header advert
Results 1 - 20 of 21
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 57 - 57
11 Apr 2023
Etchels L Wang L Thompson J Wilcox R Jones A
Full Access

Variations in component positioning of total hip replacements can lead to edge loading of the liner, and potentially affect device longevity. These effects are evaluated using ISO 14242:4 edge loading test results in a dynamic system. Mediolateral translation of one of the components during testing is caused by a compressed spring, and therefore the kinematics will depend on the spring stiffness and damping coefficient, and the mass of the translating component and fixture. This study aims to describe the sensitivity of the liner plastic strain to these variables, to better understand how tests using different simulator designs might produce different amounts of liner rim deformation.

A dynamic explicit deformable finite element model with 36mm Pinnacle metal-on-polyethylene bearing geometry (DePuy Synthes, Leeds, UK) was used with material properties for conventional UHMWPE. Setup was 65° clinical inclination, 4mm mismatch, 70N swing phase load, and 100N/mm spring. Fixture mass was varied from 0.5-5kg, spring damping coefficient was varied from 0-2Ns/mm. They were changed independently, and in combination.

Maximum separation values were relatively insensitive to changes in the mass, damping coefficient, or both. The sensitivity of peak plastic strain, to this range of inputs, was similar to changing the swing phase load from 70N to approximately 150N – 200N. Increasing the fixture mass and/or damping coefficient increased the peak plastic strain, with values from 0.15-0.19.

Liner plastic deformation was sensitive to the spring damping and fixture mass, which may explain some of the differences in fatigue and deformation results in UHMWPE liners tested on different machines or with modified fixtures. These values should be described when reporting the results of ISO14242:4 testing.

Acknowledgements

Funded by EPSRC grant EP/N02480X/1; CAD supplied by DePuy Synthes.


Bone & Joint Research
Vol. 12, Issue 3 | Pages 219 - 230
10 Mar 2023
Wang L Li S Xiao H Zhang T Liu Y Hu J Xu D Lu H

Aims

It has been established that mechanical stimulation benefits tendon-bone (T-B) healing, and macrophage phenotype can be regulated by mechanical cues; moreover, the interaction between macrophages and mesenchymal stem cells (MSCs) plays a fundamental role in tissue repair. This study aimed to investigate the role of macrophage-mediated MSC chondrogenesis in load-induced T-B healing in depth.

Methods

C57BL/6 mice rotator cuff (RC) repair model was established to explore the effects of mechanical stimulation on macrophage polarization, transforming growth factor (TGF)-β1 generation, and MSC chondrogenesis within T-B enthesis by immunofluorescence and enzyme-linked immunosorbent assay (ELISA). Macrophage depletion was performed by clodronate liposomes, and T-B healing quality was evaluated by histology and biomechanics. In vitro, bone marrow-derived macrophages (BMDMs) were stretched with CELLOAD-300 load system and macrophage polarization was identified by flow cytometry and quantitative real-time polymerase chain reaction (qRT-PCR). MSC chondrogenic differentiation was measured by histochemical analysis and qRT-PCR. ELISA and qRT-PCR were performed to screen the candidate molecules that mediated the pro-chondrogenic function of mechanical stimulated BMDMs.


Bone & Joint Research
Vol. 11, Issue 2 | Pages 61 - 72
15 Feb 2022
Luobu Z Wang L Jiang D Liao T Luobu C Qunpei L

Aims

Circular RNA (circRNA) S-phase cyclin A-associated protein in the endoplasmic reticulum (ER) (circSCAPER, ID: hsa_circ_0104595) has been found to be highly expressed in osteoarthritis (OA) patients and has been associated with the severity of OA. Hence, the role and mechanisms underlying circSCAPER in OA were investigated in this study.

Methods

In vitro cultured human normal chondrocyte C28/I2 was exposed to interleukin (IL)-1β to mimic the microenvironment of OA. The expression of circSCAPER, microRNA (miR)-140-3p, and enhancer of zeste homolog 2 (EZH2) was detected using quantitative real-time polymerase chain reaction and Western blot assays. The extracellular matrix (ECM) degradation, proliferation, and apoptosis of chondrocytes were determined using Western blot, cell counting kit-8, and flow cytometry assays. Targeted relationships were predicted by bioinformatic analysis and verified using dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. The levels of phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway-related protein were detected using Western blot assays.


Bone & Joint Research
Vol. 10, Issue 10 | Pages 677 - 689
1 Oct 2021
Tamaddon M Blunn G Xu W Alemán Domínguez ME Monzón M Donaldson J Skinner J Arnett TR Wang L Liu C

Aims

Minimally manipulated cells, such as autologous bone marrow concentrates (BMC), have been investigated in orthopaedics as both a primary therapeutic and augmentation to existing restoration procedures. However, the efficacy of BMC in combination with tissue engineering is still unclear. In this study, we aimed to determine whether the addition of BMC to an osteochondral scaffold is safe and can improve the repair of large osteochondral defects when compared to the scaffold alone.

Methods

The ovine femoral condyle model was used. Bone marrow was aspirated, concentrated, and used intraoperatively with a collagen/hydroxyapatite scaffold to fill the osteochondral defects (n = 6). Tissue regeneration was then assessed versus the scaffold-only group (n = 6). Histological staining of cartilage with alcian blue and safranin-O, changes in chondrogenic gene expression, microCT, peripheral quantitative CT (pQCT), and force-plate gait analyses were performed. Lymph nodes and blood were analyzed for safety.


Bone & Joint Research
Vol. 10, Issue 4 | Pages 259 - 268
1 Apr 2021
Lou A Wang L Lai W Zhu D Wu W Wang Z Cai Z Yang M

Aims

Rheumatoid arthritis (RA), which mainly results from fibroblast-like synoviocyte (FLS) dysfunction, is related to oxidative stress. Advanced oxidation protein products (AOPPs), which are proinflammatory mediators and a novel biomarker of oxidative stress, have been observed to accumulate significantly in the serum of RA patients. Here, we present the first investigation of the effects of AOPPs on RA-FLSs and the signalling pathway involved in AOPP-induced inflammatory responses and invasive behaviour.

Methods

We used different concentrations of AOPPs (50 to 200 µg/ml) to treat RA-FLSs. Cell migration and invasion and the expression levels of tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), matrix metalloproteinase-3 (MMP-3), and MMP-13 were investigated. Western blot and immunofluorescence were used to analyze nuclear factor-κB (NF-κB) activation.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 38 - 38
1 Mar 2021
Vasiljeva K Lunn D Chapman G Redmond A Wang L Thompson J Williams S Wilcox R Jones A
Full Access

Abstract

Objectives

The importance of cup position on the performance of total hip replacements (THR) has been demonstrated in in vitro hip simulator tests and clinically. However, how cup position changes during gait has not been considered and may affect failure scenarios. The aim of this study was to assess dynamic cup version using gait data.

Methods

Pelvic movement data for walking for 39 unilateral THR patients was acquired (Leeds Biomedical Research Centre). Patient's elected walking speed was used to group patients into high- and low-functioning (mean speed, 1.36(SD 0.09)ms−1 and 0.85(SD 0.08)ms−1 respectively). A computational algorithm (Python3.7) was developed to calculate cup version during gait cycle. Inputs were pelvic angles and initial cup orientation (assumed to be 45° inclination and 7° version, anterior pelvic plane was parallel to radiological frontal plane). Outputs were cup version angles during a gait cycle (101 measurements/cycle). Minimum, maximum and average cup version during gait cycle were measured for each patient. Two-sample t-test (p=0.05) was used to compare groups.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_5 | Pages 7 - 7
1 Mar 2021
Wang L Tkhilaishvili T Trampuz A Gonzalez-Moreno M
Full Access

Aim

Rifampicin plays an important role in the treatment of staphylococcal prosthetic joint infection, as rifampicin-containing combinations have shown a high efficacy against S. aureus biofilm infections. However, the emergence of rifampin-resistant strains is a feared complication and the use of rifampicin in those cases seems unwarranted. Therefore, we evaluated the activity of bacteriophage Sb1 in combination with different antibiotics against the biofilm of four rifampicin-resistant MRSA strains as alternative therapeutic approach.

Method

Four rifampicin-resistant MRSA strains were used in this study. The MIC for all tested antibiotics was determined by Etest. Biofilms were formed on porous glass beads for 24h and exposed to Sb1 (107 PFU/mL) for 24h followed by exposure to antibiotic for 24h. Viability of bacteria after antimicrobial treatment was detected by beads sonication and plating of the sonication fluids. The minimum biofilm eradication concentration (MBEC) was defined as the lowest concentration of antibiotic required to kill all cells resulting in the appearance of no colony after plating of the sonication fluid (detection limit <20 CFU/mL). The synergistic effects were observed when Sb1 combined with antibiotics used at least 2 log-reduction lower concentrations.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 13 - 13
1 Feb 2021
Gardner C Karbanee N Wang L Traynor A Cracaoanu I Thompson J Hardaker C
Full Access

Introduction

Total Hip Arthroplasty (THA) devices are now increasingly subjected to a progressively greater range of kinematic and loading regimes from substantially younger and more active patients. In the interest of ensuring adequate THA solutions for all patient groups, THA polyethylene acetabular liner (PE Liner) wear representative of younger, heavier, and more active patients (referred to as HA in this study) warrants further understanding.

Previous studies have investigated HA joint related morbidity [1]. Current or past rugby players are more likely to report osteoarthritis, osteoporosis, and joint replacement than a general population.

This investigation aimed to provide a preliminary understanding of HA patient specific PE liner tribological performance during Standard Walking (SW) gait in comparison to IS0:14242-1:2014 standardized testing.

Materials and Methods

Nine healthy male subjects volunteered for a gait lab-based study to collect kinematics and loading profiles. Owing to limitations in subject selection, five subjects wore a weighted jacket to increase Body Mass Index ≥30 (BMI). An induced increase in Bodyweight was capped (<30%BW) to avoid significantly effecting gait [3] (mean=11%BW).

Six subjects identified as HA per BMI≥30, but with anthropometric ratios indicative of lower body fat as previously detailed by the author [2] (Waist-to-hip circumference ratio and waist circumference-to-height ratio). Three subjects identified as Normal (BMI<25). Instrumented force plate loading profiles were scaled (≈270%BW) in agreement with instrumented hip force data [4].

A previously verified THA (Pinnacle® Marathon® 36×56mm, DePuy Synthes) Finite Element Analysis wear model based on Archard's law and modified time hardening model [5] was used to predict geometrical changes due to wear and deformation, respectively (Figure 1). Subject dependent kinematic and loading conditions were sampled to generate, for both legs, 19 SW simulation runs using a central composite design of response surface method.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 120 - 120
1 Jul 2020
Busse J Chang Y Kennedy S Hong P Chow N Couban R Wang L McCabe R Bieling P
Full Access

Persistent post-surgical pain affects 10%-80% of individuals after common operations, and is more common among patients with psychological factors such as depression, anxiety, or catastrophising. We conducted a systematic review and meta-analysis of randomised, controlled trials to evaluate the efficacy of perioperative psychotherapy for persistent postsurgical pain and physical impairment.

We searched Medline, PsycINFO, CINAHL, and the Cochrane Central Registry of Controlled Trials to identify relevant RCTs, in any language, from inception of each database to September 1, 2016. Paired independent reviewers identified studies, extracted data, and assessed risk of bias. We pooled treatment effects of perioperative psychotherapy on similar outcomes across eligible trials, focusing on intention-to-treat analysis. We used random effects models to perform all meta-analyses. The Grading of Recommendations, Assessment, Development and Evaluation system was used to assess the quality of evidence.

Our search found 15 trials (2220 patients) that were eligible for review. For both persistent post-surgical pain and physical impairment, perioperative education was ineffective, while active psychotherapy suggested a benefit (test of interaction P=0.01 for both outcomes). Moderate quality evidence showed that active perioperative psychotherapy (cognitive-behaviour therapy, relaxation therapy, or both) significantly reduced persistent post-surgical pain [weighted mean difference (WMD) −1.06 cm on a 10 cm visual analogue scale for pain, 95% confidence interval (CI) −1.56 to −0.55 cm, risk difference (RD) for achieving no more than mild pain (3 cm or less) 14%, 95% CI 8–21%] and physical impairment [WMD −9.87% on the 0–100% Oswestry Disability Index, 95% CI −13.42 to −6.32%, RD for achieving no more than mild disability (20% or less) 21%, 95% CI 13–29%].

Perioperative cognitive behavioural therapy and relaxation therapy are effective for reducing persistent pain and physical impairment after surgery. High quality evidence shows no significant effects of perioperative education or psychological support on persistent post-surgical pain or physical impairment compared with usual care. Future studies should explore targeted psychotherapy for surgical patients at higher risk for poor outcome.


Bone & Joint Research
Vol. 9, Issue 6 | Pages 258 - 267
1 Jun 2020
Yao X Zhou K Lv B Wang L Xie J Fu X Yuan J Zhang Y

Aims

Tibial plateau fractures (TPFs) are complex injuries around the knee caused by high- or low-energy trauma. In the present study, we aimed to define the distribution and frequency of TPF lines using a 3D mapping technique and analyze the rationalization of divisions employed by frequently used classifications.

Methods

In total, 759 adult patients with 766 affected knees were retrospectively reviewed. The TPF fragments on CT were multiplanar reconstructed, and virtually reduced to match a 3D model of the proximal tibia. 3D heat mapping was subsequently created by graphically superimposing all fracture lines onto a tibia template.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 17 - 17
1 Dec 2019
Wang L Luca MD Tkhilaishvili T Gonzalez-Moreno M Trampuz A
Full Access

Aim

Ciprofloxacin is recommended as anti-biofilm therapy for gram-negative periprosthetic joint infection. With ciprofloxacin monotherapy, resistance in gram-negative bacteria was observed. Therefore, we evaluated in vitro synergistic activity of fosfomycin, ciprofloxacin and gentamicin combinations against biofilms formed by E. coli and P. aeruginosa strains.

Method

E. coli ATCC 25922, P. aeruginosa ATCC 27853 and 15 clinical isolates were used for this study. MIC values were determined by Etest. Biofilms were formed on porous sintered glass beads for 24h and exposed to antibiotics for further 24h. Viability of bacteria on the glass beads after antibiotic treatment was detected by cfu counting of the sonicated beads. The minimum biofilm eradication concentration (MBEC) was defined as the lowest concentration of antibiotic required to kill biofilm cells. Synergistic activity against biofilm was evaluated by calculation of the fractional inhibitory concentration index (FICI).


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 48 - 48
1 Apr 2019
Etchels L Wang L Al-Hajjar M Williams S Thompson J Fisher J Wilcox R Jones A
Full Access

INTRODUCTION

There is great potential for the use of computational tools within the design and test cycle for joint replacement devices.

The increasing need for stratified treatments that are more relevant to specific patients, and implant testing under more realistic, less idealised, conditions, will progressively increase the pre-clinical experimental testing work load. If the outcomes of experimental tests can be predicted using low cost computational tools, then these tools can be embedded early in the design cycle, e.g. benchmarking various design concepts, optimising component geometrical features and virtually predicting factors affecting the implant performance. Rapid, predictive tools could also allow population-stratified scenario testing at an early design stage, resulting in devices which are better suited to a patient-specific approach to treatment.

The aim of the current study was to demonstrate the ability of a rapid computational analysis tool to predict the behaviour of a total hip replacement (THR) device, specifically the risk of edge loading due to separation under experimental conditions.

METHODS

A series of models of a 36mm BIOLOX® Delta THR bearing (DePuy Synthes, Leeds, UK) were generated to match an experimental simulator study which included a mediolateral spring to cause lateral head separation due to a simulated mediolateral component misalignment of 4mm. A static, rigid, frictionless model was implemented in Python (PyEL, runtime: ∼1m), and results were compared against 1) a critically damped dynamic, rigid, FE model (runtime: ∼10h), 2) a critically damped dynamic, rigid, FE model with friction (µ = 0.05) (runtime: ∼10h), and 3) kinematic experimental test data from a hip simulator (ProSim EM13) under matching settings (runtime: ∼6h). Outputs recorded were the variation of mediolateral separation and force with time.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 27 - 27
1 Apr 2019
Wang L Beedall D Thompson J
Full Access

INTRODUCTION

Component positioning of an artificial hip joint plays a key role in durability of implant. Despite the fact that a number of numerical, experimental and clinical studies have been carried out to investigate the effects of cup inclination on polyethylene wear, steep inclination has been reported to be associated with both high and low volumetric wear. Moreover, how cup anteversion affects wear and its interaction with inclination are still unclear. To address these knowledge gaps, in this study wear and contact mechanics of a hip joint under various cup positioning has been investigated by using FEA (Finite Element Analysis).

METHOD

A Pinnacle® Marathon neutral liner 36×56mm was chosen to model the wear and creep over 3 million cycles (mc) based on the Archard's law and modified time hardening model in ANSYS, respectively. Central composite design of response surface method was used to generate 9 FEA runs, where the operative inclination angles varied from 35º, 45º to 55º and operative anteversion angles differed amongst 0º, 15º and 30º. The range of cup angles were chosen to be similar to the Lewinnek “golden” safe zone for dislocation. The gait cycle as specified in ISO 14242-1 was applied to the femoral head.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 31 - 31
1 Jan 2019
Wang L Beedall D Thompson J
Full Access

Mismatch of bearing component centres and tension of soft tissues surrounding the hip joint can lead to component separation during gait cycle and cause the femoral head to contact the rim of an acetabular liner, which could increase wear and shorten lifespan of an implant. This study aims to investigate the contact and wear mechanics of a metal-on-polyethylene hip joint under dynamic separation by using Finite Element Analysis (FEA).

A Pinnacle® cup with a Marathon neutral liner 36×56mm with a 45° inclination was constrained by a spring element in the medial-lateral axis. The spring was pre-compressed by 4mm to represent the corresponding translational mismatch of a simulator testing. Archard's law was used to predict wear over one ISO 14242-1 gait cycle.

Contact pressure is proportional to the load input during the stance phase, associated with concentric contact condition; it increases threefold just before the swing phase (time C), reaching 46.2MPa, where edge loading occurs. Consequently, separation climbs to 3.54mm, which is comparable to the mathematical prediction (3.34mm) and dynamic FEA (3.2mm). The predicted volumetric wear after this gait cycle is 1.22 × 10–5 mm3.

Dynamic separation between femoral head and acetabular liner can result in edge loading, consequently high contact pressure on the edge of a liner. In combination with cyclic loading, fatigue damage could take place and may be worth investigating in the future.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_22 | Pages 96 - 96
1 Dec 2017
Jiang N Wang L Yu B
Full Access

Aim

Cyclooxygenase-2 (COX-2) enzyme is one of the major mediators during inflammation reactions, and COX-2 gene polymorphisms of rs20417 and rs689466 have been reported to be associated with several inflammatory diseases. However, potential links between the two polymorphisms and risk of developing post-traumatic osteomyelitis remain unclear. The present study aimed to investigate associations between the rs20417 and rs689466 polymorphisms and susceptibility to post-traumatic osteomyelitis in Chinese population.

Methods

A total of 189 patients with definite diagnosis of post-traumatic osteomyelitis and 220 healthy controls were genotyped for rs20417 and rs689466 using the genotyping method*. Chi-square test was used to compare differences of genotype distributions as well as outcomes of five different genetic models between the two groups.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 146 - 146
1 May 2016
Lee S Wang L
Full Access

Objectives

To evaluate the clinical and radiographic outcomes of total knee arthroplasty using Vega® Knee System (B Braun-Aesculap, Tuttlingen, Germany) [Fig. 1] designed to allow high flexion by shortening the length of posterior condylar flange of femoral component after at least 2 year and to assess the occurrence of periprosthetic osteolysis and loosening at final follow-up.

Materials and Methods

Of the patients who underwent total knee arthroplasty using Vega® Knee System between April 2011 and May 2013, 40 patients (46 knees) were enrolled. The mean age of the patients at the time of surgery was 72.3 years and the mean follow-up period was 29.4 months. Clinical parameters, including Knee Society Knee score, Knee Society Function score, maximal flexion and range of motion were evaluated. Relationship between postoperative maximal flexion and radiographic factors including the posterior tibial slope, the femoral condylar offset and the change of the posterior flange length of femoral condyle was analyzed. Also, the occurrence of periprosthetic osteolysis and loosening was assessed.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 338 - 338
1 Jul 2014
Wang F Wang L Ko J
Full Access

Summary Statement

Increased Dkk-1 signaling is associated with OA occurrence and joint microenvironment damage. Interruption of Dkk1 action is beneficial to improve OA knees.

Introduction

Osteoarthritis (OA) is a leading cause of disability and healthcare financial burden for total knee arthroplasty, rehabilitation, and disability. Inappropriate mechanical stress, immunological, or biochemical regulation reportedly disturbs homeostasis among cartilage, synovium and subchondral bone microstructure that contributes to OA pathogenesis. Control of joint-deleterious factor action is an emerging strategy to ameliorate OA-induced joint deterioration. Dickkopf-1 (Dkk-1) is a potent inhibitor for Wnt/β-catenin signaling regulation of tissue development and remodeling in physiological or pathological contexts. Dkk-1 also acts as a master deleterious factor that represses osteoblast differentiation capacity and bone repair. Associations among Dkk-1 expression, chondrocyte fate, synovial fibroblast behavior or OA incidence are merit of characterization.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 344 - 344
1 Dec 2013
Heckmann N Omid R Wang L McGarry M Vangsness CT Lee T
Full Access

Background:

The purpose of this study was to compare the biomechanical effects of the trapezius transfer and the latissimus dorsi transfer in a cadaveric model of a massive posterosuperior rotator cuff tear.

Methods:

Eight cadaveric shoulders were tested at 0°, 30°, and 60° of abduction in the scapular plane with anatomically based muscle loading. Humeral rotational range of motion and the amount of humeral rotation due to muscle loading were measured. Glenohumeral kinematics and joint reaction forces were measured throughout the range of motion. After testing in the intact condition, the supraspinatus and infraspinatus were resected, simulating a massive rotator cuff tear. The lower trapezius transfer was then performed. Three muscle loading conditions for the trapezius (12N, 24N, 36N) were applied to simulate a lengthened graph as a result of excessive creep, a properly tensioned graph exerting a force proportional to the cross-sectional area of the inferior trapezius, and an over-constrained graph respectively. Next the latissimus dorsi transfer was performed and tested with one muscle loading condition 24N. A repeated-measures analysis of variance was used for statistical analysis.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 345 - 345
1 Dec 2013
Argintar E Heckmann N Wang L Tibone J Lee T
Full Access

Background:

Individuals with large Hill-Sachs lesions may be prone to failure and reoccurrence following standard arthroscopic Bankart repair. Here, the Remplissage procedure may promote shoulder stability through infraspinatus capsulo-tenodesis directly into the lesion. Little biomechanicaldata about the Remplissage procedure on glenohumeral kinematics, stability, and range of motion (ROM) currently exists.

Questions/purposes:

What are the biomechanical effects of Bankart and Remplissage repair for large Hill-Sachs lesions?


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 38 - 38
1 Oct 2012
Weidert S Wang L Thaller P Landes J Brand A Navab N Euler E
Full Access

The verification of the alignment of the lower limb is critical for reconstructive surgery as well as trauma surgery in order to prevent osteoarthritis. The mechanical axis is a straight line defined by the center of the femoral head and the center of the ankle joint, ideally passing the knee joint in its center.

Whereas the usual preoperative method to determine the mechanical axis of the lower limbs is still the long standing radiograph, common intra-operative methods are the use of an electrocautery cord or an X-ray grid consisting of wire lines underneath the patient. Both methods require the surgeon to bring the femoral head and the ankle joint exactly to overlay with a radiopaque line that passes through both points. The distance of the knee center from this line is defined as the mechanical axis deviation (MAD). In order to reduce the errors introduced by perspective projection effects, the joint centers must be placed in the center of the c-arm images, which definitely requires time, experience and additional radiation.

We propose a computer aided X-ray stitching method that puts individual X-ray images into a panoramic image frame combining the Camera Augmented Mobile C-arm (CamC) system, which features a video camera with its optical center virtually coinciding with the origin of the X-rays, with an optical tracking marker pattern underneath the operating table. The camera image of the marker pattern is used to perform pose estimation of the C-arm, allowing the calculation of the x-ray source motion between the positions in which the individual X-rays were taken. By estimating the homography, the different X-rays can be registered into a panoramic frame, enabling perfect alignment and metric measurements.

In order to reduce parallax effects that lead to axis and metric measurement errors, we applied a method requiring two constraints: The bone plane has to be roughly parallel to the planar marker pattern and the distance between the marker plane and the bone plane has to be estimated.

In order to evaluate the method, we used a life-size synthetic skeleton leg. After tightening a straight wire between the centers of the hip and ankle joint, the knee joint was bent into a MAD of 55 mm, which was confirmed by measuring the distance between the knee center and the wire with a ruler. The leg phantom was then placed on a radiolucent operating table, parallel to the pattern plane 130 mm underneath. The operating table was moved through the C-arm while acquiring the three desired X-ray images. which were registered into a panoramic image frame. The centers of the femoral head, the ankle, and the knee were manually determined on the generated panoramic image by a surgeon. The mechanical axis was automatically displayed and the MAD was visualised in the image and computed as 55.23 mm.

We presented a new solution to intra-operatively verify alignment of the lower extremity. When using the CamC system, only a marker pattern has to be used for tracking. No additional tracking devices and calibration procedures are needed. Furthermore, the presented method only requires three x-rays that cover the femoral head, the knee and the ankle and marking of the three spots. Due to the parallax correction, these spots do not have to be exactly in the center of the picture. For this reason, compared to using an X-ray grid or an electrocautery cord, our method allows the procedure to be much faster and reduces the number of x-ray images. However, for clinical evaluation, a patient study will be conducted in the future.