header advert
Results 1 - 5 of 5
Results per page:
Bone & Joint Research
Vol. 11, Issue 4 | Pages 229 - 238
11 Apr 2022
Jaeger S Eissler M Schwarze M Schonhoff M Kretzer JP Bitsch RG

Aims

One of the main causes of tibial revision surgery for total knee arthroplasty is aseptic loosening. Therefore, stable fixation between the tibial component and the cement, and between the tibial component and the bone, is essential. A factor that could influence the implant stability is the implant design, with its different variations. In an existing implant system, the tibial component was modified by adding cement pockets. The aim of this experimental in vitro study was to investigate whether additional cement pockets on the underside of the tibial component could improve implant stability. The relative motion between implant and bone, the maximum pull-out force, the tibial cement mantle, and a possible path from the bone marrow to the metal-cement interface were determined.

Methods

A tibial component with (group S: Attune S+) and without (group A: Attune) additional cement pockets was implanted in 15 fresh-frozen human leg pairs. The relative motion was determined under dynamic loading (extension-flexion 20° to 50°, load-level 1,200 to 2,100 N) with subsequent determination of the maximum pull-out force. In addition, the cement mantle was analyzed radiologically for possible defects, the tibia base cement adhesion, and preoperative bone mineral density (BMD).


Bone & Joint Research
Vol. 11, Issue 2 | Pages 82 - 90
7 Feb 2022
Eckert JA Bitsch RG Sonntag R Reiner T Schwarze M Jaeger S

Aims

The cemented Oxford unicompartmental knee arthroplasty (OUKA) features two variants: single and twin peg OUKA. The purpose of this study was to assess the stability of both variants in a worst-case scenario of bone defects and suboptimal cementation.

Methods

Single and twin pegs were implanted randomly allocated in 12 pairs of human fresh-frozen femora. We generated 5° bone defects at the posterior condyle. Relative movement was simulated using a servohydraulic pulser, and analyzed at 70°/115° knee flexion. Relative movement was surveyed at seven points of measurement on implant and bone, using an optic system.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 113 - 113
1 Dec 2020
Kempfert M Schwarze M Angrisani N Welke B Willbold E Reifenrath J
Full Access

Chronic rotator cuff tears are a major problem especially in the elderly population. Refixation is associated with high re-rupture rates. Therefore new implants or healing methods are needed. For a control of success biomechanical characteristics of native as well as treated tendons are of particular importance.

Currently, tensile tests with static material testing machines are the most common technique for the biomechanical characterization of tendons. Resulting values are the maximum force (Fmax), stiffness and the Young´s modulus. However, no information is given about the allocation of strains over the tendon area. In addition, the determination of Fmax results in tissue destruction thus foreclosing further evaluation like histology.

The Digital Image Correlation (DIC) is a contact-free non-destructive optical measuring method which gives information about distribution of strains by tracking the areal shift of an applied speckle pattern. The needed speckle pattern has to have a high contrast, a homogeneous distribution and a good adhesion to the surface. The method is established for the characterization of construction materials [1] to detect e.g. weak points. The present study examined if DIC is applicable for the complementary biomechanical evaluation of the sheep infraspinatus tendon.

Fine ground powder extracted from a printer cartridge was chosen as a starting point. Preliminary to the in vitro experiments, the powder was applied on sheets with different methods: brushing, blowing, sieving and stamping. Stamping showed best results and was used for further in vitro tests on cadaveric native tendons (n=5). First, the toner powder was transferred to coarse-grained abrasive paper using a brush and stamped on the tendon surface. Afterwards DIC analysis was performed. For the in vivo tests, the left infraspinatus tendon of two German black-headed Mutton Sheep was detached and then refixed with bone anchors, the right tendon was used as native control (authorization: AZ 33.19-42502-04-17/2739). 12 weeks after surgery the animals were euthanized, the shoulders were explanted and DIC measurement performed.

The speckle pattern could be applied adequately on the smooth tendon surfaces of native tendons. All specimens could be analyzed by DIC with sufficient correlation coefficients. The highest displacements were measured in the peripheral areas, whereas the central part of the tendon showed a low displacement. Repaired left tendons showed obvious differences already macroscopically. The tendons were thicker and showed inhomogeneous surfaces. Application of the toner powder by stamping was distinctly more complicated, DIC analysis could not produce sufficient correlation coefficients.

In summary, transfer of DIC to native infraspinatus tendons of sheep was successful and can be further transferred to other animal and human tendons. However, irregular surfaces in tendon scar tissues affect the application of an adequate speckle pattern with a stamp technique. Therefore, further modifications are necessary.

This research project has been supported by the German Research Foundation “Graded Implants FOR 2180 – tendon- and bone junctions” WE 4262/6-1.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 37 - 37
1 Feb 2017
Beckmann N Jaeger S Janoszka M Klotz M Schwarze M Bitsch R
Full Access

Introduction

Revision Total Hip Arthroplasties (THA) have a significantly higher failure rate than primary THA's and the most common cause is aseptic loosening of the cup. To reduce this incidence of loosening various porous metal implants with a rough surface and a porous architecture have been developed which are said to increase early osteointegration. However, for successful osteointegration a minimal micromotion between the implant and the host bone (primary stability) is beneficial. It has not been previously determined if the primary stability for the new Gription® titanium cup differs from that of the old Porocoat® titanium cup.

Material and Methods

In 10 cadaveric pelvises, divided into 20 hemipelvises, bilateral THA's were performed by an experienced surgeon (RGB) following the implant manufacturer's instructions and with the original surgical instruments provided by the company. In randomized fashion the well established Porocoat® titanium implant was implanted on one side of each each hemipelvis whereas on the corresponding opposite side the modified implant with a Gription® coating was inserted. Radiographs were taken to confirm satisfactory operative results. Subsequently, the hemipelvis and cups were placed in a biomechanical testing machine and subjected to physiological cyclic loading.

Three-dimensonal loading corresponded to 30% of the load experienced in normal gait was imposed reflecting the limited weight bearing generally prescribed postoperatively. The dynamic testing took place in a multi-axial testing machine for 1000 cycles. Relative motion and micromotion were quantified using an optical measurement device (Pontos, GOM mbh, Braunschweig, Germany). Statistical evaluation was performed using the Wilcoxon signed-rank test.


The Bone & Joint Journal
Vol. 96-B, Issue 7 | Pages 896 - 901
1 Jul 2014
Reiner T Jaeger S Schwarze M Klotz MC Beckmann NA Bitsch RG

Aseptic loosening of the femoral component is an important indication for revision surgery in unicompartmental knee replacement (UKR). A new design of femoral component with an additional peg was introduced for the cemented Oxford UKR to increase its stability. The purpose of this study was to compare the primary stability of the two designs of component.

Medial Oxford UKR was performed in 12 pairs of human cadaver knees. In each pair, one knee received the single peg and one received the twin peg design. Three dimensional micromotion and subsidence of the component in relation to the bone was measured under cyclical loading at flexion of 40° and 70° using an optical measuring system. Wilcoxon matched pairs signed-rank test was performed to detect differences between the two groups.

There was no significant difference in the relative micromotion (p = 0.791 and 0.380, respectively) and subsidence (p = 0.301 and 0.176, respectively) of the component between the two groups at both angles of flexion. Both designs of component offered good strength of fixation in this cadaver study.

Cite this article: Bone Joint J 2014;96-B:896–901.