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Article focus
�� This study examined the extent of soft-

tissue damage sustained during total 
knee arthroplasty (TKA) through a hapti-
cally guided, robotic-assisted TKA 
(RATKA) versus a manual TKA (MTKA) 
approach.

Key messages
�� RATKA resulted in less soft-tissue damage 

than MTKA, especially for the posterior 
cruciate ligament.

�� Findings are likely attributed to the hapti-
cally bounded saw blade used with 
RATKA.

Less iatrogenic soft-tissue damage 
utilizing robotic-assisted total knee 
arthroplasty when compared with 
a manual approach 
a blinded assessment

Objectives
The use of the haptically bounded saw blades in robotic-assisted total knee arthroplasty 
(RTKA) can potentially help to limit surrounding soft-tissue injuries. However, there are lim-
ited data characterizing these injuries for cruciate-retaining (CR) TKA with the use of this 
technique. The objective of this cadaver study was to compare the extent of soft-tissue dam-
age sustained through a robotic-assisted, haptically guided TKA (RATKA) versus a manual 
TKA (MTKA) approach.

Methods
A total of 12 fresh-frozen pelvis-to-toe cadaver specimens were included. Four surgeons each 
prepared three RATKA and three MTKA specimens for cruciate-retaining TKAs. A RATKA was 
performed on one knee and a MTKA on the other. Postoperatively, two additional surgeons 
assessed and graded damage to 14 key anatomical structures in a blinded manner. Kruskal–
Wallis hypothesis tests were performed to assess statistical differences in soft-tissue damage 
between RATKA and MTKA cases.

Results
Significantly less damage occurred to the PCLs in the RATKA versus the MTKA specimens (p < 
0.001). RATKA specimens had non-significantly less damage to the deep medial collateral 
ligaments (p = 0.149), iliotibial bands (p = 0.580), poplitei (p = 0.248), and patellar liga-
ments (p = 0.317). The remaining anatomical structures had minimal soft-tissue damage in 
all MTKA and RATKA specimens.

Conclusion
The results of this study indicate that less soft-tissue damage may occur when utilizing 
RATKA compared with MTKA. These findings are likely due to the enhanced preoperative 
planning with the robotic software, the real-time intraoperative feedback, and the hapti-
cally bounded saw blade, all of which may help protect the surrounding soft tissues and 
ligaments.
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Strengths and limitations
�� This was the first prospective, blinded cadaver study 

to quantify soft-tissue damage in cruciate-retaining 
TKA using a robotic-assisted and manual approach.

�� Caution should be taken in the interpretation of these 
findings, which may not necessarily translate clinically.

Introduction
Although manual total knee arthroplasties (MTKAs) have 
demonstrated excellent clinical results, intraoperative 
damage to soft tissues can occur. Soft-tissue injury to the 
medial or lateral collateral ligament (MCL or LCL), poste-
rior cruciate ligament (PCL), or extensor mechanism may 
compromise postoperative clinical outcomes, through 
reduced stability and decreased implant survivorship.1-5 
Studies have shown that a full transverse tibial cut may 
lead to damage to the PCL6-8 and even to the deep MCL.9 
PCL avulsion has been shown to be more likely with 
increased sagittal slope.10 Therefore, it must be empha-
sized that avoidance of soft-tissue damage during TKA is 
important for the success of the procedure.11 For MTKA, 
techniques such as leaving a bone island,12,13 making a 
conservative tibial resection,14,15 or reducing posterior 
slope14,15 have been suggested to help preserve the PCL.

Robotic-assisted TKA (RATKA) was developed to help 
improve the accuracy and precision of bone cuts, as well 
as to enhance implant placement according to the surgi-
cal plan. Another advantage of this technique is that the 
use of the haptically bounded saw blade can help limit 
surrounding soft-tissue injuries. These benefits have been 
clinically demonstrated for RATKA in posterior-stabilized 
(PS) TKAs.5 However, there is limited data characterizing 
soft-tissue injuries for cruciate-retaining (CR) TKAs with 
the use of this technique. In a recently published study, 
Khlopas et al16 compared the amount of soft-tissue dam-
age in 13 cadaver knees that had either a MTKA or a 
RATKA performed. They found that all six RATKA cases 
were left with a bone island on the tibial plateau, which 
surrounded the PCL. In two of the seven MTKA cases, 
there was slight disruption noted of the PCL versus no 
damage in the RATKA. These results were encouraging, 
but represented a small, semiquantitative to qualitative 
initial pilot study.

Therefore, the objective of this cadaver study was to 
expand on previous work by comparing in greater depth 
and quantification, the extent of soft-tissue damage sus-
tained during TKA through a haptically guided RATKA 
approach versus a conventional MTKA approach.

Materials and Methods
Cadaver characteristics.  A total of 12 fresh-frozen pelvis-
to-toe cadaver specimens (24 knees) were included in this 
study. The cadaver demographics included six females 
and six males, who had a mean age of 81 years (68 to 
89), and a mean body mass index of 26 kg/m2 (20 to 36). 

Paired knees from the same subject were used to limit 
any potential baseline variability of the extent of osteoar-
thritis (OA) and the deformity that can be present if knees 
from different subjects were compared. Radiographs and 
the medical social summaries from the donor reports 
were reviewed to confirm that there were no previous 
joint arthroplasties or fractures in the specimens utilized.
Cadaver osteoarthritis assessment.  For each cadaver 
knee, a preoperative assessment of the degree of osteo-
arthritis was performed on supine short-film radiographs. 
This was graded using the Kellgren–Lawrence classifica-
tion system.17 The images were also reviewed to ensure 
that there were no extra-articular deformities.
Sampling plan. S pecimens were preoperatively assigned 
to the surgeon, surgical application, and right/left legs to 
evenly distribute the Kellgren–Lawrence OA grades. The 
operative side (e.g. left or right leg) alternated between 
RATKA and MTKA, and there was an equal number of left 
and right cases for RATKA and MTKA procedures. These 
precautions were taken to further reduce any potential 
confounding variables.
Cadaver preparation.  Four orthopaedic surgeons (includ-
ing MED and ZY) each prepared three cadaver speci-
mens (three RATKA and three MTKA paired knees) for 
CR TKAs. All surgeons had prior clinical experience with 
both RATKA and MTKA. Two surgeons (MED and ZY) 
had previously performed robotic-assisted cases during 
a joint reconstructive fellowship, and the other two sur-
geons had performed a minimum of 35 robotic-assisted 
cases post-fellowship. The surgeons were blinded to the 
purpose of the study, but were instructed to take pre-
cautions with soft tissues that resembled their standard 
clinical practice. For each cadaver pair, a RATKA was pre-
pared on either the right or left leg and a MTKA was pre-
pared on the contralateral leg.
Specimen preparation. S pecimens were scanned on a 
Siemens SOMATOM Perspective CT with 64-slice con-
figuration (Siemens Healthcare, Erlangen, Germany) fol-
lowing a specific knee CT scanning protocol (supine feet 
first; 120 kVp to 140 kVp; AutoExposure Control 200 mA 
to 400 mA; 512 × 512 matrix image resolution; display 
field of view of 500 mm for hip, 250 mm for knee, and 
500 mm for ankle; slice thickness of 2 mm to 5 mm for 
hip, 0.5 mm to 1 mm for knee, and 2 mm to 5 mm for 
ankle). Implant plans were created prior to the lab and 
reviewed with the ‘assessment surgeons’ (surgeons per-
forming the visual evaluation of the tissue damage) for 
sizing and alignment. However, plans may have been 
adjusted intraoperatively by the ‘conducting surgeons’ 
(surgeons performing the surgical procedures).
RATKA system.  The RATKA system (Mako Surgical Corp. 
(Stryker), Fort Lauderdale, Florida) was utilized in this 
study (Fig. 1). The system is intended to assist the sur-
geon by providing haptic boundary constraint based 
on the operative implant plan. This system included a 
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robotic arm, camera stand, guidance module, TKA appli-
cation software, and dedicated instrumentation.
Surgical steps.  For both RATKA and MTKA cases, a stan-
dard midline incision and a medial parapatellar arthrotomy 
were performed. The arthritic state was documented 
using a modification of the Outerbridge Classification.18 
The classification system was modified so that in-between 
grades were assigned a half score.

Prior to any cuts, the conducting surgeons were 
instructed to inspect any visible ligaments, including the 
PCL, MCL, and LCL, without disruption to the cavity and 
to note any injuries. If there were any observed injuries, 
photographs were taken using a blunt pointer tool to 
identify the region of interest. The anterior cruciate liga-
ment (ACL) was removed and the surrounding tissues 
were again checked by the conducting surgeons to 
ensure that no damage occurred during removal of the 
ACL. The PCL was visualized and palpated to check for its 
integrity.

A Triathlon CR TKA procedure (Stryker, Mahwah, New 
Jersey) was performed using standard retraction tech-
niques in accordance to the surgical protocol for RATKA 
and MTKA cases. The bone cut order (tibia-first or femur-
first) and retractor usage (‘Z’ retractor, Hohmann, or 
other) was based on surgeon preference. Depending on 
component size, RATKA cases used a narrow PN 116171 
(Triathlon sizes 1 to 2) or standard PN 116170 (Triathlon 
sizes 3 to 8) blade, with an effective width (total cutting 
tip excursion of the saw blade oscillation) of 18 mm and 
25 mm, respectively (all Mako Surgical Corp. (Stryker)). 
MTKA cases used a Dual Cut Sagittal Blade PN 4118-127-
090 (dimensions: 18 mm × 90 mm × 1.27 mm) or PN 

Fig. 1

The Mako Robotic-Arm Assisted Total Knee Arthroplasty System (Mako Surgical Corp. (Stryker), Fort Lauderdale, Florida).

4125-119-090 (dimensions: 25 mm × 90 mm × 1.19 
mm) (all Stryker Instruments, Kalamazoo, Michigan). The 
implant plans and targets were based on mechanical 
alignment and confirmed with the conducting surgeons 
prior to beginning the case.

For MTKA cases, the conducting surgeons had the 
option to review the CT scout or anteroposterior radio-
graphs. For RATKA cases, extended haptic boundaries 
were only used when requested by the operating sur-
geon. Conducting surgeons followed their preferred 
balancing workflow consistent with the approved user 
guide.

The conducting surgeons performed the RATKA and 
MTKA procedures through trialling and assessing the 
final gap balance. If the gaps were not equal, surgeons 
were instructed to make soft-tissue releases or bony 
recuts as necessary. At the end of each case, a note-taker 
confirmed all recorded data with the surgeon. Peg and 
keel preparation were also completed by the conducting 
surgeons.

Conducting surgeons were asked to take additional 
measures to ensure adequate blinding by the assessment 
surgeons performing the soft-tissue assessments. In 
robotic cases, they were asked to drill an intramedullary 
hole in the femur, as well as holes where the fixation pins 
would insert for the MTKA cutting guides. In MTKA cases, 
the conducting surgeons were asked to insert checkpoints 
into the femur and tibia as would have been performed in 
RATKA cases. Incisions were also made on the MTKA cases 
and covered with Coban self-adherent-wrap (3M, St. 
Paul, Minnesota) to mimic the incisions where extra-artic-
ular arrays would have been placed in RATKA cases.
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Soft-tissue damage assessments.  Two additional ortho-
paedic surgeons (GW and MAM), who were not involved 
with the surgical procedures (assessment surgeons), per-
formed the visual evaluation of the tissue damage. The 
assessment surgeons were blinded to the type of surgery, 
robotic-assisted or manual, that was performed. Direct 
visual grading and arthroscopic imaging were used to 
assess the extent of damage. Damage was defined as tis-
sue fibres that were visibly torn, cut, frayed, or macer-
ated over the total cross-sectional area. For a transected 
ligament/tendon/muscle, the percentage of damage was 
estimated as the affected area over the total cross-sec-
tional area. The damage was assessed at the approximate 
level of the femoral or tibial resection to capture damage 
due to the excursion of the saw blade.

Tissue damage was recorded for the following 14 struc-
tures: deep MCL, superficial MCL, posterior oblique liga-
ment, semimembranosus muscle tendon, gastrocnemius 
muscle medial head, PCL, iliotibial band, lateral retinacu-
lum, LCL, popliteus tendon, gastrocnemius muscle lateral 
head, patellar ligament, quadriceps tendon, and extensor 
mechanism. A dry arthroscope (Stryker Endoscopy, San 
Jose, California) was used to help visualize and to take 
photographs of the damage. A Castroviejo straight bone 

caliper (6.5" straight 0 mm to 40 mm) (gSource, LLC, 
Emerson, New Jersey) was used for measurement of the 
damage and to capture an estimated overall width of the 
structure and damaged tissue. These values were then 
used to estimate the percent damage.

Ligaments were assessed in the same order for all 
knees. With the knees in extension, assessment surgeons 
evaluated the medial side with a taut laminar spreader 
across the lateral side, and then evaluated the lateral 
side with a taut laminar spreader across the medial side. 
Assessment surgeons also digitally palpated the struc-
tures to check for their integrity. The patella was then 
everted with the patellar and quadriceps tendons 
assessed. The laminar spreader was removed, the knee 
was flexed to 90°, and the same assessments were 
repeated in flexion. Structures were measured under 
relatively equal joint tensions in both flexion and 
extension.

Assessment surgeons independently assigned a per-
centage of damage value to each structure. The difference 
between the means of both surgeons was determined, 
and if the difference was > 10%, the surgeons were asked 
to further review photographs or the actual specimens to 
determine any discrepancies and to agree on a value. A 
mean of the percentages was then taken between the 
surgeons, and a grade was assigned according to a modi-
fied macroscopic soft-tissue injury (MASTI) classification 
system, which was shown to be a reproducible grading 
scheme for describing knee soft-tissue injuries.5 The clas-
sification system was modified to quantify the injury 
assessments for each structure on a 1 to 4 scale: grade 1, 
complete soft-tissue preservation to ⩽ 5% damage; grade 
2, 6% to 25% damage; grade 3, 26% to 75% damage; 
grade 4, 76% to 100% damage. Notes were reviewed to 
determine whether or not the assessment surgeons noted 
the presence of a tibial bone island.
Statistical analysis.  Hypothesis testing was performed to 
assess MTKA and RATKA data on preoperative Kellgren–
Lawrence grades, intraoperative osteoarthritis assessments 
using the Outerbridge Classification, and soft-tissue dam-
age of 14 structures using Kruskal–Wallis tests. The α sig-
nificance level for the test was 0.05 with a 95% confidence 
level and adjusted for ties. A tie occurred when the same 
value was in more than one sample. If the p-value was 
> 0.05, then the data provided insufficient evidence to 

Table I.  Kellgren–Lawrence and Outerbridge grades

Compartment RATKA: median (IQR) MTKA: median (IQR) p-value*

Kellgren–Lawrence 2.5 (2.0 to 3.0) 2.0 (2.0 to 3.0) 0.643
Medial femoral condyle 3.0 (2.0 to 4.0) 2.8 (2.0 to 3.8) 0.121
Lateral femoral condyle 2.0 (1.6 to 3.0) 1.8 (0.3 to 2.4) 0.407
Trochlea 3.0 (1.3 to 4.0) 2.8 (1.0 to 3.0) 0.360
Medial tibial plateau 2.8 (2.0 to 3.0) 2.0 (2.0 to 3.0) 0.229
Lateral tibial plateau 2.3 (0.5 to 3.0) 2.3 (0.5 to 3.0) 0.882

*Kruskal–Wallis test
RATKA, robotic-assisted, haptically guided total knee arthroplasty; IQR, interquartile range; MTKA, manual total knee arthroplasty
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Fig. 2

Bar chart showing the mean grade 1 to 4 damage for the deep medial col-
lateral ligament (dMCL), posterior cruciate ligament (PCL), popliteus, iliotibial 
band (ITB), and patellar ligament in manual total knee arthroplasty (MTKA) 
and robotic-assisted, haptically guided total knee arthroplasty (RATKA) speci-
mens. Error bars indicate standard deviations. *Statistically significant differ-
ence (p < 0.001, Kruskal–Wallis test). ‡The grade mean was 1 (sd 0).
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reject the null hypothesis (Ho: s1/s2 = p) and accept the 
alternate hypothesis (Ha: s1/s2 > p), where s1 = MTKA 
and s2 = RATKA. This decision was reached because the 
calculated p-value for the test was more than the prese-
lected α level. If the p-value was ⩽ 0.05, then the data 
provided sufficient evidence to reject the null hypothesis 
(Ho: s1/s2 = p) and to accept the alternate hypothesis 
(Ho: s1/s2 > p) at a significance level of 0.05. This deci-
sion was reached because the calculated p-value for the 
test was less than the preselected α level.

Results
Specimen characteristics. P reoperatively, no statistically 
significant differences were found between the median 
Kellgren–Lawrence scores for the MTKA versus RATKA 
cohorts (2.0 (interquartile range (IQR) 2.0 to 3.0) vs 
2.5 (IQR 2.0 to 3.0); all p > 0.05, Kruskal–Wallis test). 
Intraoperatively, no statistically significant differences 
were found between the mean OA grades for any of 
the five compartments, using the modified Outerbridge 
Classification (all p > 0.05, Kruskal–Wallis test) (Table I), 
using Kruskal-Wallis Tests. In addition, intraoperative 
inspection of the ligaments by the conducting surgeons 
characterized the PCL, MCL, and LCL as structurally intact 
in all specimens.
Retractor and bone cuts preference.  Retractor use and 
placement was at the discretion of the surgeon. In MTKA 
and RATKA cases, surgeons most commonly used ‘Z’ and 
Hohmann retractors (or the retractors compatible with 
the Leg Positioner Self-Retractor system (Mako Surgical 
Corp. (Stryker) only in RATKA cases) to protect the collat-
erals. All RATKA components were sizes 3 to 8 and used 
the standard (25 mm effective width) saw blade.

The bone cut order was based on surgeon preference. 
For MTKA cases, three of the four surgeons performed the 
distal femoral cut first, the tibial cut second, followed by 
the remaining femoral cuts. One surgeon performed the 

tibial cut first, the distal femoral cut second, followed 
by the remaining femoral cuts.

For RATKA cases, one surgeon first performed the dis-
tal femoral cut, femoral posterior chamfer cut, tibial cut, 
and then the remaining femoral cuts last. Two surgeons 
fully cut the femur first and then the tibia. An additional 
surgeon performed the tibial cut first and then the distal 
femoral cut last. For removal of the tibia, surgeons most 
often used a scalpel to release the bone.
Soft-tissue damage results. S ignificantly less damage 
occurred to the PCLs in the RATKA than the MTKA speci-
mens (p < 0.001, Kruskal–Wallis test) (Fig. 2). In MTKA 
specimens, four PCLs were 100% severed (grade 4). 
Examples of arthroscopic images of a severed PCL and 
an intact PCL, from MTKA and RATKA specimens, respec-
tively, are seen in Figure 3. RATKA specimens showed 
non-significantly less damage to the deep medial collat-
eral ligaments (p = 0.149, Kruskal–Wallis test), iliotibial 
bands (p = 0.580, Kruskal–Wallis test), poplitei (p  = 
0.248, Kruskal–Wallis test), and patellar ligaments (p = 
0.317, Kruskal–Wallis test). The superficial medial collat-
eral ligaments, posterior oblique ligaments, semimem-
branosus muscle tendons, gastrocnemius muscle medial 
heads, gastrocnemius muscle lateral heads, lateral reti-
nacula, LCLs, quadriceps tendons, and extensor mecha-
nisms were grade 1 in all MTKA and RATKA specimens.

Of note, no intentional soft-tissue releases were per-
formed in either group to balance the knee. Additionally, 
nine RATKA and two MTKA specimens had a posterior 
bone island protecting the PCL (RATKA examples indi-
cated by the probe tip in Fig. 3b).

Discussion
Robotic-assisted technology has been shown to facilitate 
more accurate positioning to plan19-23 and to enhance 
patient reported outcomes.24-28 Conventional MTKA pro-
cedures have also demonstrated clinical success in terms 

Fig. 3a

Fig. 3b

Examples of arthroscopic images of a) severed posterior cruciate ligament (PCL) and b) intact PCL, from manual total knee arthroplasty (MTKA) and robotic-
assisted, haptically guided total knee arthroplasty (RATKA) specimens, respectively.
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of pain relief and survivorship, but intraoperative compli-
cations, such as soft-tissue injury, can occur.29 Therefore, 
this study was conceived to compare the amount of soft-
tissue damage found after performing RATKA versus 
MTKA techniques. Our results showed that less soft-tissue 
damage may occur utilizing RATKA. The findings are 
likely due to the enhanced preoperative planning with 
the robotic software, the real-time intraoperative feed-
back, and the haptically bounded saw blade. Furthermore, 
these findings could be attributed to the smaller effective 
width (or total cutting tip excursion) of the RATKA saw 
blade oscillations. As noted above, the RATKA saw blades 
used in this study had a total cutting tip excursion of 25 
mm, whereas the MTKA blades were 25 mm or 18 mm 
wide before oscillation. These features all may have 
helped to protect the surrounding soft tissue and liga-
ments. The reduced soft-tissue injury may also partly be 
due to the tendency to create a full transverse tibial resec-
tion in MTKA procedures, whereas the RATKA procedure 
is designed to leave a posterior tibial bone island to help 
protect the PCL.

Studies have evaluated the importance of the PCL 
through simulations and passive testing.30-32 The PCL is the 
primary restraint to posterior translation of the tibia and 
plays a role in joint compression.31 Sekiya et al30 used 
stress radiography on 20 cadaver knees to measure the 
change in posterior translation during a 200 N posterior 
drawer at 90° flexion before and after the sequential resec-
tion of the PCL, and showed that sectioning of the PCL 
resulted in corrected posterior displacement up to 10 mm.

In a knee simulation model, one study demonstrated 
that a loose PCL induced paradoxical anterior movement 
and greater patellofemoral forces, whereas a tight PCL 
was related to excessive rollback and increased tibiofem-
oral forces.31 Kang et al32 used a validated knee model to 
simulate force-dependent kinematics under gait- and 
squat-loading conditions with and without PCL defi-
ciency. They found forces on the posterolateral corner 
structures, and tibiofemoral and patellofemoral contact 
forces, to be increased with PCL deficiency under gait- 
and squat-loading conditions.32

In addition to the previously mentioned study by 
Khlopas et al,16 there have been other reports describing 
the degree of soft-tissue injury occurring when RATKAs 
are compared with MTKA techniques.5,33 Kayani et al5 
assessed the extent of unintended soft-tissue damage in a 
prospective cohort of 30 consecutive PS conventional 
TKAs followed by 20 consecutive PS RATKA. Results indi-
cated that RATKA had reduced medial soft-tissue injuries 
and improved MASTI scores (p < 0.05) when compared 
with the manual TKA group.

The enhanced soft-tissue protection seen with RATKA 
may be one of the main reasons that in a recent study, 
patients demonstrated enhanced outcomes, less pain, 
faster therapy, and less narcotic use.27 In a prospective 
cohort study of 40 consecutive patients undergoing 

conventional jig-based TKA followed by 40 consecutive 
patients receiving robotic-assisted TKA, the latter group 
was associated with reduced postoperative pain levels 
(p < 0.001), decreased analgesia requirements (p < 0.001), 
decreased reductions in postoperative haemoglobin levels 
(p < 0.001), shorter times to straight leg raise (p < 
0.001), decreased numbers of physiotherapy sessions 
(p < 0.001), and improved maximum knee flexions at 
discharge (p < 0.001).27 Multiple other studies have 
demonstrated early benefits of this RATKA system.34-47

There were several limitations of the present study. We 
utilized cadavers instead of live patients, which may not 
allow for results to be translated clinically. Furthermore, 
the damage was postoperatively assessed, so it was not 
always known whether the damage occurred from the 
saw blade or the removal of the tibial osteotomy with a 
scalpel, although it is believed that damage most likely 
arose from the saw blade based on location and visual 
characteristics. The sample size was relatively small (12 
RATKA and 12 MTKA cases). However, even with this 
number of cases, we were able to demonstrate statistical 
differences in soft-tissue injury for the PCL. In addition, 
our results are promising in their demonstration of less 
soft-tissue injuries for RATKA.

In conclusion, the results of this study indicate that 
RATKA may result in less soft-tissue damage than MTKA, 
especially for the PCL. However, since any damage was 
postoperatively assessed and in a cadaver model, further 
investigations on soft-tissue damage from patients who 
have clinical outcomes should be performed. Nevertheless, 
this work provides a basis from which future clinical stud-
ies can be performed.
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