header advert
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 17 - 17
1 Feb 2020
Fattori A Negro ND Gunsallus K Lipman J Hotchkiss R Figgie M Wright T Pressacco M
Full Access

Introduction

Total Elbow Arthroplasty (TEA) is recognized as an effective treatment solution for patients with rheumatoid arthritis or for traumatic conditions. Current total elbow devices can be divided into linked or unlinked design. The first design usually presents a linking element (i.e. an axle) to link together the ulnar and humeral components to stabilize the joint; the second one does not present any linkage and the stability is provided by both intrinsic design constraints and the soft tissues. Convertible modular solutions allow for an intraoperative decision to link or unlink the prosthesis; the modular connections introduce however additional risks in terms of both mechanical strength and potential fatigue and fretting phenomena that may arise not only due to low demand activities loads, but also high demand (HD) ones that could be even more detrimental. The aim of this study was to assess the strength of the modular connection between the axle and the ulnar component in a novel convertible elbow prosthesis design under simulated HD and activities of daily living (ADLs) loading.

Methods

A novel convertible total elbow prosthesis (LimaCorporate, IT) comprising both ulnar and humeral components that can be linked together by means of an axle, was used. Both typical ADLs and HD torques to be applied to the axle were determined based on finite element analysis (FEA); the boundary load conditions for the FEA were determined based on kinematics analysis on real patients in previous studies. The FEA resultant moment acting on the axle junction during typical ADLs (i.e. feeding with 7.2lbs weight in hand) was 3.2Nm while for HD loads (i.e. sit to stand) was 5.7 Nm. In the experimental setup, 5 axle specimens coupled with 5 ulnar bodies through a tapered connection (5 Nm assembly torque) were fixed to a torque actuator (MTS Bionix) and submerged in a saline solution (9g/l). A moment of 3.2 Nm was applied to the axle for 5M cycles through a fixture to test it under ADLs loading. After 5M cycles, the axles were analyzed with regards to fretting behavior and then re-assembled to test them against HD loading by applying 5.7 Nm for 200K cycles (corresponding to 20 years function).


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 120 - 120
1 Feb 2020
Gonzalez FQ Fattori A Lipman J Negro ND Brial C Figgie M Hotchkiss R Pressacco M Wright T
Full Access

Introduction

The interaction between the mobile components of total elbow replacements (TER) provides additional constraint to the elbow motion. Semi-constrained TER depend on a mechanical linkage to avoid dislocation and have greater constraint than unconstrained TER that rely primarily in soft tissue for joint stability. Greater constraint increases the load transfer to the implant interfaces and the stresses in the polyethylene components. Both of these phenomena are detrimental to the longevity of TER, as they may result in implant loosening and increased damage to the polyethylene components, respectively[1]. The objective of this work was to compare the constraint profile in varus-valgus and internal-external rotation and the polyethylene stresses under loads from a common daily activity between two semi-constrained TER, Coonrad/Morrey (Zimmer-Biomet) and Discovery® (DJO), and an unconstrained TER, TEMA (LimaCorporate).

Methods

We developed finite element (FE) models of the three TER mechanisms. To reduce computational cost, we did not include the humeral and ulnar stems. Materials were linear-elastic for the metallic components (ETi6Al4V=114.3 GPa, ECoCr=210 GPa, v=0.33) and linear elastic-plastic for the polyethylene components (E=618 MPa, v=0.46; SY=22 MPa; SU=230.6 MPa; εU=1.5 mm/mm). The models were meshed with linear tetrahedral elements of sizes 0.4–0.6 mm. We assumed a friction coefficient of 0.02 between metal and polyethylene. In all simulations, the ulnar component was fixed and the humeral component loaded. We computed the constraint profiles in full extension by simulating each mechanism from 8° varus to 8° valgus and from 8° internal to 8° external rotation. All other degrees-of-freedom except for flexion extension were unconstrained. Then, we identified the instant during feeding that generated the highest moments at the elbow[2], and we applied the joint forces and moments to each TER to evaluate the stresses in the polyethylene. To validate the FE results, we experimentally evaluated the constraint of the design with highest polyethylene stresses in pure internal-external rotation and compared the results against those from a FE model that reproduced the experimental setup (Fig.1-a).


The Journal of Bone & Joint Surgery British Volume
Vol. 76-B, Issue 4 | Pages 636 - 640
1 Jul 1994
Kraay M Figgie M Inglis A Wolfe S Ranawat C

We used survival analysis to evaluate 113 consecutive semiconstrained total elbow arthroplasties (TEAs) in 95 patients at a maximum follow-up of 99 months. Our criteria for failure were mechanical malfunction, revision for any reason, and deep infection. The primary diagnosis was inflammatory arthritis in 86 elbows, post-traumatic arthritis in 6, supracondylar nonunion or fracture in 12, osteoarthritis in 2 and other causes in 3. Seven failures were due to deep infection, and five of these had a primary diagnosis of inflammatory arthritis. Eight failures were revised or had revision recommended for aseptic loosening, and six of these were in patients with post-traumatic arthritis or supracondylar nonunion. The cumulative survival for TEAs performed for post-traumatic arthritis, fractures or supracondylar nonunion was 73% at three years and 53% at five years, significantly worse than the cumulative three- and five-year survivals of 92% and 90%, respectively, for patients with inflammatory arthritis. TEA with a semiconstrained prosthesis appears to have a satisfactory survival in selected patients with arthritic disorders. The incidence of deep infection was reduced by improvements in surgical technique and postoperative management, and the routine use of antibiotic-impregnated cement. The incidence of aseptic loosening was low, except in patients with supracondylar nonunion or post-traumatic arthritis.