header advert
Results 1 - 20 of 48
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 121 - 129
1 Mar 2024
Orce Rodríguez A Smith PN Johnson P O'Sullivan M Holder C Shimmin A

Aims

In recent years, the use of a collared cementless femoral prosthesis has risen in popularity. The design intention of collared components is to transfer some load to the resected femoral calcar and prevent implant subsidence within the cancellous bone of the metaphysis. Conversely, the load transfer for a cemented femoral prosthesis depends on the cement-component and cement-bone interface interaction. The aim of our study was to compare the three most commonly used collared cementless components and the three most commonly used tapered polished cemented components in patients aged ≥ 75 years who have undergone a primary total hip arthroplasty (THA) for osteoarthritis (OA).

Methods

Data from the Australian Orthopaedic Association National Joint Replacement Registry from 1 September 1999 to 31 December 2022 were analyzed. Collared cementless femoral components and cemented components were identified, and the three most commonly used components in each group were analyzed. We identified a total of 11,278 collared cementless components and 47,835 cemented components. Hazard ratios (HRs) from Cox proportional hazards models, adjusting for age and sex, were obtained to compare the revision rates between the groups.


The Bone & Joint Journal
Vol. 105-B, Issue 9 | Pages 946 - 952
1 Sep 2023
Dhawan R Young DA Van Eemeren A Shimmin A

Aims

The Birmingham Hip Resurfacing (BHR) arthroplasty has been used as a surgical treatment of coxarthrosis since 1997. We present 20-year results of 234 consecutive BHRs performed in our unit.

Methods

Between 1999 and 2001, there were 217 patients: 142 males (65.4%), mean age 52 years (18 to 68) who had 234 implants (17 bilateral). They had patient-reported outcome measures collected, imaging (radiograph and ultrasound), and serum metal ion assessment. Survivorship analysis was performed using Kaplan-Meier estimates. Revision for any cause was considered as an endpoint for the analysis.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 30 - 30
23 Jun 2023
Shimmin A Plaskos C Pierrepont J Bare J Heckmann N
Full Access

Acetabular component positioning is commonly referenced with the pelvis in the supine position in direct anterior approach THA. Changes in pelvic tilt (PT) from the pre-operative supine to the post-operative standing positions have not been well investigated and may have relevance to optimal acetabular component targeting for reduced risk of impingement and instability. The aims of this study were therefore to determine the change in PT that occurs from pre-operative supine to post-operative standing, and whether any factors are associated with significant changes in tilt ≥13° in posterior direction.

13° in a posterior direction was chosen as that amount of posterior rotation creates an increase in functional anteversion of the acetabular component of 10°.

1097 THA patients with pre-operative supine CT and standing lateral radiographic imaging and 1 year post-operative standing lateral radiographs (interquartile range 12–13 months) were reviewed. Pre-operative supine PT was measured from CT as the angle between the anterior pelvic plane (APP) and the horizontal plane of the CT device. Standing PT was measured on standing lateral x-rays as the angle between the APP and the vertical line. Patients with ≥13° change from supine pre-op to standing post-op (corresponding to a 10° change in cup anteversion) were grouped and compared to those with a <13° change using unpaired student's t-tests.

Mean pre-operative supine PT (3.8±6.0°) was significantly different from mean post-operative standing PT (−3.5±7.1°, p<0.001), ie mean change of −7.3±4.6°.

10.4% (114/1097) of patients had posterior PT changes ≥13° supine pre-op to standing post-op.

A significant number of patients, ie 1 in 10, undergo a clinically significant change in PT and functional anteversion from supine pre-op to standing post-op. Surgeons should be aware of these changes when planning component placement in THA.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 39 - 39
1 Dec 2022
Grammatopoulos G Pierrepont J Madurawe C Innmann MM Vigdorchik J Shimmin A
Full Access

A stiff spine leads to increased demand on the hip, creating an increased risk of total hip arthroplasty (THA) dislocation. Several authors propose that a change in sacral slope of ≤10° between the standing and relaxed-seated positions (ΔSSstanding→relaxed-seated) identifies a patient with a stiff lumbar spine and have suggested use of dual-mobility bearings for such patients. However, such assessment may not adequately test the lumbar spine to draw such conclusions. The aim of this study was to assess how accurately ΔSSstanding→relaxed-seated can identify patients with a stiff spine.

This is a prospective, multi-centre, consecutive cohort series. Two-hundred and twenty-four patients, pre-THA, had standing, relaxed-seated and flexed-seated lateral radiographs. Sacral slope and lumbar lordosis were measured on each functional X-ray. ΔSSstanding→relaxed-seated seated was determined by the change in sacral slope between the standing and relaxed-seated positions. Lumbar flexion (LF) was defined as the difference in lumbar lordotic angle between standing and flexed-seated. LF≤20° was considered a stiff spine. The predictive value of ΔSSstanding→relaxed-seated for characterising a stiff spine was assessed.

A weak correlation between ΔSSstanding→relaxed-seated and LF was identified (r2= 0.15). Fifty-four patients (24%) had ΔSSstanding→relaxed-seated ≤10° and 16 patients (7%) had a stiff spine. Of the 54 patients with ΔSSstanding→relaxed-seated ≤10°, 9 had a stiff spine. The positive predictive value of ΔSSstanding→relaxed-seated ≤10° for identifying a stiff spine was 17%.

ΔSSstanding→relaxed-seated ≤10° was not correlated with a stiff spine in this cohort. Utilising this simplified approach could lead to a six-fold overprediction of patients with a stiff lumbar spine. This, in turn, could lead to an overprediction of patients with abnormal spinopelvic mobility, unnecessary use of dual mobility bearings and incorrect targets for component alignment. Referring to patients ΔSSstanding→relaxed-seated ≤10° as being stiff can be misleading; we thus recommend use of the flexed-seated position to effectively assess pre-operative spinopelvic mobility.


The Bone & Joint Journal
Vol. 104-B, Issue 7 | Pages 820 - 825
1 Jul 2022
Dhawan R Baré JV Shimmin A

Aims

Adverse spinal motion or balance (spine mobility) and adverse pelvic mobility, in combination, are often referred to as adverse spinopelvic mobility (SPM). A stiff lumbar spine, large posterior standing pelvic tilt, and severe sagittal spinal deformity have been identified as risk factors for increased hip instability. Adverse SPM can create functional malposition of the acetabular components and hence is an instability risk. Adverse pelvic mobility is often, but not always, associated with abnormal spinal motion parameters. Dislocation rates for dual-mobility articulations (DMAs) have been reported to be between 0% and 1.1%. The aim of this study was to determine the early survivorship from the Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR) of patients with adverse SPM who received a DMA.

Methods

A multicentre study was performed using data from 227 patients undergoing primary total hip arthroplasty (THA), enrolled consecutively. All the patients who had one or more adverse spine or pelvic mobility parameter had a DMA inserted at the time of their surgery. The mean age was 76 years (22 to 93) and 63% were female (n = 145). At a mean of 14 months (5 to 31) postoperatively, the AOANJRR was analyzed for follow-up information. Reasons for revision and types of revision were identified.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_14 | Pages 20 - 20
1 Nov 2021
Shimmin A Dhawan R Madurawe C Pierrepont J Baré J
Full Access

Adverse spinopelvic mobility (SPM) has been shown to increase risk of dislocation of primary total hip arthroplasty (THA). In patients undergoing THA, prevalence of adverse SPM has been shown to be as high as 41%. Stiff lumbar spine, large posterior standing pelvic tilt and severe sagittal spinal deformity have been identified as risk factors for increased hip instability. Dislocation rates for dual mobility articulations have been reported to be 0% to 1.1%. The aim of this study was to determine the early survivorship from the Australian National Joint Replacement Registry (AOANJRR) of patients with adverse SPM who received a dual mobility articulation.

A multicentre study was performed using data from 229 patients undergoing primary THA, enrolled consecutively. All the patients who had one or more adverse spine or pelvic mobility parameters had a dual mobility articulation inserted at the time of their surgery. Average age was 76 (22 to 93) years and 63% were female. At a mean of 2.1 (1 – 3.3) years post-op, the AOANJRR was analysed for follow-up. Reasons for revision and types of revision were identified.

The AOANJRR reported two revisions. One due to infection and the second due to femoral component loosening. No revisions for dislocation were reported. One patient died with the prosthesis in situ. Kaplan Meier survival was 99.3% (CI 98.3% − 100%) at 2 years.

DM bearings reduce the risk of dislocation of primary THA in patients with adverse spine and pelvic mobility.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_10 | Pages 14 - 14
1 Oct 2020
Gu Y Madurawe C Kim W Pierrepont J Shimmin A Lee G
Full Access

Introduction

The prevalence of the various patterns of spinopelvic abnormalities that increase the risk for prosthetic impingement is unknown. While prior surgery or lumbar fusion are recognized as a risk factors for postoperative dislocation, many patients presenting for THA do not have obvious radiographic abnormalities. The purpose of this study is to determine the prevalence of large posterior pelvic tilt (PPT) when standing, stiff lumbar-spine (SLL) and spino-pelvic sagittal imbalance (SSI) in patients undergoing primary THA.

Methods

A consecutive series of 1592 patients (56% female) over 2 years underwent functional analysis of spinopelvic mobility using CT, standing, and flexed seated lateral radiographs as part of pre-operative THA planning. The average age was 65 (20–93). We investigated the prevalence of these 3 validated spinopelvic parameters known to increase the risk for impingent and correlated them to the patient's age and gender using Chi squared analysis. Finally, the risk of flexion and extension impingement was modeled for each patient at a default supine cup orientation (DSCO) of 40°/20° (±5°).


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 83 - 83
1 Feb 2020
Shimmin A Pierrepont J Bare J McMahon S
Full Access

Introduction & aims

Apparently well-orientated total hip replacements (THR) can still fail due to functional component malalignment. Previously defined “safe zones” are not appropriate for all patients as they do not consider an individual's spinopelvic mobility. The Optimized Positioning System, OPSTM (Corin, UK), comprises preoperative planning based on a patient-specific dynamic analysis, and patient-specific instrumentation for delivery of the target component alignment. The aim of this study was to determine the early revision rate from the Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR) for THRs implanted using OPSTM.

Method

Between January 4th 2016 and December 20st 2017, a consecutive series of 841 OPSTMcementless total hip replacements were implanted using a Trinity acetabular cup (Corin, UK) with either a TriFit TS stem (98%) or a non-collared MetaFix stem (2%). 502 (59%) procedures were performed through a posterior approach, and 355 (41%) using the direct superior approach. Mean age was 64 (range; 27 to 92) and 51% were female. At a mean follow-up of 15 months (range; 3 to 27), the complete list of 857 patients was sent to the AOANJRR for analysis.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 85 - 85
1 Feb 2020
Dennis D Pierrepont J Madurawe C Lee G Shimmin A
Full Access

Introduction

It is well accepted that larger heads provide more stability in total hip arthroplasty. This is due to an increase in jump height providing increased resistance to subluxation. However, other implant parameters also contribute to the bearing's stability. Specifically, the liner's rim design and the centre of rotation relative to the liner's face. Both these features contribute to define the Cup Articular Arc Angle (CAAA). The CAAA describes the degree of dysplasia of the acetabular liner, and plays an important role in defining the jump height.

The aim of this study was to determine the difference in jump height between bearing materials with a commonly used acetabular implant system.

Methods

From 3D models of the Trinity acetabular implant system (Corin, UK), the CAAA was measured in CAD software (SolidWorks, Dassault Systems, France) for the ceramic, poly and modular dual mobility (DM) liners, for cup sizes 46mm to 64mm. The most commonly used bearing size was used in the analysis of each cup size. For the ceramic and poly liners, a 36mm bearing was used for cups 50mm and above. For the 46mm and 48mm cups, a 32mm bearing was used. The DM liners were modelled with the largest head size possible. Using a published equation, the jump height was calculated for each of the three bearing materials and each cup size. Cup inclination and anteversion were kept constant.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 84 - 84
1 Feb 2020
Dennis D Pierrepont J Madurawe C Friedmann J Bare J McMahon S Shimmin A
Full Access

Introduction

Femoral component loosening is one of the most common failure modes in cementless total hip arthroplasty (THA). Patient age, weight, gender, osteopenia, stem design and Dorr-C bone have all been proposed as risk factors for poor fixation and subsequent stem subsidence and poor outcome. With the increased popularity of CT-based assistive technologies in THA, (Stryker MAKO and Corin OPSTM), we sought to develop a technique to predicted femoral stem fixation using pre-operative CT.

Methods

Fourteen patients requiring THA were randomly selected from a previous study investigating component alignment. Mean age was 64 (53 to 76), and 57% were female. All patients received pre-operative CT for 3D dynamic templating (OPSTM), and a TriFit stem and Trinity cup (Corin, UK) implanted through a posterior approach. Post-operatively, patients received an immediate CT and AP x-ray prior to leaving the hospital, and a 1-year follow-up x-ray. On both the immediate post-op x-ray and 1-year follow-up x-ray, the known cup diameter was used to scale the image. On both images, the distance between the most superior point of the greater trochanter and the shoulder of the stem was measured. The difference was recorded as stem subsidence. Subsidence greater than 4mm was deemed clinically relevant. The post-operative CT was used to determine the precise three-dimensional placement of the stem immediately after surgery by registering the known 3D implant geometry to the CT. For each patient, the achieved stem position from post-op CT was then virtually implanted back into the pre-operative OPSTM planning software. The software provides a colour map of the bone density at the stem/bone interface using the Hounsfield Units (HU) of each pixel of the CT [Fig. 1]. Blue represents low density bone transitioning through to green and then red (most dense).


The Bone & Joint Journal
Vol. 101-B, Issue 7 | Pages 808 - 816
1 Jul 2019
Eftekhary N Shimmin A Lazennec JY Buckland A Schwarzkopf R Dorr LD Mayman D Padgett D Vigdorchik J

There remains confusion in the literature with regard to the spinopelvic relationship, and its contribution to ideal acetabular component position. Critical assessment of the literature has been limited by use of conflicting terminology and definitions of new concepts that further confuse the topic. In 2017, the concept of a Hip-Spine Workgroup was created with the first meeting held at the American Academy of Orthopedic Surgeons Annual Meeting in 2018. The goal of this workgroup was to first help standardize terminology across the literature so that as a topic, multiple groups could produce literature that is immediately understandable and applicable. This consensus review from the Hip-Spine Workgroup aims to simplify the spinopelvic relationship, offer hip surgeons a concise summary of available literature, and select common terminology approved by both hip surgeons and spine surgeons for future research.

Cite this article: Bone Joint J 2019;101-B:808–816.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 109 - 109
1 Apr 2019
Wakelin E Twiggs J Moore E Miles B Shimmin A
Full Access

Introduction & aims

Patient specific instrumentation (PSI) is a useful tool to execute pre-operatively planned surgical cuts and reduce the number of trays in surgery. Debate currently exists around improved accuracy, efficacy and patient outcomes when using PSI cutting guides compared to conventional instruments. Unicompartmental Knee Arthroplasty (UKA) revision to Total Knee Arthroplasty (TKA) represents a complex scenario in which traditional bone landmarks, and patient specific axes that are routinely utilised for component placement may no longer be easily identifiable with either conventional instruments or navigation. PSI guides are uniquely placed to solve this issue by allowing detailed analysis of the patient morphology outside the operating theatre. Here we present a tibia and femur PSI guide for TKA on patients with UKA.

Method

Patients undergoing pre-operative planning received a full leg pass CT scan. Images are then segmented and landmarked to generate a patient specific model of the knee. The surgical cuts are planned according to surgeon preference. PSI guide models are planned to give the desired cut, then 3D printed and provided along with a bone model in surgery. PSI-bone and PSI-UKA contact areas are modified to fit the patient anatomy and allow safe placement and removal.

The PSI-UKA contact area on the tibia is defined across the UKA tibial tray after the insert has been removed. Further contact is planned on the tibial eminence if it can be accurately segmented in the CT and the anterior superior tibia on the contralateral compartment, see example guide in Figure 1. Contact area on the femur is defined on the superior trochlear groove, native condyle, femur centre and femoral UKA component if it can be accurately segmented in the CT.

Surgery was performed with a target of mechanical alignment using OMNI APEX PS implants (Raynham, MA). The guide was planned such that the OMNI cut block could be placed on the securing pins to translate the cut. Component alignment and resections values were calculated by registering the pre-operative bones and component geometries to post-operative CT images.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 117 - 117
1 Apr 2019
Wakelin E Twiggs J Fritsch B Miles B Liu D Shimmin A
Full Access

Introduction

Variation in resection thickness of the femur in Total Knee Arthroplasty (TKA) impacts the flexion and extension tightness of the knee. Less well investigated is how variation in patient anatomy drives flexion or extension tightness pre- and post- operatively. Extension and flexion stability of the post TKA knee is a function of the tension in the ligaments which is proportional to the strain. This study sought to investigate how femoral ligament offset relates to post-operative navigation kinematics and how outcomes are affected by component position in relation to ligament attachment sites.

Method

A database of TKA patients operated on by two surgeons from 1-Jan-2014 who had a pre-operative CT scan were assessed. Bone density of the CT scan was used to determine the medial and lateral collateral attachments. Navigation (OmniNav, Raynham, MA) was used in all surgeries, laxity data from the navigation unit was paired to the CT scan. 12-month postoperative Knee Osteoarthritis and Outcome Score (KOOS) score and a postoperative CT scan were taken. Preoperative segmented bones and implants were registered to the postoperative scan to determine change in anatomy.

Epicondylar offsets from the distal and posterior condyles (of the native knee and implanted components), resections, maximal flexion and extension of the knee and coronal plane laxity were assessed. Relationships between these measurements were determined. Surgical technique was a mix of mechanical gap balancing and kinematically aligned knees using Omni (Raynham, MA) Apex implants.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 100 - 100
1 Apr 2019
Kreuzer S Pierrepont J Stambouzou C Walter L Marel E Solomon M Shimmin A McMahon S Bare J
Full Access

Introduction

Appropriate femoral stem anteversion is an important factor in maintaining stability and maximizing the performance of the bearing after total hip replacement (THR). The anteversion of the native femoral neck has been shown to have a significant effect on the final anteversion of the stem, particularly with a uncemented femoral component. The aim of this study was to quantify the variation in native femoral neck anteversion in a population of patients requiring total hip replacement.

Methods

Pre-operatively, 1215 patients received CT scans as part of their routine planning for THR. Within the 3D planning, each patient's native femoral neck anteversion, measured in relation to the posterior condyles of the knee, was determined.

Patients were separated into eight groups based upon gender and age. Males and females were divided by those under 55 years of age, those aged 55 to 64, 65 to 74 and those 75 or older.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 114 - 114
1 Apr 2019
Wakelin E Twiggs J Moore E Miles B Shimmin A Liu D
Full Access

Introduction

Knee ligament laxity and soft tissue balance are important pre- and intra- operative balancing factors in total knee arthroplasty (TKA). Laxity can be measured pre-operatively from short-leg radiographs using a stress device to apply a reproducible force to the knee, whereas intra-operative laxity is routinely measured using a navigation system in which a variable surgeon-applied force is applied. The relationship between these two methods and TKA outcome however, has not been investigated. This study aims to determine how intra-operative assessments of laxity relate to functional radiographic assessments performed on pre-operatively. We also investigate how laxity relates to short-term patient-reported outcomes.

Method

A prospective consecutive study of 60 knees was performed. Eight weeks prior to surgery, patients had a CT scan and functional radiographs captured using a Telos stress device (Metax, Germany). This device applies a force to the knee joint while bracing the hip and ankle causing either a varus or valgus response.

3D bone models were segmented from the CT scan and landmarked to generate patient specific axes and alignments. Individual bone models were registered to the 2D stressed X-rays in flexion and extension. Reference axes identified on the registered 3D bone models were used to measure the coronal plane laxity. These laxity ranges were compared with those measured by a navigation system (OMNINAV, OMNI Life Science, MA) used during surgery, and Knee Injury and Osteoarthritis Outcome Scores (KOOS) captured 6 months postoperatively.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 118 - 118
1 Apr 2019
Wakelin E Twiggs J Roe J Bare J Shimmin A Suzuki L Miles B
Full Access

Introduction & aims

Resurfacing of the patella is an important part of most TKA operations, usually using an onlay technique. One common practice is to medialise the patellar button and aim to recreate the patellar offset, but most systems do not well control alignment of the patella button. This study aimed to investigate for relationships between placement and outcomes and report on the accuracy of patella placement achieved with the aid of a patella Patient Specific Guide (PSG).

Method

A databse of TKR patients operated on by five surgeons from 1-Jan-2014 who had a pre-operative and post-operative CT scan and 6-month postoperative Knee Osteoarthritis and Outcome (KOOS) scores were assessed. Knees were excluded if the patella was unresurfaced or an inlay technique was used. All knee operations were performed with the Omni Apex implant range and used dome patella buttons. A sample of 40 TKRs had a patella PSG produced consisting of a replication of an inlay barrel shaped to fit flush to the patient's patella bone.

The centre of the quadriceps tendon on the superior pole of the patella bone and the patella tendon on the inferior were landmarked. 3D implant and bone models from the preoperative CT scans were registered to the post-operative CT scan. The flat plane of the implanted patella button was determined and the position of the button relative to the tendon attachments calculated. Coverage of the bone by the button and patellar offset reconstruction were also calculated. The sample of 40 TKRs for whom a patella PSG was produced had their variation in placement assessed relative to the wider population sample. All surgeries were conducted with Omni Apex implants using a domed patella.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_11 | Pages 1 - 1
1 Aug 2018
Shimmin A
Full Access

A total hip replacement (THR) patient's spinopelvic mobility might predispose them to an increased risk of impingement, instability and edge-loading. This risk can be minimised by considering their preoperative movement during planning of component alignment. However, the question of whether the preoperative, arthritic motion is representative of the postoperative mobility has been raised. We aimed to determine the change in functional pelvic tilt in a series of THR patients at one-year.

Four-hundred and eleven patients had their pelvic tilt and lumbar lordotic angle (LLA) measured in the standing and flexed-seated (position when patients initiate rising from a seat) positions as part of routine planning for THR. All measurements were performed on lateral radiographs. At 12-months postoperatively, the same two lateral images were taken and pelvic tilt measured. Pearson correlation was used to investigate the linear relationship between pre-and post-op pelvic tilt. Furthermore, a predictive model of post-op pelvic tilt was developed using machine learning algorithms. The model incorporating four preoperative inputs – standing pelvic tilt, seated pelvic tilt, standing LLA and seated LLA.

In the standing position, there was a mean 2° posterior rotation after THR, with a maximum posterior change of 13°. The Pearson correlation coefficient between pre-and post-op standing pelvic tilt was 0.84. This prediction of post-op standing tilt improved to 0.91 when the three further inputs were incorporated to the predictive model.

In the flexed-seated position, there was a mean 7° anterior rotation after THR, with a maximum anterior change of 45°. The Pearson correlation coefficient between pre-and post-op seated pelvic tilt was 0.54. This prediction of post-op seated tilt improved to 0.71 when the three further inputs were incorporated to the predictive model.

The best predictor of post-operative spinopelvic mobility, is the patients pre-operative spinopelvic mobility, and this should routinely be measured when planning THR

The predictive model will continue to improve in accuracy as more data and more variables (contralateral hip pathology, pelvic incidence, age and gender) are incorporated into the model.


The Bone & Joint Journal
Vol. 100-B, Issue 7 | Pages 845 - 852
1 Jul 2018
Langston J Pierrepont J Gu Y Shimmin A

Aims

It is important to consider sagittal pelvic rotation when introducing the acetabular component at total hip arthroplasty (THA). The purpose of this study was to identify patients who are at risk of unfavourable pelvic mobility, which could result in poor outcomes after THA.

Patients and Methods

A consecutive series of 4042 patients undergoing THA had lateral functional radiographs and a low-dose CT scan to measure supine pelvic tilt, pelvic incidence, standing pelvic tilt, flexed-seated pelvic tilt, standing lumbar lordotic angle, flexed-seated lumbar lordotic angle, and lumbar flexion. Changes in pelvic tilt from supine-to-standing positions and supine-to-flexed-seated positions were determined. A change in pelvic tilt of 13° between positions was deemed unfavourable as it alters functional anteversion by 10° and effectively places the acetabular component outside the safe zone of orientation.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 54 - 54
1 Apr 2018
Pierrepont J Ellis A Walter L Marel E Bare J Solomon M McMahon S Shimmin A
Full Access

Introduction

The pelvis moves in the sagittal plane during functional activity. These movements can have a detrimental effect on functional cup orientation. The authors previously reported that 17% of total hip replacement (THR) patients have excessive pelvic rotation preoperatively. This increased pelvic rotation could be a risk factor for instability and edge-loading in both flexion and/or extension. The aim of this study was to investigate how gender, age and lumbar spine stiffness affects the number of patients at risk of excessive sagittal pelvic rotation.

Method

Pre-operatively, 3428 patients had their pelvic tilt (PT) and lumbar lordotic angle (LLA) measured in three positions; supine, standing and flexed-seated, as part of routine planning for THR. The pelvic rotation from supine-to-standing and from supine-to-seated was determined from the difference in pelvic tilt measurements between positions. Lumbar flexion was determined as the difference between LLA standing and LLA when flexed-seated. Patients were stratified into groups based upon age, gender and lumbar flexion. The percentage of patients in each group with excessive pelvic rotation, defined by rotation ≥13° in a detrimental direction, was determined.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 56 - 56
1 Apr 2018
Pierrepont J Hardwick-Morris M McMahon S Bare J Shimmin A
Full Access

Introduction

The Intellijoint HIP system is a mini-optical navigation system designed to intraoperatively assist with cup orientation, leg length and offset in total hip replacement (THR). As with any imageless navigation system, acquiring the pelvic reference frame intraoperatively requires assumptions. The system does however have the ability to define the native acetabular orientation intra-operatively by registering 3-points along the bony rim. In conjunction with a pre-operative CT scan, the authors hypothesised that this native acetabular plane could be used as an intraoperative reference to achieve a planned patient-specific cup orientation.

Method

Thirty-eight THR patients received preoperative OPSTM dynamic planning (Optimized Ortho, Sydney). On the pre-operative 3D model of each patient's acetabulum, a 3-point plane was defined by selecting recognisable features on the bony rim. The difference in inclination and anteversion angles between this native 3-point reference plane and the desired optimal orientation was pre-operatively calculated, and reported to the surgeon as “adjustment angles”. Intraoperatively, the surgeon tried to register the same 3-points on the bony rim. Knowing the intraoperative native acetabular orientation, the surgeon applied the pre-calculated adjustment angles to achieve the planned patient specific cup orientation. All patients received a post-operative CT scan at one-week and the deviation between planned and achieved cup orientation was measured. Additionally, the cup orientation that would have been achieved if the standard Intellijoint pelvic acquisition was performed was retrospectively determined.