header advert
Results 21 - 40 of 42
Results per page:
The Bone & Joint Journal
Vol. 100-B, Issue 10 | Pages 1303 - 1309
1 Oct 2018
Nodzo SR Chang C Carroll KM Barlow BT Banks SA Padgett DE Mayman DJ Jerabek SA

Aims

The aim of this study was to evaluate the accuracy of implant placement when using robotic assistance during total hip arthroplasty (THA).

Patients and Methods

A total of 20 patients underwent a planned THA using preoperative CT scans and robotic-assisted software. There were nine men and 11 women (n = 20 hips) with a mean age of 60.8 years (sd 6.0). Pelvic and femoral bone models were constructed by segmenting both preoperative and postoperative CT scan images. The preoperative anatomical landmarks using the robotic-assisted system were matched to the postoperative 3D reconstructions of the pelvis. Acetabular and femoral component positions as measured intraoperatively and postoperatively were evaluated and compared.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_12 | Pages 65 - 65
1 Oct 2018
Haas SB Premkumar A Lovecchio FC Stepan JG Koch CN Carroll KM Sculco PK Jerabek SA Della Valle AG Mayman DJ Pearle AD Alexiades MM Albert TJ Cross MB
Full Access

Introduction

Over the past few decades, opioid abuse has become a major threat to public health. In 2013 alone, enough opioid prescriptions were written in the United States for every American adult to have their own bottle of pills. Since then, opioid prescribing rates and opioid related deaths have continued to grow, with over 46 people dying on average each day from prescription opioid overdoses in 2016. Orthopaedic surgeons are among the top 5 specialties in the number of opioid prescriptions written. For many common surgeries, such as total knee arthroplasty (TKA), post-discharge prescriptions are based on prescriber habits and opinion. There exists limited data-driven protocols to guide post-operative opioid prescribing practices. The purpose of this prospective study was to determine the average postoperative opioid consumption in patients undergoing primary TKA using a novel mobile text messaging platform. We hypothesized that majority of patients undergoing TKA do not properly dispose of left over pills after surgery.

Methods

95 patients undergoing primary unilateral TKA with one of nine arthroplasty surgeons at a single orthopaedic specialty hospital were prospectively enrolled. Daily pain levels and opioid consumption, and quantity and disposal patterns for left over medications were collected for six weeks following surgery using a novel mobile phone text messaging system. This system automatically queried patients twice a day, storing responses on a secure third-party host that investigators monitored and used to generate data reports in real-time.


The Bone & Joint Journal
Vol. 100-B, Issue 10 | Pages 1289 - 1296
1 Oct 2018
Berliner JL Esposito CI Miller TT Padgett DE Mayman DJ Jerabek SA

Aims

The aims of this study were to measure sagittal standing and sitting lumbar-pelvic-femoral alignment in patients before and following total hip arthroplasty (THA), and to consider what preoperative factors may influence a change in postoperative pelvic position.

Patients and Methods

A total of 161 patients were considered for inclusion. Patients had a mean age of the remaining 61 years (sd 11) with a mean body mass index (BMI) of 28 kg/m2 (sd 6). Of the 161 patients, 82 were male (51%). We excluded 17 patients (11%) with spinal conditions known to affect lumbar mobility as well as the rotational axis of the spine. Standing and sitting spine-to-lower-limb radiographs were taken of the remaining 144 patients before and one year following THA. Spinopelvic alignment measurements, including sacral slope, lumbar lordosis, and pelvic incidence, were measured. These angles were used to calculate lumbar spine flexion and femoroacetabular hip flexion from a standing to sitting position. A radiographic scoring system was used to identify those patients in the series who had lumbar degenerative disc disease (DDD) and compare spinopelvic parameters between those patients with DDD (n = 38) and those who did not (n = 106).


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 123 - 123
1 Jan 2016
Esposito C Gladnick B Lee Y Lyman S Wright T Mayman DJ Padgett DE
Full Access

Introduction

Acetabular component position is considered a major factor affecting the etiology of hip dislocation. The ‘Lewinnek safe zone’ has been the most widely accepted range for component position to avoid hip dislocation, but recent studies suggest that this safe zone is outdated. We used a large prospective institutional registry to ask: 1) is there a ‘safe zone’ for acetabular component position, as measured on an anteroposterior radiograph, within which the risk of hip dislocation is low?, and 2) do other patient and implant factors affect the risk of hip dislocation?

Materials and Methods

From 2007 to 2012, 19,449 patients (22,097 hip procedures) were recorded in an IRB approved prospective total joint replacement registry. All patients who underwent primary THA were prospectively enrolled, of which 9,107 patients consented to participate in the registry. An adverse event survey (80% compliance) was used to identify patients who reported a dislocation event in the six months after hip replacement surgery. Postoperative AP radiographs of hips that dislocated were matched with AP radiographs of stable hips, and acetabular position was measured using Ein Bild Röntgen Analyse software. Dislocators in radiographic zones (± 5°, ± 10°, ± 15° boundaries) were counted for every 1° of anteversion and inclination angles.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 126 - 126
1 Jan 2016
Esposito C Miller T Kim HJ Mayman DJ Jerabek SA
Full Access

Introduction

Pelvic flexion and extension in different body positions can affect acetabular orientation after total hip arthroplasty, and this may predispose patients to dislocation. The purpose of this study was to evaluate functional acetabular component position in total hip replacement patients during standing and sitting. We hypothesize that patients with degenerative lumbar disease will have less pelvic extension from standing to sitting, compared to patients with a normal lumbar spine or single level spine disease.

Methods

A prospective cohort of 20 patients with primary unilateral THR underwent spine-to-ankle standing and sitting lateral radiographs that included the lumbar spine and pelvis using EOS imaging. Patients were an average age of 58 ± 12 years and 6 patients were female. Patients had (1) normal lumbar spines or single level degeneration, (2) multilevel degenerative disc disease or (3) scoliosis. We measured acetabular anteversion (cup relative to the horizontal), sacral slope angle (superior endplate of S1 relative to the horizontal), and lumbar lordosis angles (superior endplates of L1 and S1). We calculated the absolute difference in acetabular anteversion and the absolute difference in lumbar lordosis during standing and sitting (Figure 1).


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 17 - 17
1 Jan 2016
Maratt J Carroll K Jerabek SA Mayman DJ
Full Access

Tranexamic acid (TXA) has been shown to reduce post-operative blood loss, but the dosage and method of administration remains controversial. The purpose of our study was to study the effectiveness of topical TXA in a cohort of patients (n=224) undergoing TKA by a single surgeon. Two groups of patients who received topical TXA were compared to patients who did not receive TXA. Patients that received topical TXA had the least early postoperative blood loss, with patients that received topical TXA with a tourniquet and a drain having the least. Patients receiving TXA required fewer transfusions than patients who did not receive TXA and there was no difference in the rate of symptomatic DVT/PE. Our results support the use of topical TXA during TKA.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 124 - 124
1 Jan 2016
Mclawhorn A Carroll K Esposito C Maratt J Mayman DJ
Full Access

Background

Digital templating is a critical part of preoperative planning for total hip arthroplasty (THA) that is increasingly used by orthopaedic surgeons as part of their preoperative planning process. Digital templating has been used as a method of reducing hospital costs by eliminating the need for acetate films and providing an accurate method of preoperative planning. Pre-operative templating can help anticipate and predict appropriate component sizes to help avoid postoperative leg length discrepancy, failure to restore offset, femoral fracture, and instability. A preoperative plan using digital radiographs for surgical templating for component size can improve intraoperative accuracy and precision. While templating on conventional and digital radiographs is reliable and accurate, the accuracy of templating on digital images acquired with a novel biplanar imaging system (EOS Imaging Inc, Cambridge, MA, USA) remains unknown. EOS imaging captures whole body images of a standing patient without stitching or vertical distortion, less magnification error and exposes patients to less radiation than a pelvis AP radiograph. Therefore, the purpose of this study was to compare EOS imaging and conventional anteroposterior (AP) xrays for preoperative digital templating for THA, and compare the results to the implant sizes used intraoperatively.

Methods

Forty primary unilateral THA patients had preoperative supine AP xrays and standing EOS imaging. The mean age for patients was 61 ± 8 years, the mean body mass index 29 ± 6 kg/m2 and 21 patients were female. All patients underwent a THA with the same THA system (R3 Acetabular System and Synergy Cementless Stem, Smith & Nephew, TN, USA) by a single surgeon. Two blinded observers preoperatively templated using both AP xray and EOS imaging for each patient to predict acetabular size, femoral component size, and stem offset. All templating was performed by two observers with standard software (Ortho Toolbox, Sectra AB, Linköping, Sweden) [Figure 1] one week prior to surgery, and were compared using the Cronbach's alpha (∝) coefficient of reliability. The accuracy of templating was reported as the average percent agreement between the implanted size and the templated size for each component.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 44 - 44
1 Oct 2014
McLawhorn AS Weeks KD Nam D Sculco PK Mayman DJ
Full Access

Obesity is a risk factor for acetabular malposition when total hip arthroplasty (THA) is performed with manual orientation techniques. However, conflicting evidence exists regarding the usefulness of computer-assisted surgery for performing THA in obese patients. The purpose of this study was to compare the precision and accuracy of imageless navigation for acetabular component placement in obese versus non-obese patients.

After institutional review board approval, 459 THA performed for primary hip osteoarthritis were reviewed retrospectively. The same imageless navigation system was used for acetabular component placement in all THA. During surgery the supine anterior pelvic plane was referenced superficially. THA was performed via posterolateral approach in the lateral position. A hemispherical acetabular component was used, with target inclination of 40° and target anteversion of 25°. Computer software was used to determine acetabular orientation on postoperative anteroposterior pelvic radiographs. Obese patients (BMI ≥ 30 kg/m2) were compared to non-obese patients. A 5° difference in mean orientation angles was considered clinically significant. Orientation error (accuracy) was defined as the absolute difference between the target orientation and the measured orientation. Student's t test was used to compare means. Hartley's test compared variances of the mean differences (precision). Fisher exact tests examined the relationship between obesity and component placement in the target zone (target ± 10°) for inclination and version. All statistical tests were two-sided with a significance level of 0.05.

Differences in mean inclination and anteversion between obese and non-obese groups were 1.1° (p=0.02 and p=0.08, respectively), and not clinically significant. Inclination accuracy trended toward improvement for non-obese patients (p=0.06). Inclination precision was better for non-obese patients (p=0.006). Accuracy and precision for anteversion were equal between the two groups (p=0.19 and p=0.95, respectively). There was no relationship between obesity and placement of the acetabulum outside of the target ranges for inclination (p=0.13), anteversion (p=0.39) or both (p=0.99), with a trend toward more inclination outliers in obese patients versus non-obese patients (7.3% versus 3.9%).

The observed differences in mean acetabular orientation angles were not clinically significant (< 5°), although inclination orientation was less accurate and precise for obese patients. In contrast to existing literature, we found no difference in the accuracy and precision with regard to anteversion in obese and non-obese patients. We propose that accurate superficial registration of landmarks in obese patients is achievable, and the use of imageless navigation likely improves acetabular positioning in obese and non-obese patients.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 43 - 43
1 Oct 2014
McLawhorn AS Sculco PK Weeks KD Nam D Mayman DJ
Full Access

Surgeons often target the Lewinnek zone (40°±10° of inclination; 15°±10° of anteversion) for acetabular orientation during total hip arthroplasty (THA). However, matching native anteversion (20°-25°) may achieve optimal stability. The purpose of this study was to (1) determine incidence of early dislocation with increased target acetabular anteversion, and (2) report the accuracy of imageless navigation for achieving target acetabular position in a large, single-surgeon cohort.

A posterolateral approach with soft tissue repair was performed in the 553 THA meeting the inclusion criteria. The same imageless navigation system was used for acetabular component placement in all THA. Target acetabular orientation was 40° ± 10° of inclination and 25° ± 10° of anteversion. Computer software was used to measure acetabular positioning on 6-week postoperative anteroposterior pelvic radiographs. Incidence of dislocation within 6 months of surgery was determined. Repeated measures multiple regression using the Generalised Estimating Equations approach was used to identify baseline patient characteristics (age, gender, BMI, primary diagnosis, and laterality) associated with component positioning outside of the targeted ranges for inclination and anteversion. Fisher exact tests were used to examine the relationship between dislocation and component placement in either the Lewinnek safe zone or the targeted zone. All tests were two-sided with a significance level of 0.05.

Mean inclination was 42.2° ± 4.9°, and mean anteversion was 23.9° ± 6.5°. 82.3% of cups were placed within the target zone. Variation in anteversion accounted for 67.3% of outliers. Only body mass index was associated with inclination outside the target range (p = 0.017), and only female gender was associated with anteversion outside the target range (p = 0.030). Six THA (1.1%) experienced early dislocation, and 3 THA (0.54%) were revised for multiple dislocations. There was no relationship between dislocation and component placement in either the Lewinnek zone (p = 0.224) or the target zone (p = 0.287).

This study demonstrates that increasing target acetabular anteversion using the posterolateral approach does not increase the incidence of early THA dislocation. However, the long-term effects on bearing surface wear and stability must be elucidated. The occurrence of instability even in patients within our target zone emphasises the importance of developing patient-specific targets for THA component alignment.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 135 - 135
1 Dec 2013
Nam D Cody E Nguyen J Figgie MP Mayman DJ
Full Access

Background:

Conventional, extramedullary (EM) tibial alignment guides are only 65%–88% accurate in creating a tibial resection within 2° of perpendicular to the tibial mechanical axis in total knee arthroplasty (TKA). The purpose of this study was to compare the overall, tibial component alignment, and the surgeon's ability to achieve a specific, intraoperative goal for alignment between a portable, navigation system (KneeAlign™) and conventional, EM alignment guides.

Methods:

One hundred patients were enrolled in a prospective, randomized controlled study. Fifty patients received a TKA using the KneeAlign™ to perform the tibial resection, and 50 patients an EM alignment guide. Standing AP hip-to-ankle radiographs and lateral knee-to-ankle radiographs were obtained at the first, postoperative visit.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 419 - 419
1 Dec 2013
Ast M Mayman DJ Su E Parks M Della Valle AG Bostrum M Haas SB
Full Access

INTRODUCTION

Wasted implants represent both an increased risk and cost to our healthcare system. In our institution, a sterilely packaged implant that is opened and not implanted is wasted in one out of 20 primary total knee replacement procedures. The cost of these wasted implants exceeds $1 million per year. We propose the introduction of a novel, computer based, e.Label and compatibility system to reduce implant-related medical errors and waste in total knee arthroplasty. We hypothesize that the implementation of this system will help reduce medical errors and wasted implants by improving and standardizing the visual markers and by ensuring that parts are compatible so that implant mismatches and inappropriate laterality are prevented.

METHODS

A software program was implemented which creates an e.Label for all components (Figure 1) and checks imbedded, manufacturer provided, compatibility charts to ensure that parts are of appropriate laterality, and are compatible with each other. Upon implementation, the program was studied prospectively for seven months and compared to a retrospective cohort in regards to number, type, and cost of wasted implants. Critical errors that were detected were also recorded.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 527 - 527
1 Dec 2013
Sculco P Lipman J Klinger C Lazaro LE Mclawhorn A Mayman DJ Ranawat CS
Full Access

Introduction:

Successful total joint arthroplasty requires accruate and reproducible acetabular component position. Acetabular component malposition has been associated with complications inlcuding dislocation, implant loosening, and increased wear. Recent literature had demonstrated that high-volume fellowship trained arthroplasty surgeons are in the “safe zone” for cup inclination and anteversion only 47% of the time. (1) Computer navigation has improved accuracy and reproducibility but remains expensive and cumbersome to many hospital and physicians. Patient specific instrumentation (PSI) has been shown to be effective and efficient in total knee replacements. The purpose of this study was to determine in a cadaveric model the anteversion and inclination accuracy of acetabular guides compared to a pre-operitive plan.

Methods:

8 fresh-frozen cadaveric pelvis specimens underwent Computer Tomography (CT) in order to create a 3D reconstruction of the acetabulum. Based on these 3D reconstruction, a pre-operative plan was made positioning the patient specific acetabulum guides at 40 degrees of inclination and 20 degrees of anteversion in the pelvis.(Figure 1) The guides were created based on the specific bony morphology of the acetabular notch and rim. The guides were created using a 3D printer which allowed for precise recreation of the virtual model. 7 cadaveric specimens underwent creation and implantation of a acetabular guide specific to each specimens bony morphology. Ligamentum, pulvinar, and labum were removed for each cadaver prior to implantation to prevent soft tissue obstruction. The guides were inserted into the acetabular notch with the final position based on the fit of the guide in the notch. (Figure 2) Post-implantation CT was then performed and inclination and anteversion of the implanted guide measured and compared to the preoperative plan.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 136 - 136
1 Dec 2013
Nam D Maher P Ranawat A Padgett DE Mayman DJ
Full Access

Background:

Numerous studies have reported the importance of acetabular component positioning in decreasing dislocation rates, the risk of liner fractures, and bearing surface wear in total hip arthroplasty (THA). The goal of improving acetabular component positioning has led to the development of computer-assisted surgical (CAS) techniques, and several studies have demonstrated improved results when compared to conventional, freehand methods. Recently, a computed tomography (CT)-based robotic surgery system has been developed (MAKO™ Robotic Arm Interactive Orthopaedic System, MAKO Surgical Corp., Fort Lauderdale, FLA, USA), with promising improvements in component alignment and surgical precision. The purpose of this study was to compare the accuracy in predicting the postoperative acetabular component position between the MAKO™ robotic navigation system and an imageless, CAS system (AchieveCAS, Smith and Nephew Inc., Memphis, TN, USA).

Materials and Methods:

30 THAs performed using the robotic navigation system (robotic cohort) were available for review, and compared to the most recent 30 THAs performed using the imageless, CAS system (CAS cohort). The final, intraoperative reading for acetabular abduction and anteversion provided by each navigation system was recorded following each THA. Einsel-Bild-Roentgen analysis was used to measure the acetabular component abduction and anteversion based on anteroposterior pelvis radiographs obtained at each patient's first, postoperative visit (Figure 1). Two observers, blinded to the treatment arms, independently measured all the acetabular components, and the results were assessed for inter-observer reliability.

Comparing the difference between the final, intraoperative reading for both acetabular abduction and anteversion, and the radiographic alignment calculated using EBRA analysis, allowed assessment of the intraoperative predictive capability of each system, and accuracy in determining the postoperative acetabular component position. In addition, the number of acetabular components outside of the “safe zone” (40° + 10° of abduction, 15° + 10° of anteversion), as described by Lewinnek et al., was assessed. Lastly, the operative time for each surgery was recorded.


The Bone & Joint Journal
Vol. 95-B, Issue 5 | Pages 629 - 635
1 May 2013
YaDeau JT Goytizolo EA Padgett DE Liu SS Mayman DJ Ranawat AS Rade MC Westrich GH

In a randomised controlled pragmatic trial we investigated whether local infiltration analgesia would result in earlier readiness for discharge from hospital after total knee replacement (TKR) than patient-controlled epidural analgesia (PCEA) plus femoral nerve block. A total of 45 patients with a mean age of 65 years (49 to 81) received a local infiltration with a peri-articular injection of bupivacaine, morphine and methylprednisolone, as well as adjuvant analgesics. In 45 PCEA+femoral nerve blockade patients with a mean age of 67 years (50 to 84), analgesia included a bupivacaine nerve block, bupivacaine/hydromorphone PCEA, and adjuvant analgesics. The mean time until ready for discharge was 3.2 days (1 to 14) in the local infiltration group and 3.2 days (1.8 to 7.0) in the PCEA+femoral nerve blockade group. The mean pain scores for patients receiving local infiltration were higher when walking (p = 0.0084), but there were no statistically significant differences at rest. The mean opioid consumption was higher in those receiving local infiltration.

The choice between these two analgesic pathways should not be made on the basis of time to discharge after surgery. Most secondary outcomes were similar, but PCEA+femoral nerve blockade patients had lower pain scores when walking and during continuous passive movement. If PCEA+femoral nerve blockade is not readily available, local infiltration provides similar length of stay and similar pain scores at rest following TKR.

Cite this article: Bone Joint J 2013;95-B:629–35.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 128 - 128
1 Mar 2013
Klingenstein G Cross MB Plaskos C Nam D Li A Pearle A Mayman DJ
Full Access

Introduction

The aim of this study was to quantitatively analyze the amount coronal plane laxity in mid-flexion that occurs in a well-balanced knee with an elevated joint line of 4 mm. In the setting an elevated joint line, we hypothesized that we would observe an increased varus and/or valgus laxity throughout mid flexion.

Methods

After obtaining IRB approval, nine fresh-frozen cadaver legs from hip-to-toe underwent TKA with a posterior stabilized implant (APEX PS, OMNIlife Science, Inc.) using a computer navigation system equipped with a robotic cutting-guide, in this controlled laboratory cadaveric study. After the initial tibial and femoral resections were performed, the flexion and extension gaps were balanced using navigation, and a 4 mm recut was made in the distal femur. The remaining femoral cuts were made, the femoral component was downsized by resecting an additional 4 mm of bone off the posterior condyles, and the polyethylene was increased by 4 mm to create a situation of a well-balanced knee with an elevated joint line. Real implants were used in the study to eliminate any inherent error or laxity in the trials. The navigation system was used to measure overall coronal plane laxity by measuring the mechanical alignment angle at maximum extension, 30, 45, 60 and 90 degrees of flexion, when applying a standardized varus/valgus load of 9.8 [Nm] across the knee using a 4 kg spring-load located at 25 cm distal to the knee joint line (Figure 1). Coronal plane laxity was defined as the absolute difference (in degrees) between the mean mechanical alignment angle obtained from applying a standardized varus and valgus stress at 0, 30, 45, 60 and 90 degrees. Each measurement was performed three separate times.

Two tailed student t-tests were performed to analyze whether there was difference in the mean mechanical alignment angle at 0°, 30°, 45°, 60°, and 90° between the well balanced scenario and following a 4 mm joint line elevation with an otherwise well balanced knee.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 66 - 66
1 Mar 2013
McArthur B Grosso M Michaels B Mayman DJ
Full Access

Introduction

Traditional methods of component positioning in total hip replacement (THR) utilize mechanical alignment guides which estimate position relative to the plane of the operating room table. However, variations in pelvic tilt alter the relationship between the anatomic plane of the pelvis and that of the table such that components placed in optimal position relative the table may not land within the classic anatomic “safe zone” described by Lewinnek. It has been suggested that navigation software should incorporate adjustments for the degree of pelvic tilt. Current imageless navigation software has this capability, however there is a paucity of data regarding the accuracy of this technology.

Purpose

We aimed to assess the accuracy of intra-operative pelvic tilt adjusted anteversion measurements as compared to unadjusted measurements.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 6 - 6
1 Mar 2013
Cross MB Klingenstein G Plaskos C Nam D Li A Pearle A Mayman DJ
Full Access

Introduction

The aim of this study was to quantitatively analyze the amount coronal plane laxity in mid-flexion that occurs with a loose extension gap in TKA. In the setting of a loose extension gap, we hypothesized that although full extension is achieved, a loose extension gap will ultimately lead to increased varus and/or valgus laxity throughout mid flexion.

Methods

After obtaining IRB approval, six fresh-frozen cadaver legs from hip-to-toe underwent TKA with a posterior stabilized implant (APEX PS OMNIlife Science, Inc.) using a computer navigation system equipped with a robotic cutting-guide, in this controlled laboratory cadaveric study. After the initial tibial and femoral resections were performed, and the flexion and extension gaps were balanced using navigation, a 4 mm distal recut was made in the distal femur to create a loose extension gap (using the same thickness of polyethylene as the well-balanced case). Real implants were used in the study to eliminate error in any laxity inherent to the trials. The navigation system was used to measure overall coronal plane laxity by measuring the mechanical alignment angle at maximum extension, 30, 45, 60 and 90 degrees of flexion, when applying a standardized varus/valgus load of 9.8 [Nm] across the knee using a 4 kg spring-load located at 25 cm distal to the knee joint line. (Figure 1). Coronal plane laxity was defined as the absolute difference (in degrees) between the mean mechanical alignment angle obtained from applying a standardized varus and valgus stress at 0, 30, 45, 60 and 90 degrees. Each measurement was performed three separate times.

Two tailed student t-tests were performed to analyze whether there was difference in the mean mechanical alignment angle at 0°, 30°, 45°, 60°, and 90° between the well balanced scenario and following a 4 mm recut in the distal femur creating a loose extension gap.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 339 - 339
1 Mar 2013
Nam D Weeks D Reinhardt K Nawabi DH Cross MB Mayman DJ Su E
Full Access

Introduction

Computer assisted surgery (CAS) systems have been shown to improve alignment accuracy in total knee arthroplasty (TKA), yet concerns regarding increased costs, operative times, pin sites, and the learning curve associated with CAS techniques have limited its widespread acceptance. The purpose of this study was to compare the alignment accuracy of an accelerometer-based, portable navigation device (KneeAlignÒ 2) to a large console, imageless CAS system (AchieveCAS). Our hypothesis is that no significant difference in alignment accuracy will be appreciated between the portable, accelerometer-based system, and the large-console, imageless navigation system.

Methods

62 consecutive patients, and a total of 80 knees, received a posterior cruciate substituting TKA using the Achieve CAS computer navigation system. Subsequently, 65 consecutive patients, and a total of 80 knees, received a posterior cruciate substituting TKA using the KneeAlignÒ 2 to perform both the distal femoral and proximal tibial resections (femoral guide seen in Figure 1, and tibial guide seen in Figure 2). Postoperatively, standing AP hip-to-ankle radiographs were obtained for each patient, from which the lower extremity mechanical axis, tibial component varus/valgus mechanical alignment, and femoral component varus/valgus mechanical alignment were digitally measured. Each measurement was performed by two, blinded independent observers, and interclass correlation for each measurement was calculated. All procedures were performed using a thigh pneumatic tourniquet, and the total tourniquet time for each procedure was recorded.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 11_Supple_A | Pages 153 - 156
1 Nov 2012
Su EP Perna M Boettner F Mayman DJ Gerlinger T Barsoum W Randolph J Lee G

Pain, swelling and inflammation are expected during the recovery from total knee arthroplasty (TKA) surgery. The severity of these factors and how a patient copes with them may determine the ultimate outcome of a TKA. Cryotherapy and compression are frequently used modalities to mitigate these commonly experienced sequelae. However, their effect on range of motion, functional testing, and narcotic consumption has not been well-studied.

A prospective, multi-center, randomised trial was conducted to evaluate the effect of a cryopneumatic device on post-operative TKA recovery. Patients were randomised to treatment with a cryopneumatic device or ice with static compression. A total of 280 patients were enrolled at 11 international sites. Both treatments were initiated within three hours post-operation and used at least four times per day for two weeks. The cryopneumatic device was titrated for cooling and pressure by the patient to their comfort level.

Patients were evaluated by physical therapists blinded to the treatment arm. Range of motion (ROM), knee girth, six minute walk test (6MWT) and timed up and go test (TUG) were measured pre-operatively, two- and six-weeks post-operatively. A visual analog pain score and narcotic consumption was also measured post-operatively.

At two weeks post-operatively, both the treatment and control groups had diminished ROM and function compared to pre-operatively. Both groups had increased knee girth compared to pre- operatively. There was no significant difference in ROM, 6MWT, TUG, or knee girth between the 2 groups. We did find a significantly lower amount of narcotic consumption (509 mg morphine equivalents) in the treatment group compared with the control group (680 mg morphine equivalents) at up to two weeks postop, when the cryopneumatic device was being used (p < 0.05). Between two and six weeks, there was no difference in the total amount of narcotics consumed between the two groups. At six weeks, there was a trend toward a greater distance walked in the 6MWT in the treatment group (29.4 meters versus 7.9 meters, p = 0.13). There was a significant difference in the satisfaction scores of patients with their cooling regimen, with greater satisfaction in the treatment group (p < 0.0001). There was no difference in ROM, TUG, VAS, or knee girth at six weeks. There was no difference in adverse events or compliance between the two groups.

A cryopneumatic device used after TKA appeared to decrease the need for narcotic medication from hospital discharge to 2 weeks post-operatively. There was also a trend toward a greater distance walked in the 6MWT. Patient satisfaction with the cryopneumatic cooling regimen was significantly higher than with the control treatment.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 10 | Pages 1339 - 1343
1 Oct 2012
Cross MB Dolan MM Sidhu GS Nguyen J Mayman DJ Su EP

The purpose of this study was to compare the amount of acetabular bone removed during hip resurfacing (HR) and cementless total hip replacement (THR), after controlling for the diameter of the patient’s native femoral head. Based on a power analysis, 64 consecutive patients (68 hips) undergoing HR or THR were prospectively enrolled in the study. The following data were recorded intra-operatively: the diameter of the native femoral head, the largest reamer used, the final size of the acetabular component, the size of the prosthetic femoral head and whether a decision was made to increase the size of the acetabular component in order to accommodate a larger prosthetic femoral head. Results were compared using two-sided, independent samples Student’s t-tests. A statistically significant difference was seen in the mean ratio of the size of the acetabular component to the diameter of the native femoral head (HR: 1.05 (sd 0.04) versus THR: 1.09 (sd 0.05); p <  0.001) and largest acetabular reamer used to the diameter of the native femoral head (HR: 1.03 (sd 0.04) versus THR: 1.09 (sd 0.05); p < 0.001). The ratios varied minimally when the groups were subdivided by gender, age and obesity. The decision to increase the size of the acetabular component to accommodate a larger femoral head occurred more often in the THR group (27% versus 9%). Despite the emphasis on avoiding damage to the femoral neck during HR, the ratio of the size of the acetabular component to the diameter of the native femoral head was larger in cementless THR than in HR.