header advert
Results 1 - 10 of 10
Results per page:
Bone & Joint Open
Vol. 4, Issue 6 | Pages 432 - 441
5 Jun 2023
Kahlenberg CA Berube EE Xiang W Manzi JE Jahandar H Chalmers BP Cross MB Mayman DJ Wright TM Westrich GH Imhauser CW Sculco PK

Aims

Mid-level constraint designs for total knee arthroplasty (TKA) are intended to reduce coronal plane laxity. Our aims were to compare kinematics and ligament forces of the Zimmer Biomet Persona posterior-stabilized (PS) and mid-level designs in the coronal, sagittal, and axial planes under loads simulating clinical exams of the knee in a cadaver model.

Methods

We performed TKA on eight cadaveric knees and loaded them using a robotic manipulator. We tested both PS and mid-level designs under loads simulating clinical exams via applied varus and valgus moments, internal-external (IE) rotation moments, and anteroposterior forces at 0°, 30°, and 90° of flexion. We measured the resulting tibiofemoral angulations and translations. We also quantified the forces carried by the medial and lateral collateral ligaments (MCL/LCL) via serial sectioning of these structures and use of the principle of superposition.


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 126 - 130
1 Jun 2021
Chalmers BP Goytizolo E Mishu MD Westrich GH

Aims

Manipulation under anaesthesia (MUA) remains an effective intervention to address restricted range of motion (ROM) after total knee arthroplasty (TKA) and occurs in 2% to 3% of primary TKAs at our institution. Since there are few data on the outcomes of MUA with different anaesthetic methods, we sought to compare the outcomes of patients undergoing MUA with intravenous (IV) sedation and neuraxial anaesthesia.

Methods

We identified 548 MUAs after primary TKA (136 IV sedation, 412 neuraxial anaesthesia plus IV sedation) from March 2016 to July 2019. The mean age of this cohort was 62 years (35 to 88) with a mean body mass index of 31 kg/m2 (18 to 49). The mean time from primary TKA to MUA was 10.2 weeks (6.2 to 24.3). Pre-MUA ROM was similar between groups; overall mean pre-MUA extension was 4.2° (p = 0.452) and mean pre-MUA flexion was 77° (p = 0.372). We compared orthopaedic complications, visual analogue scale (VAS) pain scores, length of stay (LOS), and immediate and three-month follow-up knee ROM between these groups.


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 87 - 93
1 Jun 2021
Chalmers BP Elmasry SS Kahlenberg CA Mayman DJ Wright TM Westrich GH Imhauser CW Sculco PK Cross MB

Aims

Surgeons commonly resect additional distal femur during primary total knee arthroplasty (TKA) to correct a flexion contracture, which leads to femoral joint line elevation. There is a paucity of data describing the effect of joint line elevation on mid-flexion stability and knee kinematics. Thus, the goal of this study was to quantify the effect of joint line elevation on mid-flexion laxity.

Methods

Six computational knee models with cadaver-specific capsular and collateral ligament properties were implanted with a posterior-stabilized (PS) TKA. A 10° flexion contracture was created in each model to simulate a capsular contracture. Distal femoral resections of + 2 mm and + 4 mm were then simulated for each knee. The knee models were then extended under a standard moment. Subsequently, varus and valgus moments of 10 Nm were applied as the knee was flexed from 0° to 90° at baseline and repeated after each of the two distal resections. Coronal laxity (the sum of varus and valgus angulation with respective maximum moments) was measured throughout flexion.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_9 | Pages 14 - 14
1 Oct 2020
Mayman DJ Elmasry SS Chalmers BP Sculco PK Kahlenberg C Wright TE Westrich GH Imhauser CW Cross MB
Full Access

Introduction

Surgeons commonly resect additional distal femur during primary total knee arthroplasty (TKA) to correct a flexion contracture. However, the effect of joint line proximalization on TKA kinematics is unclear. Thus, our goal was to quantify the effect of additional distal femoral resection on knee extension and mid-flexion laxity.

Methods

Six computational knee models with TKA-specific capsular and collateral ligament properties were implanted with a contemporary posterior-stabilized TKA. A 10° flexion contracture was modeled to simulate a capsular contracture. Distal femoral resections of +2 mm and +4 mm were simulated for each model. The knees were then extended under standardized torque to quantify additional knee extension achieved. Subsequently, varus and valgus torques of ±10 Nm were applied as the knee was flexed from 0° to 90° at the baseline, +2 mm, and +4 mm distal resections. Coronal laxity, defined as the sum of varus and valgus angulation with respective torques, was measured at mid-flexion.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_9 | Pages 13 - 13
1 Oct 2020
Chalmers BP Mishu M Goytizolo E Jules-Elysee K Westrich GH
Full Access

Introduction

Manipulation under anesthesia (MUA) remains the gold standard to address restricted range of motion (ROM) within 3–6 months after primary total knee arthroplasty (TKA). However, there is little data on the outcomes of MUA with different types of anesthesia. We sought to compare the outcomes of patients undergoing MUA with intravenous (IV) sedation and neuraxial anesthesia.

Methods

We identified 548 MUAs after primary TKA (136 IV sedation, 413 neuraxial anesthesia) at a single institution from 2016–2019. Mean age was 62 years and 349 patients (64%) were female. Mean body mass index was 32 kg/m2. The mean time from primary TKA to MUA was 10 weeks. Mean pre-MUA ROM was similar between each group; mean pre-MUA extension was 4.2° (p=0.35) and mean pre-MUA flexion was 77° (p=0.56). Patient demographics were statistically similar between both groups. We compared immediate complications, including fracture, extensor mechanism disruptions, and wound complications, Visual analogue pain scores (VAS), length of stay (LOS), and immediate and 3 month follow-up ROM between these groups.


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 85 - 90
1 Jun 2020
Blevins JL Rao V Chiu Y Lyman S Westrich GH

Aims

The purpose of this investigation was to determine the relationship between height, weight, and sex with implant size in total knee arthroplasty (TKA) using a multivariate linear regression model and a Bayesian model.

Methods

A retrospective review of an institutional registry was performed of primary TKAs performed between January 2005 and December 2016. Patient demographics including patient age, sex, height, weight, and body mass index (BMI) were obtained from registry and medical record review. In total, 8,100 primary TKAs were included. The mean age was 67.3 years (SD 9.5) with a mean BMI of 30.4 kg/m2 (SD 6.3). The TKAs were randomly split into a training cohort (n = 4,022) and a testing cohort (n = 4,078). A multivariate linear regression model was created on the training cohort and then applied to the testing cohort . A Bayesian model was created based on the frequencies of implant sizes in the training cohort. The model was then applied to the testing cohort to determine the accuracy of the model at 1%, 5%, and 10% tolerance of inaccuracy.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_11 | Pages 66 - 66
1 Oct 2019
Blevins JL Rao V Chiu Y Westrich GH
Full Access

Background

Obesity has been shown to be an independent risk factor for aseptic loosening of the tibia and smaller implant size has been correlated with increased risk of failure of tibial components in obese patients [1,2]. Many surgeons have noted that obese patients, especially females, not uncommonly will have small implant sizes. As such, we hypothesized that obesity was not directly correlated with total knee arthroplasty (TKA) implant sizes. The purpose of this study was to determine if increasing body mass index (BMI), height, and/or weight is associated with implant size in primary TKA.

Methods

The institutional registry of a single academic center was reviewed to identify all primary TKAs performed between 2005 and 2016. Those without minimum 2-year follow-up or with incomplete implant data were excluded. The different manufacturer's implant designs were categorized based on anteroposterior and mediolateral dimensions of the femoral and tibial component sizes and cross sectional area was determined. BMI was categorized by the World Health Organization (WHO) obesity scale (Class I: BMI 30 to <35, Class II: BMI 35 to <40, Class III: BMI 40 kg/m2 or greater). Patient demographics including sex, height, weight, and BMI were analyzed to evaluate correlations with implant size using Pearson correlation coefficients.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_12 | Pages 23 - 23
1 Oct 2018
Wright TM Elmasry S Sculco PK Cross MB Westrich GH Imhauser CW Mayman DJ
Full Access

Introduction

Whether anterior referencing (AR) or posterior referencing (PR) are optimal to position and size the femoral component in Total Knee Arthroplasty (TKA) remains controversial. This controversy stems, in part, from a lack of understanding of whether one technique more consistently balances the medial/lateral collateral ligaments (MCL & LCL) in flexion and extension. Therefore, our goal was to compare AR and PR in terms of: (1) maximum MCL and LCL forces in passive flexion, and (2) medial and lateral gaps at full extension and 90‖ of flexion. In addition, we identified geometric landmarks that could help predict the ligament forces during flexion.

Methods

Computational models of six knees were virtually implanted with TKAs based on our previously-developed framework. AR and PR were simulated in each of the six models. A Posterior Stabilized implant was utilized. Standard AR and PR cuts and component positioning were simulated with the femoral component aligned parallel to the transepicondylar axis. In both AR and PR models, the distal femoral cut and the proximal tibial cut were perpendicular to the femoral and tibial mechanical axis, respectively. The amount of posterior bone resected with AR knees ranged from 4.2 to 10.8 mm, and with PR knees ranged from 4.2 to 8 mm. Ligament properties were standardized to reflect a balanced knee at full extension. Passive flexion under 500 N of compression was applied and the MCL and LCL forces were predicted. A new measure, the MCL ratio, that incorporated the femoral insertion of the anterior fiber of MCL relative to the posterior and distal femoral cuts was estimated (Fig. 1). A varus/valgus moment of 6 Nm was applied at full extension and 90‖ of flexion, and the corresponding lateral and medial gaps were measured.


The Bone & Joint Journal
Vol. 95-B, Issue 5 | Pages 629 - 635
1 May 2013
YaDeau JT Goytizolo EA Padgett DE Liu SS Mayman DJ Ranawat AS Rade MC Westrich GH

In a randomised controlled pragmatic trial we investigated whether local infiltration analgesia would result in earlier readiness for discharge from hospital after total knee replacement (TKR) than patient-controlled epidural analgesia (PCEA) plus femoral nerve block. A total of 45 patients with a mean age of 65 years (49 to 81) received a local infiltration with a peri-articular injection of bupivacaine, morphine and methylprednisolone, as well as adjuvant analgesics. In 45 PCEA+femoral nerve blockade patients with a mean age of 67 years (50 to 84), analgesia included a bupivacaine nerve block, bupivacaine/hydromorphone PCEA, and adjuvant analgesics. The mean time until ready for discharge was 3.2 days (1 to 14) in the local infiltration group and 3.2 days (1.8 to 7.0) in the PCEA+femoral nerve blockade group. The mean pain scores for patients receiving local infiltration were higher when walking (p = 0.0084), but there were no statistically significant differences at rest. The mean opioid consumption was higher in those receiving local infiltration.

The choice between these two analgesic pathways should not be made on the basis of time to discharge after surgery. Most secondary outcomes were similar, but PCEA+femoral nerve blockade patients had lower pain scores when walking and during continuous passive movement. If PCEA+femoral nerve blockade is not readily available, local infiltration provides similar length of stay and similar pain scores at rest following TKR.

Cite this article: Bone Joint J 2013;95-B:629–35.


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 6 | Pages 795 - 800
1 Aug 2000
Westrich GH Haas SB Mosca P Peterson M

We performed a meta-analysis of the English literature to assess the efficacy of four common regimes for thromboembolic prophylaxis after total knee arthroplasty: aspirin, warfarin, low-molecular-weight heparin (LMWH) and pneumatic compression. We reviewed 136 articles and abstracts published between January 1980 and December 1997. Papers not using routine venography and a lung scan or angiography to detect deep-venous thrombosis (DVT) and pulmonary emboli (PE) respectively, were excluded. Of the 136 studies, 23 with 6001 patients were selected.

The incidence of DVT was 53% (1701/3214) in the aspirin group, 45% (541/1203) in the warfarin group, 29% (311/1075) in the LMWH group, and 17% (86/509) in the pneumatic compression device group. Intermittent pneumatic compression devices and LMWH were significantly better than warfarin (p < 0.0001) or aspirin (p < 0.0001) in preventing DVT.

The incidence of asymptomatic PE was 11.7% in the aspirin group (222/1901), 8.2% (101/1229) in the warfarin group and 6.3% (24/378) in the pneumatic compression group. No studies with LMWH used routine lung scans. Warfarin and pneumatic compression were significantly better than aspirin in preventing asymptomatic PE (p < 0.05).

The incidence of symptomatic PE was 1.3% (23/1800) in the aspirin group, 0.4% (2/559) in the warfarin group, 0.5% (2/416) in the LMWH group and 0% (0/177) in the pneumatic compression group. No statistically significant difference was noted between the above prophylatic regimes due to the very small incidence of symptomatic PE.

Prophylaxis for thromboembolic disease in TKA may have to include a combination of some of the above regimes to incorporate their advantages.