header advert
Results 1 - 16 of 16
Results per page:
Bone & Joint Open
Vol. 4, Issue 6 | Pages 432 - 441
5 Jun 2023
Kahlenberg CA Berube EE Xiang W Manzi JE Jahandar H Chalmers BP Cross MB Mayman DJ Wright TM Westrich GH Imhauser CW Sculco PK

Aims

Mid-level constraint designs for total knee arthroplasty (TKA) are intended to reduce coronal plane laxity. Our aims were to compare kinematics and ligament forces of the Zimmer Biomet Persona posterior-stabilized (PS) and mid-level designs in the coronal, sagittal, and axial planes under loads simulating clinical exams of the knee in a cadaver model.

Methods

We performed TKA on eight cadaveric knees and loaded them using a robotic manipulator. We tested both PS and mid-level designs under loads simulating clinical exams via applied varus and valgus moments, internal-external (IE) rotation moments, and anteroposterior forces at 0°, 30°, and 90° of flexion. We measured the resulting tibiofemoral angulations and translations. We also quantified the forces carried by the medial and lateral collateral ligaments (MCL/LCL) via serial sectioning of these structures and use of the principle of superposition.


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 126 - 130
1 Jun 2021
Chalmers BP Goytizolo E Mishu MD Westrich GH

Aims

Manipulation under anaesthesia (MUA) remains an effective intervention to address restricted range of motion (ROM) after total knee arthroplasty (TKA) and occurs in 2% to 3% of primary TKAs at our institution. Since there are few data on the outcomes of MUA with different anaesthetic methods, we sought to compare the outcomes of patients undergoing MUA with intravenous (IV) sedation and neuraxial anaesthesia.

Methods

We identified 548 MUAs after primary TKA (136 IV sedation, 412 neuraxial anaesthesia plus IV sedation) from March 2016 to July 2019. The mean age of this cohort was 62 years (35 to 88) with a mean body mass index of 31 kg/m2 (18 to 49). The mean time from primary TKA to MUA was 10.2 weeks (6.2 to 24.3). Pre-MUA ROM was similar between groups; overall mean pre-MUA extension was 4.2° (p = 0.452) and mean pre-MUA flexion was 77° (p = 0.372). We compared orthopaedic complications, visual analogue scale (VAS) pain scores, length of stay (LOS), and immediate and three-month follow-up knee ROM between these groups.


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 87 - 93
1 Jun 2021
Chalmers BP Elmasry SS Kahlenberg CA Mayman DJ Wright TM Westrich GH Imhauser CW Sculco PK Cross MB

Aims

Surgeons commonly resect additional distal femur during primary total knee arthroplasty (TKA) to correct a flexion contracture, which leads to femoral joint line elevation. There is a paucity of data describing the effect of joint line elevation on mid-flexion stability and knee kinematics. Thus, the goal of this study was to quantify the effect of joint line elevation on mid-flexion laxity.

Methods

Six computational knee models with cadaver-specific capsular and collateral ligament properties were implanted with a posterior-stabilized (PS) TKA. A 10° flexion contracture was created in each model to simulate a capsular contracture. Distal femoral resections of + 2 mm and + 4 mm were then simulated for each knee. The knee models were then extended under a standard moment. Subsequently, varus and valgus moments of 10 Nm were applied as the knee was flexed from 0° to 90° at baseline and repeated after each of the two distal resections. Coronal laxity (the sum of varus and valgus angulation with respective maximum moments) was measured throughout flexion.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_9 | Pages 14 - 14
1 Oct 2020
Mayman DJ Elmasry SS Chalmers BP Sculco PK Kahlenberg C Wright TE Westrich GH Imhauser CW Cross MB
Full Access

Introduction

Surgeons commonly resect additional distal femur during primary total knee arthroplasty (TKA) to correct a flexion contracture. However, the effect of joint line proximalization on TKA kinematics is unclear. Thus, our goal was to quantify the effect of additional distal femoral resection on knee extension and mid-flexion laxity.

Methods

Six computational knee models with TKA-specific capsular and collateral ligament properties were implanted with a contemporary posterior-stabilized TKA. A 10° flexion contracture was modeled to simulate a capsular contracture. Distal femoral resections of +2 mm and +4 mm were simulated for each model. The knees were then extended under standardized torque to quantify additional knee extension achieved. Subsequently, varus and valgus torques of ±10 Nm were applied as the knee was flexed from 0° to 90° at the baseline, +2 mm, and +4 mm distal resections. Coronal laxity, defined as the sum of varus and valgus angulation with respective torques, was measured at mid-flexion.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_9 | Pages 13 - 13
1 Oct 2020
Chalmers BP Mishu M Goytizolo E Jules-Elysee K Westrich GH
Full Access

Introduction

Manipulation under anesthesia (MUA) remains the gold standard to address restricted range of motion (ROM) within 3–6 months after primary total knee arthroplasty (TKA). However, there is little data on the outcomes of MUA with different types of anesthesia. We sought to compare the outcomes of patients undergoing MUA with intravenous (IV) sedation and neuraxial anesthesia.

Methods

We identified 548 MUAs after primary TKA (136 IV sedation, 413 neuraxial anesthesia) at a single institution from 2016–2019. Mean age was 62 years and 349 patients (64%) were female. Mean body mass index was 32 kg/m2. The mean time from primary TKA to MUA was 10 weeks. Mean pre-MUA ROM was similar between each group; mean pre-MUA extension was 4.2° (p=0.35) and mean pre-MUA flexion was 77° (p=0.56). Patient demographics were statistically similar between both groups. We compared immediate complications, including fracture, extensor mechanism disruptions, and wound complications, Visual analogue pain scores (VAS), length of stay (LOS), and immediate and 3 month follow-up ROM between these groups.


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 85 - 90
1 Jun 2020
Blevins JL Rao V Chiu Y Lyman S Westrich GH

Aims

The purpose of this investigation was to determine the relationship between height, weight, and sex with implant size in total knee arthroplasty (TKA) using a multivariate linear regression model and a Bayesian model.

Methods

A retrospective review of an institutional registry was performed of primary TKAs performed between January 2005 and December 2016. Patient demographics including patient age, sex, height, weight, and body mass index (BMI) were obtained from registry and medical record review. In total, 8,100 primary TKAs were included. The mean age was 67.3 years (SD 9.5) with a mean BMI of 30.4 kg/m2 (SD 6.3). The TKAs were randomly split into a training cohort (n = 4,022) and a testing cohort (n = 4,078). A multivariate linear regression model was created on the training cohort and then applied to the testing cohort . A Bayesian model was created based on the frequencies of implant sizes in the training cohort. The model was then applied to the testing cohort to determine the accuracy of the model at 1%, 5%, and 10% tolerance of inaccuracy.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_12 | Pages 6 - 6
1 Oct 2019
Nessler JM Malkani AJ Sachdeva S Nessler JP Westrich GH Harwin SF Mayman DJ Jerabek SA
Full Access

Introduction

Patients undergoing primary total hip arthroplasty (THA) with prior lumbar spine fusion (LSF) are at high risk for instability with reported incidence of dislocation as high as 8.3%. The use of dual mobility cups in patients undergoing revision THA, another high risk group, has demonstrated decreased incidence of instability. Purpose of this study was to evaluate the risk of instability in patients undergoing primary THA with a history of prior LSF using dual mobility cups.

Methods

This was a multi-center retrospective study with 93 patients undergoing primary THA using a dual mobility cup with prior history of instrumented LSF. The primary outcome investigated was instability. Secondary variables investigated included number of levels fused, approach, length of stay, and other complications. The minimum follow-up time was 1 year since the majority of dislocations occur during first year following the primary THA.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_11 | Pages 66 - 66
1 Oct 2019
Blevins JL Rao V Chiu Y Westrich GH
Full Access

Background

Obesity has been shown to be an independent risk factor for aseptic loosening of the tibia and smaller implant size has been correlated with increased risk of failure of tibial components in obese patients [1,2]. Many surgeons have noted that obese patients, especially females, not uncommonly will have small implant sizes. As such, we hypothesized that obesity was not directly correlated with total knee arthroplasty (TKA) implant sizes. The purpose of this study was to determine if increasing body mass index (BMI), height, and/or weight is associated with implant size in primary TKA.

Methods

The institutional registry of a single academic center was reviewed to identify all primary TKAs performed between 2005 and 2016. Those without minimum 2-year follow-up or with incomplete implant data were excluded. The different manufacturer's implant designs were categorized based on anteroposterior and mediolateral dimensions of the femoral and tibial component sizes and cross sectional area was determined. BMI was categorized by the World Health Organization (WHO) obesity scale (Class I: BMI 30 to <35, Class II: BMI 35 to <40, Class III: BMI 40 kg/m2 or greater). Patient demographics including sex, height, weight, and BMI were analyzed to evaluate correlations with implant size using Pearson correlation coefficients.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 103 - 103
1 Apr 2019
Westrich GH Swanson K Cruz A Kelly C Levine A
Full Access

INTRODUCTION

Combining novel diverse population-based software with a clinically-demonstrated implant design is redefining total hip arthroplasty. This contemporary stem design utilized a large patient database of high-resolution CT bone scans in order to determine the appropriate femoral head centers and neck lengths to assist in the recreation of natural head offset, designed to restore biomechanics. There are limited studies evaluating how radiographic software utilizing reference template bone can reconstruct patient composition in a model. The purpose of this study was to examine whether the application of a modern analytics system utilizing 3D modeling technology in the development of a primary stem was successful in restoring patient biomechanics, specifically with regards to femoral offset (FO) and leg length discrepancy (LLD).

METHODS

Two hundred fifty six patients in a non-randomized, post-market multicenter study across 7 sites received a primary cementless fit and fill stem. Full anteroposterior pelvis and Lauenstein cross-table lateral x-rays were collected preoperatively and at 6-weeks postoperative. Radiographic parameters including contralateral and operative FO and LLD were measured. Preoperative and postoperative FO and LLD of the operative hip were compared to the normal, native hip. Clinical outcomes including the Harris Hip Score (HHS), Lower Extremity Activity Scale (LEAS), Short Form 12 (SF12), and EuroQol 5D Score (EQ-5D) were collected preoperatively, 6 weeks postoperatively, and at 1 year.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 130 - 130
1 Apr 2019
Hampp E Scholl L Westrich GH Mont M
Full Access

Introduction

A careful evaluation of new technologies such as robotic-arm assisted total knee arthroplasty (RATKA) is important to understand the reduction in variability among users. While there is data reviewing the use of RATKA, the data is typically presented for experienced TKA surgeons. Therefore, the purpose of this cadaveric study was to compare the variability for several surgical factors between RATKA and manual TKA (MTKA) for surgeons undergoing orthopaedic fellowship training.

Methods

Two operating surgeons undergoing orthopaedic fellowship training, each prepared six cadaveric legs for cruciate retaining TKA, with MTKA on one side (3 knees) and RATKA on the other (3 knees). These surgeons were instructed to execute a full RATKA or MTKA procedure through trialing and achieve a balanced knee. The number of recuts and final poly thickness was intra-operatively recorded. After completion of bone cuts, the operating surgeons were asked if they would perform a cementless knee based on their perception of final bone cut quality as well as rank the amount of mental effort exerted for required surgical tasks. Two additional fellowship trained orthopaedic assessment surgeons, blinded to the method of preparation, each post-operatively graded the resultant bone cuts of the tibia and femur according to the perceived percentage of cut planarity (grade 1, <25%; grade 2, 25–50%; grade 3, 51–75%; and grade 4, >76%). The grade for medial and lateral tibial bone cuts was averaged and a Wilcoxon signed rank test was used for statistical comparisons. Assessment surgeons also determined whether the knee was balanced in flexion and extension. A balanced knee was defined as relatively equal medial and lateral gaps under relatively equal applied load.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_12 | Pages 23 - 23
1 Oct 2018
Wright TM Elmasry S Sculco PK Cross MB Westrich GH Imhauser CW Mayman DJ
Full Access

Introduction

Whether anterior referencing (AR) or posterior referencing (PR) are optimal to position and size the femoral component in Total Knee Arthroplasty (TKA) remains controversial. This controversy stems, in part, from a lack of understanding of whether one technique more consistently balances the medial/lateral collateral ligaments (MCL & LCL) in flexion and extension. Therefore, our goal was to compare AR and PR in terms of: (1) maximum MCL and LCL forces in passive flexion, and (2) medial and lateral gaps at full extension and 90‖ of flexion. In addition, we identified geometric landmarks that could help predict the ligament forces during flexion.

Methods

Computational models of six knees were virtually implanted with TKAs based on our previously-developed framework. AR and PR were simulated in each of the six models. A Posterior Stabilized implant was utilized. Standard AR and PR cuts and component positioning were simulated with the femoral component aligned parallel to the transepicondylar axis. In both AR and PR models, the distal femoral cut and the proximal tibial cut were perpendicular to the femoral and tibial mechanical axis, respectively. The amount of posterior bone resected with AR knees ranged from 4.2 to 10.8 mm, and with PR knees ranged from 4.2 to 8 mm. Ligament properties were standardized to reflect a balanced knee at full extension. Passive flexion under 500 N of compression was applied and the MCL and LCL forces were predicted. A new measure, the MCL ratio, that incorporated the femoral insertion of the anterior fiber of MCL relative to the posterior and distal femoral cuts was estimated (Fig. 1). A varus/valgus moment of 6 Nm was applied at full extension and 90‖ of flexion, and the corresponding lateral and medial gaps were measured.


The Bone & Joint Journal
Vol. 95-B, Issue 5 | Pages 629 - 635
1 May 2013
YaDeau JT Goytizolo EA Padgett DE Liu SS Mayman DJ Ranawat AS Rade MC Westrich GH

In a randomised controlled pragmatic trial we investigated whether local infiltration analgesia would result in earlier readiness for discharge from hospital after total knee replacement (TKR) than patient-controlled epidural analgesia (PCEA) plus femoral nerve block. A total of 45 patients with a mean age of 65 years (49 to 81) received a local infiltration with a peri-articular injection of bupivacaine, morphine and methylprednisolone, as well as adjuvant analgesics. In 45 PCEA+femoral nerve blockade patients with a mean age of 67 years (50 to 84), analgesia included a bupivacaine nerve block, bupivacaine/hydromorphone PCEA, and adjuvant analgesics. The mean time until ready for discharge was 3.2 days (1 to 14) in the local infiltration group and 3.2 days (1.8 to 7.0) in the PCEA+femoral nerve blockade group. The mean pain scores for patients receiving local infiltration were higher when walking (p = 0.0084), but there were no statistically significant differences at rest. The mean opioid consumption was higher in those receiving local infiltration.

The choice between these two analgesic pathways should not be made on the basis of time to discharge after surgery. Most secondary outcomes were similar, but PCEA+femoral nerve blockade patients had lower pain scores when walking and during continuous passive movement. If PCEA+femoral nerve blockade is not readily available, local infiltration provides similar length of stay and similar pain scores at rest following TKR.

Cite this article: Bone Joint J 2013;95-B:629–35.


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 5 | Pages 676 - 679
1 Jul 2001
Bae H Westrich GH Sculco TP Salvati EA Reich LM

We have assessed the effect of the donation of autologous blood and the preoperative level of haemoglobin on the prevalence of postoperative thromboembolism in 2043 patients who had a total hip arthroplasty. The level of haemoglobin was determined seven to ten days before surgery and all patients had venography of the operated leg on the fifth postoperative day. The number of patients who had donated autologous blood (1037) was similar to that who had not (1006).

A significant decrease in the incidence of deep-vein thrombosis (DVT) was noted in those who had donated blood preoperatively (9.0%) compared with those who had not (13.5%) (p = 0.003). For all patients, the lower the preoperative level of haemoglobin the less likely it was that a postoperative DVT would develop.

Of those who had donated blood, 0.3% developed a postoperative pulmonary embolism compared with 0.7% in those who had not, but this difference was not statistically significant. No significant difference was found in the requirements for transfusion between the two groups.


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 3 | Pages 460 - 463
1 Apr 2001
WESTRICH GH


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 6 | Pages 795 - 800
1 Aug 2000
Westrich GH Haas SB Mosca P Peterson M

We performed a meta-analysis of the English literature to assess the efficacy of four common regimes for thromboembolic prophylaxis after total knee arthroplasty: aspirin, warfarin, low-molecular-weight heparin (LMWH) and pneumatic compression. We reviewed 136 articles and abstracts published between January 1980 and December 1997. Papers not using routine venography and a lung scan or angiography to detect deep-venous thrombosis (DVT) and pulmonary emboli (PE) respectively, were excluded. Of the 136 studies, 23 with 6001 patients were selected.

The incidence of DVT was 53% (1701/3214) in the aspirin group, 45% (541/1203) in the warfarin group, 29% (311/1075) in the LMWH group, and 17% (86/509) in the pneumatic compression device group. Intermittent pneumatic compression devices and LMWH were significantly better than warfarin (p < 0.0001) or aspirin (p < 0.0001) in preventing DVT.

The incidence of asymptomatic PE was 11.7% in the aspirin group (222/1901), 8.2% (101/1229) in the warfarin group and 6.3% (24/378) in the pneumatic compression group. No studies with LMWH used routine lung scans. Warfarin and pneumatic compression were significantly better than aspirin in preventing asymptomatic PE (p < 0.05).

The incidence of symptomatic PE was 1.3% (23/1800) in the aspirin group, 0.4% (2/559) in the warfarin group, 0.5% (2/416) in the LMWH group and 0% (0/177) in the pneumatic compression group. No statistically significant difference was noted between the above prophylatic regimes due to the very small incidence of symptomatic PE.

Prophylaxis for thromboembolic disease in TKA may have to include a combination of some of the above regimes to incorporate their advantages.


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 6 | Pages 1057 - 1066
1 Nov 1998
Westrich GH Specht LM Sharrock NE Windsor RE Sculco TP Haas SB Trombley JF Peterson M

We performed a crossover study to evaluate the haemodynamic effect of active dorsal to plantar flexion and seven pneumatic compression devices in ten patients who had a total knee arthroplasty. Using the Acuson 128XP/10 duplex ultrasound unit with a 5MHz linear array probe, we assessed the augmentation of peak venous velocity and venous volume above and below the junction of the greater saphenous and common femoral veins in order to study both the deep and superficial venous systems.

The pneumatic compression devices evaluated included two foot pumps (A-V Impulse System and PlexiPulse Foot), a foot-calf pump (PlexiPulse Foot-Calf), a calf pump (VenaFlow System) and three calf-thigh pumps (SCD System, Flowtron DVT and Jobst Athrombic Pump). The devices differed in a number of ways, including the length and location of the sleeve and bladder, the frequency and duration of activation, the rate of pressure rise, and the maximum pressure achieved. A randomisation table was used to determine the order of the test conditions for each patient.

The enhancement of peak venous velocity occurred primarily in the deep venous system below the level of the saphenofemoral junction. The increases in peak venous velocity were as follows: active dorsal to plantar flexion 175%; foot pumps, A-V Impulse System 29% and PlexiPulse 65%; foot-calf pump, PlexiPulse, 221%; calf pump, VenaFlow, 302% and calf-thigh pumps, Flowtron DVT 87%, SCD System 116% and Jobst Athrombic Pump 263%.

All the devices augmented venous volume, the greatest effect being seen with those incorporating calf compression. The increases in ml/min were found in the deep venous system as follows: foot pumps, A-V Impulse System 9.6 and PlexiPulse Foot 16.7; foot-calf pump, PlexiPulse, 38.1; calf pump, VenaFlow, 26.2; calf-thigh pumps, Flowtron DVT 61.5, SCD System 34.7 and Jobst Athrombic Pump 82.3. Active dorsal to plantar flexion generated 8.5 ml for a single calf contraction.