header advert
Results 1 - 8 of 8
Results per page:
The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 9 - 16
1 Jul 2021
Hadden WJ Ibrahim M Taha M Ure K Liu Y Paish ADM Holdsworth DW Abdelbary H

Aims

The aims of this study were to develop an in vivo model of periprosthetic joint infection (PJI) in cemented hip hemiarthroplasty, and to monitor infection and biofilm formation in real-time.

Methods

Sprague-Dawley rats underwent cemented hip hemiarthroplasty via the posterior approach with pre- and postoperative gait assessments. Infection with Staphylococcus aureus Xen36 was monitored with in vivo photoluminescent imaging in real-time. Pre- and postoperative gait analyses were performed and compared. Postmortem micro (m) CT was used to assess implant integration; field emission scanning electron microscopy (FE-SEM) was used to assess biofilm formation on prosthetic surfaces.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_13 | Pages 6 - 6
1 Oct 2018
Naudie DD Paish AD Nikolov HN Chmiel T El-Warrak AO Welch ID Teeter MG Holdsworth DW
Full Access

Introduction

As new innovations are developed to improve the longevity of joint replacement components, preclinical testing is necessary in the early stages of research into areas such as osseointegration, metal-cartilage wear and periprosthetic joint infection (PJI). Large-animal studies that test load-bearing components are expensive, however, requiring that animals be housed in special facilities that are not available at all institutions. Comparably, small animal models, such as the rat, offer several advantages including lower cost. Load-bearing implants remain difficult to manufacture via traditional methods in the sizes required for small-animal testing. Recent advances in additive manufacturing (3D metal-printing) have allowed for the creation of miniature joint replacement components in a variety of medical-grade metal alloys. The objective of this work is to create and optimize an image-based 3D-printed rat hip implant system that will allow in vivo testing of functional implant properties in a rat model.

Methods

A database of n=25 previously-acquired, 154μm micro-CT volumes (eXplore Locus Ultra, GE Medical) of male Sprague-Dawley rats (390–610g) were analyzed to obtain spatial and angular relationships between several anatomical features of the proximal rat femora. Mean measurements were used to guide the creation of a femoral implant template in computer-aided design software (Solidworks, Dassault Systemes). Several different variations were created, including collarless and collared designs, in a range of sizes to accommodate rats of various weights. Initial prototypes were 3D-printed 316L stainless steel with subsequent iterations printed in Ti6Al4V titanium and F75 cobalt-chrome. Implants were post-processed via sandblasting, hand-polishing, ultrasonic bath, and sterilization in an autoclave. Innate surface texturing was left on manufactured stems to promote osseointegration. Surgical implantation was performed in three live Sprague-Dawley rats (900g, 500g, 750g) with preservation of muscle attachments to the greater trochanter. Micro-CT imaging and X-ray fluoroscopy were performed post-operatively on each animal at 1 day, and 1, 3, 9 and 12 weeks to evaluate gait and component positioning.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 567 - 568
1 Nov 2011
McCalden RW Naudie DD Bourne RB MacDonald SJ Holdsworth DW Yuan X Charron KD
Full Access

Purpose: Efforts to decrease polyethylene wear have lead to advances in polyethylene and counter-face technology for total hip replacement. In particular, the use of highly cross-linked polyethylene (XLPE) and more recently, oxidized zirconium (Oxinium) heads, have demonstrated significant in-vitro improvements in THR wear. This study reports on the early clinical performance and wear (measured with RSA) of an randomized controlled trial (RCT) comparing Oxinium and CoCr heads on XLPE and conventional polyethylene (CPE).

Method: Forty patients were enrolled in a RCT and stratified to receive either an Oxinium (Ox) or CoCr head against either XLPE or CPE (ie 10 patients in each group). All patients had otherwise identical THRs and had tantalum beads inserted in the pelvis and polyethylene for wear analysis. There were no significant differences between groups with respect to patient demographics and the average age was 68 years (range 57–76) at index procedure. RSA wear analysis was performed immediately post-op, at six weeks, three and six months and then at one and two years. All patients are a minimum of four years post-op (average 4.6, range 4 – 5.8). Patients were followed prospectively using validated clinical outcome scores (WOMAC, SF-12, Harris Hip scores) and radiographs.

Results: All health-related outcomes were significantly improved from pre-operative with a mean Harris Hip score and WOMAC at last follow-up of 90.9 and 80.2, respectively. Total 3D femoral head penetration at two years for each group were the following: CoCrXLPE (0.068±0.029mm); OxXLPE (0.115±0.038mm); CoCrCPE (0.187±0.079mm); and OxCPE (0.242±0.088mm). Thus, OxCPE was significantly higher than OxXLPE and CoCrXLPE but not CoCrCPE (p=0.001, p> 0.0001 and p=0.094, respectively). In other words, head penetration was higher with CPE compared to XLPE but there was no significant difference between Ox and CoCr heads. Similarily, regardless of head type (ie combining similar poly types), there was a significant difference in 3D head penetration at two years between CPE and XLPE ( CPE 0.213±0.086; XLPE 0.093±0.041, p> 0.0001).

Conclusion: The early results of this RCT, using RSA as the wear analysis tool, indicate a significant improvement in wear with XLPE compared to CPE. However, it failed to show a clear advantage to the use of Oxinium over CoCr against either polyethylene. Longer follow-up is required to determine steady-state wear rates (after bedding-in) and allow comparison between bearing groups.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 558 - 559
1 Nov 2011
Teeter MG Naudie DD McErlain DD Brandt J Yuan X MacDonald SJ Holdsworth DW
Full Access

Purpose: This study develops and validates a technique to quantify polyethylene wear in tibial inserts using micro-computed tomography (micro-CT), a nondestructive high resolution imaging technique that provides detailed images of surface geometry in addition to volumetric measurements.

Method: Six unworn and six wear-simulated Anatomic Modular Knee (DePuy Inc, Warsaw, IN) tibial inserts were evaluated. Each insert was scanned three times using micro-CT at a resolution of 50 μm. The insert surface was reconstructed for each scan through automatic segmentation and the insert volume was calculated. Gravimetric analysis was also performed for all inserts, and the micro-CT and gravimetric volumes were compared to determine accuracy. The utility of surface deviation maps derived from micro-CT was demonstrated by co-registering a worn and unworn insert. 3D deviations were measured continuously across the entire insert surface, including the articular and backside surfaces.

Results: The mean percent volume difference between the micro-CT and gravimetric techniques was 0.04% for the unworn inserts and 0.03% for the worn inserts. No significant difference was found between the micro-CT and gravimetric volumes for the unworn or worn inserts (P = 0.237 and P = 0.135, respectively). The mean coefficient of variation for volume between scans was 0.07% for both unworn and worn inserts. The map of surface deviations between the worn and unworn insert revealed focal deviations exceeding 750 μm due to wear.

Conclusion: Micro-CT provides precise and accurate volumetric measurements of polyethylene tibial inserts. Quantifiable 3D articular and backside surface deviation maps can be created from the detailed geometry provided by the technique. Compared to coordinate mapping, micro-CT provides 10 times greater surface sampling resolution (50 μm vs 500 μm) across the entire insert surface. Micro-CT is a useful analysis tool for wear simulator and retrieval studies of the polyethylene components used in total knee replacement.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 247 - 247
1 Jul 2011
Seslija P Yuan X Naudie D Peters TM Bourne RB MacDonald SJ Holdsworth DW
Full Access

Purpose: Accurate measurement of dynamic joint motion remains a clinical challenge. To address this problem, we have developed a low-dose clinical procedure using the Roentgen Single-plane Photogrammetric Analysis (RSPA) technique. A validation study was performed in a clinical setting, using a conventional digital flat-panel radiography system.

Method: To validate the technique, three experiments were performed: assessment of static accuracy, dynamic repeatability and measurement of effective dose. A knee joint phantom, imbedded with tantalum markers, was utilized for the experiments. Relative spatial positions of the markers were reconstructed using Radiostereometric Analysis (RSA). A digital flat-panel radiography system was used for image acquisition, and the three-dimensional pose of each segment was determined from single-plane projections by applying the RSPA technique. All images were processed using software developed in-house. To assess static accuracy, the phantom was mounted onto a three-axis translational stage and moved through a series of displacements ranging from 0 to 500 μm. Images of the phantom were acquired at each position. Accuracy was calculated by analyzing differences between reconstructed and applied displacements. To assess dynamic repeatability, the phantom was mounted on a six-axis robot, programmed to apply a flexion-extension movement to the joint. Multiple cine acquisitions of the moving phantom were acquired (30 fps, 4 ms exposure). Repeatability was calculated by analyzing the variation between motions reconstructed from repeated acquisitions. The effective dose of the procedure was measured using an ion-chamber dosimeter. The ion chamber was positioned between the phantom and x-ray source, facing the source. Entrance exposure was measured for multiple acquisitions, from which the effective dose was calculated.

Results: The accuracy determined from the static assessment was 25 μm and 450μm at the 95% confidence intervals for translations parallel and orthogonal to the image plane, respectively. Repeatability of the motion reconstructed from dynamic acquisitions was better than ± 200 μm for translations and ± 0.1 for rotations. The average effective dose for a 6 second dynamic acquisition was approximately 2μSv.

Conclusion: The proposed clinical procedure demonstrates both a high degree of accuracy and repeatability, and delivers a low effective dose.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 248 - 248
1 Jul 2011
Innes M Tschirhart CE McErlain DD Holdsworth DW Gordon KD Hurtig M
Full Access

Purpose: The mechanical function and strain behavior of the knee meniscus is not fully understood, due to multiple tissues with disparate properties, as well as complex contact patterns and intricate loading mechanisms. More comprehensive understanding of joint mechanics may contribute to improved treatment options for patients with injuries and osteoarthritis. There is very limited information available on the 3D strain of the intact meniscus. The objective of this work was to use mCT with copper microsphere markers to quantify three-dimensional strain of the meniscus under physiologic loading.

Method: Two healthy fresh frozen ovine knee specimens were harvested. Copper microspheres (0.5mm) were injected into anterior and posterior tetrahedral clusters in the medial meniscus using 20-gauge hypodermic needles. Needle cavities were sealed with ovine tendon tissue. Joints were loaded to 100% body weight in a 4 DOF CT-compatible pneumatically-driven device with flexion angles ranging from 62–98°. Images were acquired with an eXplore Locus Ultra mCT scanner and reconstructed with commercial software. A time series of images were acquired with the joint unloaded, during static loading, and at a reduced load (25% BW).

Results: The average maximum principle strains in the anterior element of the two specimens at 62o of flexion increased by 21% during loading and decreased by 13% during unloading. The maximum principle strains were 28% larger in the anterior element than the posterior. The strains in the anterior element decreased by 6.5% with time following load application, and decreased by 16% with load reduction, yielding relatively low residual strain. Strains were 2% larger in the anterior portion with larger flexion angles.

Conclusion: The objective of this work was to develop a reliable method for quantifying 3D strains in the meniscus. Results support the notion that mCT imaging with copper microspheres in the meniscus may be a viable technique for more comprehensive 3D strain analysis. The relatively low residual strains measured in this study indicate that copper microspheres are stable markers in this application. This technique may be useful in directing future studies aimed at understanding the impact of meniscal pathologies and the success of repair techniques.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 246 - 247
1 Jul 2011
Sabo M Pollmann SI Gurr KR Bailey C Holdsworth DW
Full Access

Purpose: Bone mineral density (BMD) is an important factor in the performance of orthopaedic instrumentation both in and ex-vivo, and until now, there has not existed a reliable technique for determining BMD at the precise location of such hardware. This paper describes such a technique using cadaveric human sacra as a model.

Method: Nine fresh-frozen sacra had solid and hollow titanium screw placed into the S1 pedicles from a posterior approach. High-resolution micro-computed tomography (CT) was performed on each specimen before and after screw placement. All images were reconstructed with an isotropic spatial resolution of 0.308 mm, reoriented, and the pre-screw and post-screw scans were registered and transformed using a six-degree rigid-body transformation matrix. Once registered, two points, corresponding to the center of the screw at the cortex and at the screw tip, were determined in each scan. These points were used to generate cylindrical regions of interest (ROI) with the same trajectory and dimensions as the screw. BMD measurements were obtained within each of the ROI in the pre-screw scan. To examine the effect of artefact on BMD measurements around the titanium screws, annular ROI of 1 mm thickness were created expanding from the surface of the screws, and BMD was measured within each in both the pre-and post-screw scans.

Results: The registration process was accurate, with an error of 0.2 mm. Four specimens were scanned five times with repositioning, and error in BMD measurements was ± 2%. BMD values in the cylindrical ROI corresponding to screw trajectories were not statistically different from side to side of each specimen (p = 0.23). Artefact-related differences in BMD values followed an exponential decay curve as distance from the screws increased, approaching a low value of approximately 20 mg HA/cc, but not disappearing completely.

Conclusion: CT in the presence of metal creates artefact, making measured BMD values near implants unreliable. This technique is accurate for determination of BMD, non-destructive, and eliminates the problem of this metal artefact through the use of co-registration of a pre- and post-screw scan. This technique has applications both in-vitro and in-vivo.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 3 | Pages 409 - 413
1 Mar 2011
McCalden RW Charron KD Davidson RD Teeter MG Holdsworth DW

We present a case of early retrieval of an Oxinium femoral head and corresponding polyethylene liner where there was significant surface damage to the head and polyethylene. The implants were retrieved at the time of revision surgery to correct leg-length discrepancy just 48 hours after the primary hip replacement. Appropriate analysis of the retrieved femoral head demonstrated loss of the Oxinium layer with exposure of the underlying substrate and transfer of titanium from the acetabular shell at the time of a reduction of the index total hip replacement. In addition, the level of damage to the polyethylene was extensive despite only 48 hours in situ.

The purpose of this report is to highlight the care that is required at the time of reduction, especially with these hard femoral counter-faces such as Oxinium. To our knowledge, the damage occurring at the time of reduction has not been previously reported following the retrieval of an otherwise well-functioning hip replacement.