header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

P25 SIMULATION OF FRACTURE IN THE CEMENT MANTLE AND AT THE BONE-CEMENT INTERFACE IN RECONSTRUCTED ACETABULA



Abstract

Multiple biological and mechanical factors may be responsible for the failure of fixation in cemented total hip replacements (THRs). Although the eventual failure of THRs may appear to be biological, the initiation of the failure during early period post operation may well be mechanical. It is in this area that mechanistic analysis is of particular significance.

This study builds on work by Rapperport et al, Dals-tra and Huiskes on stress analysis of implanted acetabulum, while focuses on fracture mechanics analyses of fracture of cement and of bone-cement interface. Specifically, finite element models were developed where cracks of most favourable orientations in the cement mantle were simulated. Possible crack path selections were explored. A simplified multilayer experimental model was also developed to represent the implanted acetabulum, and fatigue tests were carried out on the model. The experimental results were compared with those from the FE model.

Furthermore, interfacial crack growth at bone-cement interface was simulated from the superior edge of the acetabulum, as suggested from the clinical observations. The strain energy release rates were computed for typical hip contact forces during gait and as a function of crack length. Associated phase angles were also computed to account for the materials mismatch. The results were evaluated against the interfacial fracture toughness of the bone-cement interface, measured using sandwich Brazilian disk specimens. The results show that although interfacial fracture seems to be unlikely for large phase angles where shear component is most active, the strain energy release rates are comparable with the values of the interfacial fracture toughness when mode I is predominant, suggesting interfacial fracture.

The study also shows that the fracture toughness of cement is much higher than the interfacial fracture toughness of bone-cement, this may explain the reason why interfacial fracture is favoured even if the crack driving force at bone-cement interface appears to be weaker than that in the cement mantle.

Correspondence should be addressed to Mr Carlos Wigderowitz, Senior Lecturer, University Department of Orthopaedic and Trauma Surgery, Ninewells Hospital and Medical School, Dundee DD1 9SY.