header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

PREOPERATIVE ANATOMY AND ITS CORRELATION TO INTRAOPERATIVE KNEE LAXITY AND PATIENT OUTCOME IN TOTAL KNEE ARTHROPLASTY

International Society for Technology in Arthroplasty (ISTA) 31st Annual Congress, London, England, October 2018. Part 1.



Abstract

Introduction

Variation in resection thickness of the femur in Total Knee Arthroplasty (TKA) impacts the flexion and extension tightness of the knee. Less well investigated is how variation in patient anatomy drives flexion or extension tightness pre- and post- operatively. Extension and flexion stability of the post TKA knee is a function of the tension in the ligaments which is proportional to the strain. This study sought to investigate how femoral ligament offset relates to post-operative navigation kinematics and how outcomes are affected by component position in relation to ligament attachment sites.

Method

A database of TKA patients operated on by two surgeons from 1-Jan-2014 who had a pre-operative CT scan were assessed. Bone density of the CT scan was used to determine the medial and lateral collateral attachments. Navigation (OmniNav, Raynham, MA) was used in all surgeries, laxity data from the navigation unit was paired to the CT scan. 12-month postoperative Knee Osteoarthritis and Outcome Score (KOOS) score and a postoperative CT scan were taken. Preoperative segmented bones and implants were registered to the postoperative scan to determine change in anatomy.

Epicondylar offsets from the distal and posterior condyles (of the native knee and implanted components), resections, maximal flexion and extension of the knee and coronal plane laxity were assessed. Relationships between these measurements were determined. Surgical technique was a mix of mechanical gap balancing and kinematically aligned knees using Omni (Raynham, MA) Apex implants.

Results

119 patients were identified in the database. 60% (71) were female and the average age was 69.0 years (+/− 8.1). The average distal femoral bone resection was 7.5 mm (+/− 1.6) medially and 5.4 mm (+/− 2.1) laterally, and posterior 10.2 mm (+/− 1.7) medially and 8.4 mm (+/− 1.8) laterally, with implant replacement thicknesses 9 mm distally and 11 mm posterior. Maximum flexion of the knee post implantation was 121.5° (+/− 8.1) from a preoperative value of 117.9° (+/− 9.5).

Change in the collateral ligament offsets brought on by surgery had significant correlations with several laxity and flexion measures. Increase in the posterior offset of the medial collateral attachment brought on by surgery was shown to decrease the maximum flexion attained (coefficient = −0.53, p < 0.001), Figure 1. Increased distal medial offset post-operatively compared to the posterior offset is significantly correlated with improved KOOS pain outcomes (coefficient = 0.23, p = 0.01). Similarly, a decrease in the distal offset of the lateral collateral ligament increased the coronal plane laxity in extension (coefficient = 0.37, p < 0.001), while the posterior lateral resection was observed to correlate with postoperative coronal laxity in flexion (coefficient = 0.42, p < 0.001).

Conclusions

Accounting for variation in ligament offset during surgically planning may improve balancing outcomes. Although new alignment approaches, such as kinematic alignment, have been able to demonstrate improvements in short term outcomes, elimination of postoperative dissatisfaction has not been achieved. The interaction of an alignment strategy with a given patient's specific anatomy may be the key to unlocking further TKA patient outcome gains.


Email: