al-Zubaidy M Afzal I Field R Liddle A Cobb J Logishetty K
Full Access

Anterior approach total hip arthroplasty (AA-THA) has a steep learning curve, with higher complication rates in initial cases. Proper surgical case selection during the learning curve can reduce early risk. This study aims to identify patient and radiographic factors associated with AA-THA difficulty using Machine Learning (ML).

Consecutive primary AA-THA patients from two centres, operated by two expert surgeons, were enrolled (excluding patients with prior hip surgery and first 100 cases per surgeon). K- means prototype clustering – an unsupervised ML algorithm – was used with two variables - operative duration and surgical complications within 6 weeks - to cluster operations into difficult or standard groups.

Radiographic measurements (neck shaft angle, offset, LCEA, inter-teardrop distance, Tonnis grade) were measured by two independent observers. These factors, alongside patient factors (BMI, age, sex, laterality) were employed in a multivariate logistic regression analysis and used for k-means clustering. Significant continuous variables were investigated for predictive accuracy using Receiver Operator Characteristics (ROC).

Out of 328 THAs analyzed, 130 (40%) were classified as difficult and 198 (60%) as standard. Difficult group had a mean operative time of 106mins (range 99–116) with 2 complications, while standard group had a mean operative time of 77mins (range 69–86) with 0 complications. Decreasing inter-teardrop distance (odds ratio [OR] 0.97, 95% confidence interval [CI] 0.95–0.99, p = 0.03) and right-sided operations (OR 1.73, 95% CI 1.10–2.72, p = 0.02) were associated with operative difficulty. However, ROC analysis showed poor predictive accuracy for these factors alone, with area under the curve of 0.56. Inter-observer reliability was reported as excellent (ICC >0.7).

Right-sided hips (for right-hand dominant surgeons) and decreasing inter-teardrop distance were associated with case difficulty in AA-THA. These data could guide case selection during the learning phase. A larger dataset with more complications may reveal further factors.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 79 - 79
2 Jan 2024
Rasouligandomani M Chemorion F Bisotti M Noailly J Ballester MG
Full Access

Adult Spine Deformity (ASD) is a degenerative condition of the adult spine leading to altered spine curvatures and mechanical balance. Computational approaches, like Finite Element (FE) Models have been proposed to explore the etiology or the treatment of ASD, through biomechanical simulations. However, while the personalization of the models is a cornerstone, personalized FE models are cumbersome to generate. To cover this need, we share a virtual cohort of 16807 thoracolumbar spine FE models with different spine morphologies, presented in an online user-interface platform (SpineView). To generate these models, EOS images are used, and 3D surface spine models are reconstructed. Then, a Statistical Shape Model (SSM), is built, to further adapt a FE structured mesh template for both the bone and the soft tissues of the spine, through mesh morphing. Eventually, the SSM deformation fields allow the personalization of the mean structured FE model, leading to generate FE meshes of thoracolumbar spines with different morphologies. Models can be selectively viewed and downloaded through SpineView, according to personalized user requests of specific morphologies characterized by the geometrical parameters: Pelvic Incidence; Pelvic Tilt; Sacral Slope; Lumbar Lordosis; Global Tilt; Cobb Angle; and GAP score. Data quality is assessed using visual aids, correlation analyses, heatmaps, network graphs, Anova and t-tests, and kernel density plots to compare spinopelvic parameter distributions and identify similarities and differences. Mesh quality and ranges of motion have been assessed to evaluate the quality of the FE models. This functional repository is unique to generate virtual patient cohorts in ASD.

Acknowledgements: European Commission (MSCA-TN-ETN-2020-Disc4All-955735, ERC-2021-CoG-O-Health-101044828)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 35 - 35
2 Jan 2024
Schräder P Montoya A Labude-Weber N Eschweiler J Neuss S Fischer H
Full Access

While high-performance ceramics like alumina and zirconia exhibit excellent wear resistance, they provide poor osseointegration capacity. As osseointegration is crucial for non-cemented joint prostheses, new techniques have been successfully developed for biofunctionalizing high-performance ceramic surfaces. Stable cell adhesion can be achieved by covalently bound specific peptides. In this study we investigate the effect of sterilization processes on organo-chemically functionalized surfaces.

To enhance the performance of alumina-toughened zirconia ceramics (ATZ), a 3-aminopropyldiisopropylethoxysilane (APDS) monolayer was applied and coupled with cyclo-RGD peptides (cRGD) by using bifunctional crosslinker bis(sulfosuccinimidyl)suberat (BS³). The samples were sterilized using e-beam or gamma-sterilization at 25 kGy, either before or after biofunctionalization with cRGD. Functionalization stability was investigated by contact angle measurements. The functionality of cRGD after sterilization was demonstrated using proliferation tests and cytotoxicity assays. Immunofluorescence staining (pFAK, Actin, DAPI) was conducted to evaluate the adhesion potential between the samples and human mesenchymal stem cells (hMSCs).

Functionalized samples before and after sterilization showed no significant difference regarding their contact angles. A proliferation test demonstrated that the cells on functionalized samples proliferate significantly more than on untreated samples before and after sterilization. hMSCs showed a significant higher proliferation on gamma sterilized samples compared to all other groups after 14 days. It was confirmed that the samples did not exhibit cytotoxic behavior before or after sterilization. Fluorescence microscopy demonstrated that both, cells on sterilized and on non-sterilized samples, expressed high levels of pFAK-Y397.

The investigated functionalization enables improved adhesion and proliferation of hMSCs and is stable against the investigated sterilization processes. This is of importance as the option of having a sterile product enables the start of the translation of this biofunctional coating towards preclinical and subsequently first-in-man applications.

Acknowledgments: We acknowledge the financial support of the Federal Ministry of Education and Research, BMBF (13GW0452A-C).


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 82 - 82
2 Jan 2024
Özer Y Karaduman D Karanfil Y Çiftçi E Balci C Doğu B Halil M Cankurtaran M Korkusuz F
Full Access

Osteoarthritis (OA) of the knee joint is a complex peripheral joint disorder with multiple risk factors. We aimed to examine the relationship between the grade of knee OA and anterior thigh length (ATL).

A total of 64 geriatric patients who had no total hip or knee replacement with a BMI of ≥30 were evaluated. Patients' OA severity was determined by two independent experts from bilateral standing knee radiographs according to the Kellgren-Lawrence (KL) grade. Joint cartilage structure was assessed using ultrasonography (US). The ATL, the gastrocnemius medialis (GC), the rectus femoris (RF) and the rectus abdominis (RA) skeletal muscle thicknesses as well as the RF cross-sectional area (CSA) were measured with US. Sarcopenia was diagnosed using the handgrip strength (HGS), 5× sit-to-stand test (5xSST) and bioelectrical impedance analysis.

The median (IQR) age of participants was 72 (65–88) years. Seventy-one per cent of the patients (n=46) were female. They were divided into the sarcopenic obese (31.3 %) and the non-sarcopenic obese (68.8%) groups. KL grade of all patients correlated negatively with the ATL (mm) and the thickness of GC (mm) (r= -0,517, p<0.001 and r= -0.456, p<0.001, respectively). In the sarcopenic obese and the non-sarcopenic obese groups, KL grade of the all patients was negatively correlated with ATL (mm) and thickness of GC (mm) (r= -0,986, p<0.001; r= -0.456, p=0.05 and r= -0,812, p=0.002; r= −0,427, p=0.006). KL grade negatively correlated with the RF thickness in the sarcopenic obese group (r= -0,928, p=0.008).

In conclusion, OA risk may decrease as the lower extremity skeletal muscle mass increases.

Acknowledgments: Feza Korkusuz MD is a member of the Turkish Academy of Sciences (TÜBA).