header advert
Results 1 - 9 of 9
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 134 - 134
11 Apr 2023
Wong K Koh S Tay X Toh R Mohan P Png M Howe T
Full Access

A painful “dreaded black line” (DBL) has been associated with progression to complete fractures in atypical femur fractures (AFF). Adjacent sclerosis, an unrecognized radiological finding, has been observed in relation to the DBL. We document its incidence, associated features, demographics and clinical progression.

We reviewed plain radiographs of 109 incomplete AFFs between November 2006 and June 2021 for the presence of sclerosis adjacent to a DBL. Radiographs were reviewed for location of lesions, and presence of focal endosteal or periosteal thickening. We collected demographical data, type and duration of bisphosphonate therapy, and progression to fracture or need for prophylactic stabilization, with a 100% follow up of 72 months (8 – 184 months).

109 femurs in 86 patients were reviewed. Seventeen sclerotic DBLs were observed in 14 patients (3 bilateral), involving 15.6% of all femora and 29.8% of femora with DBLs. Location was mainly subtrochanteric (41.2%), proximal diaphyseal (35.3%) and mid-diaphyseal (23.5%), and were associated with endosteal or periosteal thickening. All patients were female, mostly Chinese (92.9%), with a mean age of 69 years. 12 patients (85.7%) had a history of alendronate therapy, and the remaining 2 patients had zoledronate and denosumab therapy respectively. Mean duration of bisphosphonate therapy was 62 months. 4 femora (23.5%) progressed to complete fractures that were surgically managed, whilst 6 femora (35.3%) required prophylactic fixation.

Peri-lesional sclerosis in DBL is a new radiological finding in AFFs, predominantly found in the proximal half of the femur, at times bilateral, and are always associated with endosteal or periosteal thickening. As a high proportion of patients required surgical intervention, these lesions could suggest non-union of AFFs, similar to the sclerotic margins commonly seen in fractures with non-union. The recognition of and further research into this new feature could shed more light on the pathophysiological progression of AFFs.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 35 - 35
1 Dec 2017
Bosma S Jutte P Wong K Paul L Gerbers J
Full Access

Computer Assisted Surgery (CAS) and Patient Specific Instrumentation (PSI) have been reported to increase accuracy and predictability of tumour resections. The technically demanding joint-preserving surgery that retains the native joint with the better function may benefit from the new techniques. This cadaver study is to investigate the surgical accuracy of CAS and PSI in joint-preserving surgery of knee joint.

CT scans of four cadavers were performed and imported into an engineering software (MIMICS, Materialise) for the 3D surgical planning of simulated, multiplanar joint-preserving resections for distal femur or proximal tibia metaphyseal bone sarcoma. The planned resections were transferred to the navigation system (OrthoMap 3D, Stryker) for navigation planning and used for the design and fabrication of the PSI. Each of the four techniques (freehand, CAS, PSI and CAS + PSI) was used in four joint-preserving resections. Location accuracy (the maximum deviation of distance between the planned and the achieved resections) and bone resection time were measured. The results were compared by using t-test (statistically significant if P< 0.05).

Both the CAS+PSI and PSI techniques could reproduce the planned resections with a mean location accuracy of < 2 mm, compared to 3.6 mm for CAS assistance and 9.2 mm for the freehand technique. There was no statistical difference in location accuracy between the CAS+PSI and the PSI techniques (p=0.92) but a significant difference between the CAS technique and the CAS+PSI (p=0.042) or PSI technique (p=0.034) and the freehand technique with the other assisted techniques. The PSI technique took the lowest mean time of 4.78 ±0.97min for bone resections. This was significantly different from the CAS+PSI technique (mean 12.78 min; p < 0.001) and the CAS technique (mean 16.97 min; p = < 0.001).

CAS and PSI assisted techniques help reproduce the planned multiplanar resections. The PSI technique could achieve the most accurate bone resections (within 2mm error) with the least time for bone resections. Combining CAS with PSI might not improve surgical accuracy and might increase bone resection time. However, PSI placement on the bone surface depends only on the subjective feeling of surgeons and may not apply if the extraosseous tumor component is large. Combining CAS with PSI could address the limitations.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 48 - 48
1 Oct 2014
Ren H Wong K Feng C Yang Z
Full Access

In orthopedic surgeries, it is critical to reduce the risks of drilling complications during bone fracture fixation, especially around critical organs such as in acetabula-pelvic procedures. Either over-drilling or x-ray overuse shall be avoided to reduce potential complications to the surrounding critical organs or tissues. Toward recognising perforation process during bong drilling, we employed drilling vibration signal analysis based on the measurements from miniature inertial sensors. Time-frequency analysis is used for features extractions, which show that information from drilling vibration measurements could reveal the drilling process, hence help doctors track the drilling process and avoid over-drilling.

We addressed the aforementioned challenges through inertial sensor development, vibration measurements, and time-frequency signal analysis. In the preliminary ex-vivo bone drilling experiment setup, an inertial sensor is mounted on a pig femur bone with two fixing nails and can capture 3-axes acceleration data during drilling procedures. A cordless drill is used with Kirschner wires (K-wires) and the diameter of the pin is 3.5 mm. The mounting locations of inertial sensors are close to actual drilling entries without affecting normal procedures. The recorded vibration signals indicate how the drill is interacting with surrounding bone tissues, which shall have different patterns along the deep drilling process. After normalisation, the power spectral density (PSD) is calculated to examine the frequency domain representation of the time series during drilling process. As the drilling vibration process along the bone is non-stationary, we further employ wavelet transform for more localised time-frequency analysis.

When the bone substance interacts with drill bits, compact substance and spongy substance have different bone densities and structures, thus inducing different vibration waveform patterns. In our preliminary experiments, we recorded acceleration data from the pig femur drilling process, where a surgical drill penetrates from compact substance, spongy substance and then to compact substance again. The article shows the feasibility study of estimating femur bone drilling process based on vibrations signals captured from low-cost miniature inertial sensors. Through a preliminary animal ex-vivo bone study, the proposed framework of time-frequency wavelet analysis indicates the drilling interface between compact substance and spongy substance. It shows potentials in perforation recognition along drilling process and more clinical studies will be performed for validating its capability in over-drilling avoidance.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 97 - 97
1 Jul 2014
Wen C Wong K Liu C Yan C Lu W Chiu K
Full Access

Summary Statement

OA knee with subchondral cyst formation presented differential microstructure and mechanical competence of trabecular bone. This finding sheds light on the pivot role of subchondral cyst in OA bone pathophysiology.

Introduction

Subchondral bone cyst (SBC) is a major radiological finding in knee osteoarthritis (OA), together with joint space narrowing, osteophyte and sclerotic bone formation. There is mounting evidence showing that SBC originates in the same region as bone marrow lesions (BMLs). The presence of subchondral bone cyst (SBCs), in conjunction with BMLs, was associated with the severity of pain, and was able to predict tibial cartilage lolume loss and risk of joint replacement surgery in knee OA patient. It is speculated that the presence of SBCs might increase intraosseous pressure of subchondral bone, and trigger active remodeling and high turnover of surrounding trabecular bone. Yet the exact effect of SBC on the structural and mechanical properties trabecular bone, which provides the support to overlying articular cartilage, remains to be elucidated. Therefore, this study aimed to investiate the microstructure and mechanical competence of trabecular bone of knee OA in presence or absence of SBC.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 14 - 14
1 Oct 2012
Wong K Kumta S Tse L Ng W Lee K
Full Access

CT and MRI scans are complementary preoperative imaging investigations for planning complex musculoskeletal bone tumours resection and reconstruction. Conventionally, tumour surgeons analyse two-dimensional (2-D) imaging information, mentally integrate and formulate a three-dimensional (3-D) surgical plan. Difficulties are anticipated with increase in case complexity and distorted surgical anatomy. Incorporating computer technology to aid in this surgical planning and executing the intended resection may improve precision. Although computer-assisted surgery has been widely used in cranial biopsies and tumour resection, only small case series using CT-based navigation are recently reported in the field of musculoskeletal tumor surgery. We investigated the results of CT/MRI image fusion for Computer Assisted Tumor Surgery (CATS) with the help of a navigation system.

We studied 21 patients with 22 musculoskeletal tumours who underwent CATS from March 2006 to July 2009. A commercially available CT-based spine navigation system (Stryker Navigation; CT spine) was used. Of the 22 patients, 10 were males, 11 were females, and the mean age was 32 years at the time of surgery (range, 6–80 years). Five tumours were located in the pelvis, seven sacrum, eight femurs, and two tibia. The primary diagnosis was primary bone tumours in 16 (3 benign, 13 sarcoma) and metastatic carcinoma in four. The minimum follow-up was 17 months (average, 35.5 months; range, 17–52 months). Preoperative CT and MRI scan of each patient were performed. Axial CT slices of 0.0625mm or 1.25mm thickness and various sequences of MR images in Digital Imaging and Communications in Medicine (DICOM) format were obtained. CT and MR images for 22 cases were fused using the navigation software. All the reconstructed 2-D and 3-D images were used for preoperative surgical planning. The plane of tumour resection was defined and marked using multiple virtual screws sited along the margin of the planned resection. We also integrated the computer-aided design (CAD) data of custom-made prostheses in the final navigation resection planning for eight cases.

All tumour resections could be carried out as planned under navigation guidance. Navigation software enabled surgeons to examine all fused image datasets (CT/MRI scans) together in two spatial and three spatial dimensions. It allowed easier understanding of the exact anatomical tumor location and relationship with surrounding structures. Intraoperatively, image guidance with the help of fusion images, provided precise visual orientation, easy identification of tumor extent, neural structures and intended resection planes in all cases. The mean time for preoperative navigation planning was 1.85 hours (1 to 3.8). The mean time for intraoperative navigation procedures was 29.6 minutes (13 to 60). The time increased with case complexity but lessened with practice. The mean registration error was 0.47mm (0.31 to 0.8). The virtual preoperative images matched well with the patients' operative anatomy. A postoperative superficial wound infection developed in one patient with sacral chordoma that resolved with antibiotic whereas a wound infection in another with sacral osteosarcoma required surgical debridement and antibiotic. After a mean follow-up of 35.5 months (17–52 months), five patients died of distant metastases. Three out of four patients with local recurrence had tumors at sacral region. Three of them were soft tissue tumour recurrence. The mean functional MSTS score in patients with limb salvage surgery was 28.3 (23 to 30). All patients (except one) with limb sparing surgery and prosthetic reconstruction could walk without aids.

Multimodal image fusion yields hybrid images that combine the key characteristics of each image technique. Back conversion of custom prosthesis in CAD to DICOM format allowed fusion with navigation resection planning and prosthesis reconstruction in musculoskeletal tumours. CATS with image fusion offers advanced preoperative 3-D surgical planning and supports surgeons with precise intraoperative visualisation and identification of intended resection for pelvic, sacral tumors. It enables surgeons to reliably perform joint sparing intercalated tumor resection and accurately fit CAD custom-made prostheses for the resulting skeletal defect.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 381 - 381
1 Jul 2008
Tong J Wong K Lupton C
Full Access

The long-term stability of total hip replacements (THRs) critically depends on the lasting integrity of the bond between the implant and the bone. Late failure in the absence of infection is known as ‘aseptic loosening’, a process characterised by the formation and progressive thickening of a continuous layer of fibrous tissue at the interface between the prosthesis and the bone. Aseptic loosening has been identified as the most common cause for long-term instability leading to the failure of ace-tabular cups. There is clearly a need to study the failure mechanisms in the acetabular fixation if the long-term stability of THR is to be significantly improved. The bonding strength in the presence of defects is measured using interfacial fracture toughness, and this information is not available currently.

In this work, interfacial fracture toughness of synthetic and bovine bone-cement interface has been studied using sandwiched Brazilian disk specimens. Experiments were carried out using a common bone cement, CMW, and polyurethane foam under selected loading angles from 0 to 25 degrees to achieve full loading conditions from tensile (mode I) to shear (mode II). Finite element analyses were carried out to obtain the solutions for strain energy release rate at a given phase angle (ratio of shear and tensile stress) associated with the experimental models. The effects of crack length on the measured interfacial fracture toughness were examined. Microscopic studies were also carried out to obtain the morphology of the fractured interfaces at selected loading angles.

The results show that both polyurethane foam and bovine cancellous bone seem to produce a similar type of interfacial failure of bone-cement interface, with cement pedicles being ‘pull-out’ of the pores of the foam/ bone. Damage sustained by the cement pedicles seems to increase progressively as the increase of shear loading component. The measured values of fracture toughness are a function of crack length and phase angle, and are comparable with those published in the literature on cortical bone and cement interface.

The implication of these results on the assessment of fixation in acetabular replacements is discussed, particularly in the light of results from bovine cancellous bone-cement interface.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 376 - 376
1 Jul 2008
Wong K Zant N Tong J
Full Access

Multiple biological and mechanical factors may be responsible for the failure of fixation in cemented total hip replacements (THRs). Although the eventual failure of THRs may appear to be biological, the initiation of the failure during early period post operation may well be mechanical. It is in this area that mechanistic analysis is of particular significance.

This study builds on work by Rapperport et al, Dals-tra and Huiskes on stress analysis of implanted acetabulum, while focuses on fracture mechanics analyses of fracture of cement and of bone-cement interface. Specifically, finite element models were developed where cracks of most favourable orientations in the cement mantle were simulated. Possible crack path selections were explored. A simplified multilayer experimental model was also developed to represent the implanted acetabulum, and fatigue tests were carried out on the model. The experimental results were compared with those from the FE model.

Furthermore, interfacial crack growth at bone-cement interface was simulated from the superior edge of the acetabulum, as suggested from the clinical observations. The strain energy release rates were computed for typical hip contact forces during gait and as a function of crack length. Associated phase angles were also computed to account for the materials mismatch. The results were evaluated against the interfacial fracture toughness of the bone-cement interface, measured using sandwich Brazilian disk specimens. The results show that although interfacial fracture seems to be unlikely for large phase angles where shear component is most active, the strain energy release rates are comparable with the values of the interfacial fracture toughness when mode I is predominant, suggesting interfacial fracture.

The study also shows that the fracture toughness of cement is much higher than the interfacial fracture toughness of bone-cement, this may explain the reason why interfacial fracture is favoured even if the crack driving force at bone-cement interface appears to be weaker than that in the cement mantle.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 4 | Pages 510 - 511
1 Apr 2008
Wong K Ng TP Chiu KY

Arthrodesis of the hip has been employed since the late 19th century. Late complications can arise decades after fusion in patients who were previously asymptomatic. We describe two patients who developed pain in the hip many years after a successful fusion. There was no infection or loosening of the implants. After careful investigation, including oblique radiographs and diagnostic injections of local anaesthetic, the pain was found to be caused by protrusion of the implant. Subsequent removal of the device resulted in complete resolution of the symptoms.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 384 - 385
1 Oct 2006
Wong K Tong J
Full Access

Interfacial stress distributions in the acetabular region have been studied using plane strain finite element models before and after total hip replacement. The model was adapted from a roentgenogram of a 4 mm slice normal to the acetabulum through the pubic and ilium. The model was divided into 24 regions of different elastic constants with isotropic material properties assumed in each region. The femoral head was modelled as a spherical surface that was mated with a congruent spherical acetabular socket. The implanted hip model was developed by modifying the natural hip model. Contact analyses were carried out between the articulating cartilage layers and between a cobalt chromium head and a cemented ultra-high molecular weight polyethylene (UHMWPE) cup under selected hip contact load cases during normal walking. Local polar coordinates were employed to facilitate the calculation of the interfacial stress components between the cup and cement, cement and subchondral bone as well as between the subchondral and underlying cancellous bones.

The results show that severe reductions in the local stresses in subchondral and cancellous bones were found in the reconstructed case. Both the peak stress and the range of the stress were reduced substantially, suggesting stress shielding in the acetabular region. Load transfer in the reconstructed case was found to occur primarily in the cement layer superior to the cup. Both the peak stress and the stress variation in the cement mantle are substantial, whilst abrupt changes in interfacial stresses occurred between the cement and cup, and cement and subchondral bone. The influence of subchondral bone retention and thickness of the cement (up to 6 mm) on the interfacial stress distribution appears to be insignificant.

The work represents the first stage of research towards developing a numerical tool for pre/post operative assessment of cement/cementless acetabular components.