header advert
Results 1 - 3 of 3
Results per page:
The Bone & Joint Journal
Vol. 105-B, Issue 3 | Pages 277 - 283
1 Mar 2023
Gausden EB Puri S Chiu Y Figgie MP Sculco TP Westrich G Sculco PK Chalmers BP

Aims

The purpose of this study was to assess mid-term survivorship following primary total knee arthroplasty (TKA) with Optetrak Logic components and identify the most common revision indications at a single institution.

Methods

We identified a retrospective cohort of 7,941 Optetrak primary TKAs performed from January 2010 to December 2018. We reviewed the intraoperative findings of 369 TKAs that required revision TKA from January 2010 to December 2021 and the details of the revision implants used. Kaplan-Meier analysis was used to determine survivorship. Cox regression analysis was used to examine the impact of patient variables and year of implantation on survival time.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_9 | Pages 63 - 63
1 Oct 2020
Wright TM Kahlenberg C Elmasry S Mayman D Cross M Pearle A Westrich G Imhauser C Sculco P
Full Access

Introduction

In total knee arthroplasty (TKA), tibial insert thickness is determined intraoperatively by applying forces that generate varus-valgus moments at the knee and estimating the resulting gaps. However, how the magnitude of applied moments and the surgeon's perception of gaps affect the thickness selection is unclear. We determined this relationship using an in vitro human cadaveric model.

Methods

Six pelvis-to-toe specimens (72±6 years old, four females) were implanted by an expert surgeon with a PS TKA using measured resection. Pliable sensors were wrapped around medial and lateral aspects of the foot and ankle to measure the applied forces. The forces were scaled by limb length to obtain the moments generated at the knee. Six surgeons with different experience levels independently assessed balance by applying moments in extension and 90° of flexion and choosing the insert they believed fit each knee. Peak moments and the accompanying extension and flexion gap openings as perceived by surgeons were recorded. The two measures were then related to insert choice using a generalized estimating equation.


Bone & Joint Research
Vol. 8, Issue 10 | Pages 495 - 501
1 Oct 2019
Hampp EL Sodhi N Scholl L Deren ME Yenna Z Westrich G Mont MA

Objectives

The use of the haptically bounded saw blades in robotic-assisted total knee arthroplasty (RTKA) can potentially help to limit surrounding soft-tissue injuries. However, there are limited data characterizing these injuries for cruciate-retaining (CR) TKA with the use of this technique. The objective of this cadaver study was to compare the extent of soft-tissue damage sustained through a robotic-assisted, haptically guided TKA (RATKA) versus a manual TKA (MTKA) approach.

Methods

A total of 12 fresh-frozen pelvis-to-toe cadaver specimens were included. Four surgeons each prepared three RATKA and three MTKA specimens for cruciate-retaining TKAs. A RATKA was performed on one knee and a MTKA on the other. Postoperatively, two additional surgeons assessed and graded damage to 14 key anatomical structures in a blinded manner. Kruskal–Wallis hypothesis tests were performed to assess statistical differences in soft-tissue damage between RATKA and MTKA cases.