header advert
Results 1 - 20 of 73
Results per page:
Bone & Joint Open
Vol. 4, Issue 12 | Pages 932 - 941
6 Dec 2023
Oe K Iida H Otsuki Y Kobayashi F Sogawa S Nakamura T Saito T

Aims

Although there are various pelvic osteotomies for acetabular dysplasia of the hip, shelf operations offer effective and minimally invasive osteotomy. Our study aimed to assess outcomes following modified Spitzy shelf acetabuloplasty.

Methods

Between November 2000 and December 2016, we retrospectively evaluated 144 consecutive hip procedures in 122 patients a minimum of five years after undergoing modified Spitzy shelf acetabuloplasty for acetabular dysplasia including osteoarthritis (OA). Our follow-up rate was 92%. The mean age at time of surgery was 37 years (13 to 58), with a mean follow-up of 11 years (5 to 21). Advanced OA (Tönnis grade ≥ 2) was present preoperatively in 16 hips (11%). The preoperative lateral centre-edge angle ranged from -28° to 25°. Survival was determined by Kaplan-Meier analysis, using conversions to total hip arthroplasty as the endpoint. Risk factors for joint space narrowing less than 2 mm were analyzed using a Cox proportional hazards model.


Bone & Joint Research
Vol. 11, Issue 10 | Pages 715 - 722
10 Oct 2022
Matsuyama Y Nakamura T Yoshida K Hagi T Iino T Asanuma K Sudo A

Aims

Acridine orange (AO) demonstrates several biological activities. When exposed to low doses of X-ray radiation, AO increases the production of reactive radicals (radiodynamic therapy (AO-RDT)). We elucidated the efficacy of AO-RDT in breast and prostate cancer cell lines, which are likely to develop bone metastases.

Methods

We used the mouse osteosarcoma cell line LM8, the human breast cancer cell line MDA-MB-231, and the human prostate cancer cell line PC-3. Cultured cells were exposed to AO and radiation at various concentrations followed by various doses of irradiation. The cell viability was then measured. In vivo, each cell was inoculated subcutaneously into the backs of mice. In the AO-RDT group, AO (1.0 μg) was locally administered subcutaneously around the tumour followed by 5 Gy of irradiation. In the radiation group, 5 Gy of irradiation alone was administered after macroscopic tumour formation. The mice were killed on the 14th day after treatment. The change in tumour volume by AO-RDT was primarily evaluated.


The Bone & Joint Journal
Vol. 103-B, Issue 12 | Pages 1809 - 1814
1 Dec 2021
Nakamura T Kawai A Hagi T Asanuma K Sudo A

Aims

Patients with soft-tissue sarcoma (STS) who undergo unplanned excision (UE) are reported to have worse outcomes than those who undergo planned excision (PE). However, others have reported that patients who undergo UE may have similar or improved outcomes. These discrepancies are likely to be due to differences in characteristics between the two groups of patients. The aim of the study is to compare patients who underwent UE and PE using propensity score matching, by analyzing data from the Japanese Bone and Soft Tissue Tumor (BSTT) registry.

Methods

Data from 2006 to 2016 was obtained from the BSTT registry. Only patients with STS of the limb were included in the study. Patients with distant metastasis at the initial presentation and patients with dermatofibrosarcoma protuberans and well-differentiated liposarcoma were excluded from the study.


Bone & Joint Research
Vol. 9, Issue 11 | Pages 821 - 826
1 Nov 2020
Hagi T Nakamura T Kita K Iino T Asanuma K Sudo A

Aims

Tocilizumab, an interleukin-6 (IL-6) receptor (IL-6R) targeting antibody, enhances the anti-tumour effect of conventional chemotherapy in preclinical models of cancer. We investigated the anti-tumour effect of tocilizumab in osteosarcoma (OS) cell lines.

Methods

We used the 143B, HOS, and Saos-2 human OS cell lines. We first analyzed the IL-6 gene expression and IL-6Rα protein expression in OS cells using reverse transcription real time quantitative-polymerase chain reaction (RT-qPCR) analysis and western blotting, respectively. We also assessed the effect of tocilizumab on OS cells using proliferation and invasion assay.


Bone & Joint Research
Vol. 9, Issue 7 | Pages 360 - 367
1 Jul 2020
Kawahara S Hara T Sato T Kitade K Shimoto T Nakamura T Mawatari T Higaki H Nakashima Y

Aims

Appropriate acetabular component placement has been proposed for prevention of postoperative dislocation in total hip arthroplasty (THA). Manual placements often cause outliers in spite of attempts to insert the component within the intended safe zone; therefore, some surgeons routinely evaluate intraoperative pelvic radiographs to exclude excessive acetabular component malposition. However, their evaluation is often ambiguous in case of the tilted or rotated pelvic position. The purpose of this study was to develop the computational analysis to digitalize the acetabular component orientation regardless of the pelvic tilt or rotation.

Methods

Intraoperative pelvic radiographs of 50 patients who underwent THA were collected retrospectively. The 3D pelvic bone model and the acetabular component were image-matched to the intraoperative pelvic radiograph. The radiological anteversion (RA) and radiological inclination (RI) of the acetabular component were calculated and those measurement errors from the postoperative CT data were compared relative to those of the 2D measurements. In addition, the intra- and interobserver differences of the image-matching analysis were evaluated.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 87 - 87
1 Feb 2020
Yoshitani J Kabata T Kajino Y Inoue D Ohmori T Taga T Takagi T Ueno T Ueoka K Yamamuro Y Nakamura T Tsuchiya H
Full Access

Aims

Accurate positioning of the acetabular component is essential for achieving the best outcome in total hip arthroplasty (THA). However, the acetabular shape and anatomy in severe hip dysplasia (Crowe type IV hips) is different from that of arthritic hips. Positioning the acetabular component in the acetabulum of Crowe IV hips may be surgically challenging, and the usual surgical landmarks may be absent or difficult to identify. We analyzed the acetabular morphology of Crowe type IV hips using CT data to identify a landmark for the ideal placement of the centre of the acetabular component as assessed by morphometric geometrical analysis and its reliability.

Patients and Methods

A total of 52 Crowe IV and 50 normal hips undergoing total hip arthroplasty were retrospectively identified. In this CT-based simulation study, the acetabular component was positioned at the true acetabulum with a radiographic inclination of 40° and anteversion of 20° (Figure 1). Acetabular shape and the position of the centre of the acetabular component were analyzed by morphometric geometrical analysis using the generalized Procrustes analysis (Figure 2). To describe major trends in shape variations within the sample, we performed a principal component analysis of partial warp variables (Figure 3).


The Bone & Joint Journal
Vol. 101-B, Issue 2 | Pages 189 - 197
1 Feb 2019
Yoshitani J Kabata T Kajino Y Ueno T Ueoka K Nakamura T Tsuchiya H

Aims

We analyzed the acetabular morphology of Crowe type IV hips using CT data to identify a landmark for the ideal placement of the centre of the acetabular component, as assessed by morphometric geometrical analysis, and its reliability.

Patients and Methods

A total of 52 Crowe IV hips (42 patients; seven male, 35 female; mean age 68.5 years (32 to 82)) and 50 normal hips (50 patients; eight male, 42 female; mean age 60.7 years (34 to 86)) undergoing total hip arthroplasty were retrospectively identified. In this CT-based simulation study, the acetabular component was positioned at the true acetabulum with a radiological inclination of 40° and anteversion of 20°. Acetabular shape and the position of the centre of the acetabular component were analyzed by morphometric geometrical analysis using the generalized Procrustes analysis.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 47 - 47
1 Mar 2017
Nakamura T Niki Y Nagai K Sassa T Heldreth M
Full Access

Introduction

Design evolution of total knee arthroplasty (TKA) has improved implant durability and clinical outcomes. However, it has been reported that some patients have limited satisfaction with their operated knees [1].

In view of better patient satisfaction, there have been growing interests in anatomically aligned TKA. The anatomically aligned TKA technique aims to replicate natural joint line of the patients [2][3]. However, restoration of natural joint line may be difficult for the knees with severe deformity, as their joint alignment with respect to bony landmarks at a time of surgery may be critically different from their pre-diseased state.

The purpose of this study is to investigate alignment of the tibial growth plate with respect to tibial anatomical landmarks for possible application in estimation of pre-diseased joint alignment.

Methods

Three-dimensional tibial models were created from CT scans of 22 healthy Japanese knees (M7:F15, Age 31.0±12.6 years) using Mimics (Materialise NV, Leuven, Belgium).

The mid-sagittal plane of the tibia was defined by medial margin of the tibial tuberosity, origin of the PCL and center of the foot joint. The tibial plateau (or joint line plane) was determined by following three points; a dwell point of aligned femur on lateral tibial articular surface, and two points at anterior and posterior rim of medial tibial articular surface defined within sagittal plane that coincide with dwell point of femur on medial tibia. All measurements were made with respect to the mid-sagittal plane.

The shape of the tibial growth plate (GP) was extracted using Livewire function and mask editing tools of Mimics. To determine 3D orientation of the GP, moment of inertia axes were calculated for the 3D model. The inertia axes were also determined for medial and lateral half of the GP (Figure 1).


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 73 - 73
1 May 2016
Nakamura T Niki Y Nagai K Sassa T Heldreth M
Full Access

Introduction

Kinematically or anatomically aligned total knee arthroplasty (TKA) has been reported to provide improved clinical outcomes by replicating patient's original joint line [1][2].

It has been known that tibial (joint line) varus varies among patients, and the tibial varus would increase over progression of arthritis and bone remodeling. For those patients with significant deformity, the current tibial varus may significantly differ from its pre-diseased state.

In this exploratory study, geometry and alignment of the tibial growth plate were measured with respect to tibial anatomical landmarks in order to better understand modes of tibial deformity and seek possible application in reconstructing pre-diseased joint alignment.

Methods

CT scans of sixteen healthy Japanese knees (M6:F10, Age 31.9±13.9 years) were studied. Three-dimensional reconstruction models were created using Mimics 17 (Materialise, Leuven, Belgium). First, a mid-sagittal tibial reference plane, for comparing the varus/valgus orientation of the tibial plateau to that of the growth plate, was defined by the medial margin of the tibial tuberosity, origin of the PCL and center of the foot joint. The tibial plateau (or joint line plane) was determined from three points; dwell point of femur (aligned in extension) on lateral tibial articular surface, and two points at anterior and posterior rim of medial tibial articular surface sampled in the sagittal view and coinciding with dwell point of femur on medial tibia.

Then, a three-dimensional model of the tibial growth plate was extracted using the Livewire function and mask editing tools in Mimics. To determine 3D orientation of the growth plate (GP), the vertical mass moment of inertia axis was calculated for the 3D model. The inertia axes were also determined for medial and lateral half of the GP (Figure 1).


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 150 - 150
1 Jan 2016
Liao Y Whitaker D Nakamura T Hardaker C
Full Access

Introduction

Moderately crosslinked, thermally treated ultrahigh molecular weight polyethylene (UHMWPE) has to date demonstrated a good balance of wear resistance and mechanical properties. MARATHON™ Polyethylene (DePuySynthes Joint Reconstruction, Warsaw, IN) is made from polyethylene resin GUR 1050, gamma-irradiated at a dose of 5.0 Mrads to create crosslinking of polyethylene, and followed by a remelting process to eliminate free radicals for oxidative stability. 10-year clinical study [1] and laboratory wear simulation tests [2–3] have reported excellent wear performance of the MARATHON poly.

There continues to be demand for improved head-to-shell ratio acetabular systems because larger head sizes have the benefits of increased stability and range of motion. The increased head-to-shell ratio is often times achieved by using a reduced liner thickness. One of the clinical concerns of thinner poly liners is the potential for rim fracture, particularly in the occurrences of rim loading or impingement at high cup angles [4–7].

This study investigated the performance of thinner poly liners to the challenge of high angle rim loading and neck-to-liner impingement.

Materials and Methods

Three groups of ETO sterilized MARATHON polyethylene liners (ID/OD: 28/44, 32/48, and 36/52 mm) were paired with matching CoCrMo heads (n=6 each group). To simulate rim loading, liners were assembled in the metal shells tilted at 64° (Figure 1) with sinusoidal loading (0 to 5000N at 3Hz) in a 37°C water bath for 5-million cycles or until component failure, whichever occurred first.

For neck-liner impingement testing, metal shells were potted at 54º (in the abduction/adduction plane with a ±10° of motion per ISO 14242–1 [8]) on a hip simulator (n=4 each group) using a physiological loading (max 3000N at 1Hz) for 3-million cycles (Figure 2). The impingement occurred at 64º during the simulated gait cycle (Figure 3).

The liners were inspected every million cycles, using a high intensity light to search for signs of crack initiation and/or fractures. Both test methods were validated to be able to replicate liner fractures.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 131 - 131
1 Jan 2016
Fitzpatrick CK Clary C Nakamura T Rullkoetter P
Full Access

Introduction

The current standard for alignment in total knee arthroplasty (TKA) is neutral mechanical axis within 3° of varus or valgus deviation [1]. This configuration has been shown to reduce wear and optimally distribute load on the polyethylene insert [2]. Two key factors (patient-specific hip-knee-ankle (HKA) angle and surgical component alignment) influence load distribution, kinematics and soft-tissue strains across the tibiofemoral (TF) joint. Improvements in wear characteristics of TKA materials have facilitated a trend for restoring the anatomic joint line [3]. While anatomic component alignment may aid in restoring more natural kinematics, the influence on joint loads and soft-tissue strains should be evaluated. The purpose of the current study was to determine the effect of varus component alignment in combination with a variety of HKA limb alignments on joint kinematics, loads and soft-tissue strain.

Methods

A dynamic three-dimensional finite element model of the lower limb of a TKA patient was developed. Detailed description of the model has been previously published [4]. The model included femur, tibia and patella bones, TF ligaments, patellar tendon, quadriceps and hamstrings, and was virtually implanted with contemporary cruciate-retaining fixed-bearing TKA components. The model was initially aligned in ideal mechanical alignment with neutral HKA limb alignment. A design-of-experiments (DOE) study was performed whereby component placement was altered from neutral to 3° and 7° varus alignment, and HKA angle was altered from neutral to ±3° and ±7° (valgus and varus) (Figure 1).


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 98 - 98
1 Jan 2016
Kawamura H Oe K Ueda Y Okamoto N Nakamura T Ueda N Iida H
Full Access

Introduction

Highly cross-linked polyethylene (HXLPE) was developed to reduce the wear of articular-bearing surfaces in total hip arthroplasty (THA). This study aimed to compare the mean linear wear of HXLPE with a 22.225 mm diameter zirconia head with that of conventional polyethylene (CPE) with a 22.225 mm diameter ortron head.

Materials and Methods

A prospective cohort study performed on 93 patients (113 hips) who had undergone primary cemented THAs at our hospital between January 2001 and December 2003. The subject population included 85 females and 8 males with a mean age of 58.0 years (22 to 78) at the time of surgery. The mean follow-up period was 10.2 years (9 to 12). We randomly used two types of implants: the HXLPE cup with a 22.225 mm diameter zirconia head (Kyocera Medical, Osaka, Japan) in 60 hips (HXLPE group), and the CPE cup with a 22.225 mm diameter ortron head (DePuy International, Leeds, UK) in 53 hips (CPE group). Linear wear (penatration) by computer-assisted method with PolyWare software (Draftware Inc, Indiana, USA) was measured at 10 years. Anteroposterior radiographs were evaluated for osteolysis or component loosening defined by the criteria of Hodgkinson et al. Analysis of covariance using the general linear models procedure was carried out to determine the linear wear rate difference between the groups after adjusting for variables (age at surgery, sex, body mass index, vertical distance, horizontal distance, cup inclination, and cup anteversion) as covariates. The differences were considered significant when the p value was <0.05.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 96 - 96
1 Jan 2016
Oe K Ueda N Nakamura T Okamoto N Ueda Y Iida H
Full Access

Introduction

Antibiotic-loaded acrylic cement (ALAC) is employed in the treatment or prevention of infected total hip arthroplasty (THA). We have administered vancomycin (VCM) as the ALAC for the treatment of THAs with methicillin-resistant Staphylococcus aureus, or for the prevention of THAs with high risks. This study aimed to evaluate the serum concentration of VCM from ALAC in THA or cement beads.

Methods

Between December 2013 and February 2014, 16 hips (16 patients) underwent application of the ALAC including VCM at our institution. Two hips were used for the treatment of infection, in the first stage of two-staged revision THAs (i.e., cement beads). Two hips were used for the both treatment and prevention of infection, in one-staged revision THAs. Twelve hips were used for the prevention of infection, in aseptic revision THAs or primary THAs with high risks. Patients were classified into two groups depending on the VCM concentration of ALAC, as follows: high-dose group (2 hips), average 4.4% (3.8–5.0%); low-dose group (14 hips), average 1.6% (1.3–2.5%). The amount of VCM placed as ALAC into the hip was calculated by using the remaining ALAC. The serum concentration of VCM was evaluated at 1 day, 4 days, 7 days, and 28 days after surgery. Statistical analysis was performed by using the t-test, and the differences were considered significant when the p value was <0.05.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 132 - 132
1 Jan 2016
Fitzpatrick CK Nakamura T Niki Y Rullkoetter P
Full Access

Introduction

A large number of total knee arthroplasty (TKA) patients, particularly in Japan, India and the Middle East, exhibit anatomy with substantial proximal tibial torsion. Alignment of the tibial components with the standard anterior-posterior (A-P) axis of the tibia can result in excessive external rotation of the tibial components with respect to femoral component alignment. This in turn influences patellofemoral (PF) mechanics and forces required by the extensor mechanism. The purpose of the current study was to determine if a rotating-platform (RP) TKA design with an anatomic patellar component reduced compromise to the patellar tendon, quadriceps muscles and PF mechanics when compared to a fixed-bearing (FB) design with a standard dome-shaped patellar component.

Methods

A dynamic three-dimensional finite element model of the knee joint was developed and used to simulate a deep knee bend in a patient with excessive external tibial torsion (Figure 1). Detailed description of the model has been previously published [1]. The model included femur, tibia and patellar bones, TKA components, patellar ligament, quadriceps muscles, PF ligaments, and nine primary ligaments spanning the TF joint. The model was virtually implanted with two contemporary TKA designs; a FB design with domed patella, and a RP design with anatomic patella. The FB design was implanted in two different alignment conditions; alignment to the tibial A-P axis, and optimal alignment for bone coverage. Four different loading conditions (varying internal-external (I-E) torque and A-P force) were applied to the model to simulate physiological loads during a deep knee bend. Quadriceps muscle force, patellar tendon force, and PF and TF joint forces were compared between designs.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 120 - 120
1 Jan 2016
Watanabe T Muneta T Sekiya I Koga H Horie M Nakamura T Otabe K Banks S
Full Access

INTRODUCTION

Total knee arthroplasty (TKA) is one of the most successful and beneficial treatments for osteoarthritic knees. We have developed posterior-stabilized (PS) total knee prosthesis for Asian patients, especially Japanese patients, and have used it since November, 2010. The component was designed based on the CT images of osteoarthritic knees, aiming to achieve deep flexion and stability. The purpose of this study was to analyze in- vivo kinematics of this new prosthesis.

METHODS

We analyzed a total of 28 knees implanted with PS TKAs: Fourteen knees with the new PS prosthesis (group A), and the other fourteen knees with a popular PS prosthesis as a control group (group B). Preoperative data of both groups were not significantly difference. Flat-panel radiographic knee images were recorded during five static knee postures including full extension standing, lunge at 90° and maximum flexion, and kneeling at 90° and maximum flexion. The three-dimensional position and orientation of the implant components were determined using model-based shape matching techniques. The results of this shape-matching process have standard errors of approximately 0.5° to 1.0° for rotations and 0.5 to 1.0 mm for translations in the sagittal plane. Unpaired t-tests were used for statistical analysis and probability values less than 0.05 were considered significant.


The Bone & Joint Journal
Vol. 97-B, Issue 11 | Pages 1582 - 1587
1 Nov 2015
Suzuki T Seki A Nakamura T Ikegami H Takayama S Nakamura M Matsumoto M Sato K

This retrospective study was designed to evaluate the outcomes of re-dislocation of the radial head after corrective osteotomy for chronic dislocation. A total of 12 children with a mean age of 11 years (5 to 16), with further dislocation of the radial head after corrective osteotomy of the forearm, were followed for a mean of five years (2 to 10). Re-operations were performed for radial head re-dislocation in six children, while the other six did not undergo re-operation (‘non-re-operation group’). The active range of movement (ROM) of their elbows was evaluated before and after the first operation, and at the most recent follow-up.

In the re-operation group, there were significant decreases in extension, pronation, and supination when comparing the ROM following the corrective osteotomy and following re-operation (p < 0.05).

The children who had not undergone re-operation achieved a better ROM than those who had undergone re-operation.

There was a significant difference in mean pronation (76° vs 0°) between the non- re-operation and the re-operation group (p = 0.002), and a trend towards increases in mean flexion (133° vs 111°), extension (0° vs 23°), and supination (62° vs 29°). We did not find a clear benefit for re-operation in children with a re-dislocation following corrective osteotomy for chronic dislocation of the radial head.

Cite this article: Bone Joint J 2015;97-B:1582–7.


The Bone & Joint Journal
Vol. 97-B, Issue 6 | Pages 847 - 852
1 Jun 2015
Nakamura T Matsumine A Asanuma K Matsubara T Sudo A

The aim of this study was to determine whether the high-sensitivity modified Glasgow prognostic score (Hs-mGPS) could predict the disease-specific survival and oncological outcome in adult patients with non-metastatic soft-tissue sarcoma before treatment. A total of 139 patients treated between 2001 and 2012 were retrospectively reviewed. The Hs-mGPS varied between 0 and 2. Patients with a score of 2 had a poorer disease-specific survival than patients with a score of 0 (p < 0.001). The estimated five-year rate of disease-specific survival for those with a score of 2 was 0%, compared with 85.4% (95% CI 77.3 to 93.5) for those with a score of 0. Those with a score of 2 also had a poorer disease-specific survival than those with a score of 1 (75.3%, 95% CI 55.8 to 94.8; p < 0.001). Patients with a score of 2 also had a poorer event-free rate than those with a score of 0 (p < 0.001). Those with a score of 2 also had a poorer event-free survival than did those with a score of 1 (p = 0.03). A multivariate analysis showed that the Hs-mGPS remained an independent predictor of survival and recurrence. The Hs-mGPS could be a useful prognostic marker in patients with a soft-tissue sarcoma.

Cite this article: Bone Joint J 2015; 97-B:847–52.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 209 - 209
1 Jul 2014
Ishikawa M Ito H Yoshitomi H Murata K Shibuya H Furu M Kitaori T Nakamura T Matsuda S
Full Access

Summary Statement

MCP-1/ CCR2 axis at the early phase plays a pivotal role in the fracture healing. Inflammation plays a pivotal role in fracture healing. Among them, chemokines play key roles in inflammation. Monocyte chemotactic protein-1 (MCP-1), via its receptor C-C chemokine receptor 2 (CCR2), acts as a potent chemoattractant for various cells to promote migration from circulation to inflammation site. Thus, the importance of MCP-1/CCR2 axis in fracture healing has been suggested. However, the involvement of MCP-1/CCR2 axis tofracture site is not fully elucidated.

Results

PCR Array: The expression of MCP-1 and MCP-3 had increased on day 2 than 0 or 7 in the rib fracture healing. Immunohistochemistry Staining: To verify the localization of MCP-1 expression, we examined the Wild type (WT)-mouse rib fracture healing. We observed high expression of MCP-1 and MCP-3 at the periosteum and the endosteum on post-fracture day 3. In vivo Antagonist Study: To elucidate whether MCP-1/CCR2 axis is involved during the early phase of fracture healing, we continuously administered RS102895, CCR2 antagonist, before or after rib fracture. Micro-CT analysis showed delayed fracture healing in the before-group compared with both the control and after-group. On day 21, the hard callus volume in the before-group was significantly smaller than that in the control-group. Histological analysis showed that fractures in both the control and the after-groups were healed by day 21. In contrast, less of cartilage in the callus was observed in the before-group on day 7. Gain of Function: To examine the roles of MCP-1 at the periosteum and the endosteum during the fracture healing, we created a segmental bone graft exchanging model. The bone grafts were transplanted from MCP-1−/− mice to another MCP-1−/− mice (KO-to-KO). Micro-CT analysis showed that KO-to-KO transplantation led to the delay of fracture healing on day 21. Next, we created exchanging-bone graft models between MCP-1−/− and WT mice, in which a segmental bone derived from a WT mouse was transplanted into a host MCP-1−/− mouse (WT-to-KO). In contrast to KO-to-KO bone graft transplantation, the transplantation of WT-derived graft into host KO mouse resulted in a significant increase of new bone formation on day 21. Histological analysis revealed that marked and localised induction of MCP-1 expression in the periosteum and the endosteum around the WT-derived graft was observed in the host MCP-1−/− mouse. Loss of Function: To validate whether MCP-1 is a crucial chemokine for fracture healing, we created WT-to-WT and KO-to-WT bone graft models. When WT-donor graft was transplanted into WT-host, abundant new bone formation was observed around a WT-derived graft on day 21. In contrast, transplantation of KO-derived graft into WT-host resulted in a marked reduction of periosteal bone formation on a donor graft.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 352 - 352
1 Jul 2014
Oki S Matsumura N Morioka T Ikegami H Kiriyama Y Nakamura T Toyama Y Nagura T
Full Access

Summary Statement

We measured scapulothoracic motions during humeral abduction with different humeral rotations in healthy subjects and whole cadaver models and clarified that humeral rotation significantly influenced scapular kinematics.

Introduction

Scapular dyskinesis has been observed in various shoulder disorders such as impingement syndrome or rotator cuff tears. However, the relationship between scapular kinematics and humeral positions remains unclear. We hypothesised that humeral rotation would influence scapular motions during humeral abduction and measured scapular motion relative to the thorax in the healthy subjects and whole cadavers.


The Bone & Joint Journal
Vol. 96-B, Issue 5 | Pages 665 - 672
1 May 2014
Gaston CL Nakamura T Reddy K Abudu A Carter S Jeys L Tillman R Grimer R

Bone sarcomas are rare cancers and orthopaedic surgeons come across them infrequently, sometimes unexpectedly during surgical procedures. We investigated the outcomes of patients who underwent a surgical procedure where sarcomas were found unexpectedly and were subsequently referred to our unit for treatment. We identified 95 patients (44 intra-lesional excisions, 35 fracture fixations, 16 joint replacements) with mean age of 48 years (11 to 83); 60% were males (n = 57). Local recurrence arose in 40% who underwent limb salvage surgery versus 12% who had an amputation. Despite achieving local control, overall survival was worse for patients treated with amputation rather than limb salvage (54% vs 75% five-year survival). Factors that negatively influenced survival were invasive primary surgery (fracture fixation, joint replacement), a delay of greater than two months until referral to our oncology service, and high-grade tumours. Survival in these circumstances depends mostly on factors that are determined prior to definitive treatment by a tertiary orthopaedic oncology unit. Limb salvage in this group of patients is associated with a higher rate of inadequate marginal surgery and, consequently, higher local recurrence rates than amputation, but should still be attempted whenever possible, as local control is not the primary determinant of survival.

Cite this article: Bone Joint J 2014;96-B:665–72.