header advert
Results 1 - 14 of 14
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 73 - 73
1 Apr 2018
Vancleef S Herteleer M Herijgers P Nijs S Jonkers I Vander Sloten J
Full Access

Last decade, a shift towards operative treatment of midshaft clavicle fractures has been observed [T. Huttunen et al., Injury, 2013]. Current fracture fixation plates are however suboptimal, leading to reoperation rates up to 53% [J. G. Wijdicks et al., Arch. Orthop. Trauma Surg, 2012]. Plate irritation, potentially caused by a bad geometric fit and plate prominence, has been found to be the most important factor for reoperation [B. D. Ashman et a.l, Injury, 2014]. Therefore, thin plate implants that do not interfere with muscle attachment sites (MAS) would be beneficial in reducing plate irritation. However, little is known about the clavicle MAS variation. The goal of this study was therefore to assess their variability by morphing the MAS to an average clavicle.

14 Cadaveric clavicles were dissected by a medical doctor (MH), laser scanned (Nikon, LC60dx) and a photogrammetry was created with Agisoft photoscan (Agisoft, Russia). Subsequently a CT-scan of these bones was acquired and segmented in Mimics (Materialise, Belgium). The segmented bone was aligned with the laser scan and MAS were indicated in 3-matic (Materialise, Belgium). Next, a statistical shape model (SSM) of the 14 segmented clavicles was created. The average clavicle from the SSM was then registered to all original clavicle meshes. This registration assures correspondences between source and target mesh. Hence, MAS of individual muscles of all 14 bones were indicated on the average clavicle.

Mean area is 602 mm2 ± 137 mm2 for the deltoid muscle, 1022 mm2 ±207 mm2 for the trapezius muscle, and 683 mm2 ± 132 mm2 for the pectoralis major muscle. The sternocleidomastoid muscle has a mean area of 513 mm2 ± 190 mm2 and the subclavius muscle had the smallest mean area of 451 mm2 ± 162 mm2. Visualization of all MAS on the average clavicle resulted in 72% coverage of the surface, visualizing only each muscle's largest MAS led to 52% coverage.

The large differences in MAS surface areas, as shown by the standard deviation, already indicate their variability. Difference between coverage by all MAS and only the largest, shows that MAS location varies strongly as well. Therefore, design of generic plates that do not interfere with individual MAS is challenging. Hence, patient-specific clavicle fracture fixation plates should be considered to minimally interfere with MAS.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 53 - 53
1 Apr 2018
Herteleer M Quintens L Carrette Y Vancleef S Vander Sloten J Hoekstra H
Full Access

Purpose

Addressing posterior tibial plateau fractures is increasingly recognized as an important prognostic factor for functional outcome. The treatment of posterior tibial plateau fractures is rather demanding and the implants are still standard, off-the-shelf implants. This emphasizes the need for a more thorough morphological study of the posterior tibial plateau, in order to treat these posterior fractures more adequately. We aimed to demonstrate anatomical variations of the tibia in order to develop better implants.

Method

After approval of the ethical committee 22 historically available CT scans of intact left tibia”s were segmented using Mimics (Materialise, Belgium). In order to perform principal component analysis, corresponding meshes are necessary. Mesh correspondence was achieved by deforming one selected source tibia to every other target tibia, through non rigid registration. The non-rigid registration algorithm was based on the algorithm described by Amberg et al (ref). After performing the non-rigid registration, principal component analysis was performed in Matlab (Mathworks, USA).


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 10 - 10
1 Apr 2018
Wesseling M Vancleef S Meyer C Vander Sloten J Jonkers I
Full Access

Introduction

Modification in joint loading, and specifically shear stress, is found to be an important mechanical factor in the development of osteoarthritis (OA). Cartilage shear stresses can be investigated using finite element (FE) modelling, where typically in vivo joint loading as measured by an instrumented hip prosthesis is used as boundary condition. However, subject-specific gait characteristics substantially affect joint loading. The goal of this study is to investigate the effect of subject-specific joint loading as calculated using a subject-specific musculoskeletal model and integrated motion capture data on acetabular shear stress.

Methods

Three healthy control subjects walked at self-selected speed while measuring marker trajectories (Vicon, Oxford Metrics, UK) and force data (two AMTI force platforms; Watertown, MA). A subject-specific MRI-based musculoskeletal model consisting of 14 segments, 19 degrees of freedom and 88 musculotendon actuators, and including wrapping surfaces around the hip joint, was used. All analyses were performed in OpenSim 3.1. The model was scaled to the dimensions of each subject using the marker positions of a static pose. A kalman smoother procedure was used to calculate joint angles. Muscle forces were calculated using static optimization, minimizing the sum of squared muscle activations, and hip contact forces (HCF) were calculated and normalized to body weight (BW). To calculate shear stress, HCFs and joint angles calculated during the stance phase of gait were imposed to a hip finite element model (hip_n10rb) using FFEbio 2.5. In the model, femoral and acetabular cartilage were represented using the Mooney-Rivlin formulation (c1=6.817, bulk modulus=1358.86) and the pelvis and femur bones as rigid bodies. Peak HCF as well as maximal acetabular shear stress, magnitude and location, and the HCF at the time of maximal shear stress were compared between subjects.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 51 - 51
1 Apr 2018
Leuridan S Goossens Q Roosen J Pastrav L Denis K Desmet W Vander Sloten J Mulier M
Full Access

Introduction

Aseptic acetabular component failure rates have been reported to be similar or even slightly higher than femoral component failure. Obtaining proper initial stability by press fitting the cementless acetabular cup into an undersized cavity is crucial to allow for secondary osseous integration. However, finding the insertion endpoint that corresponds to an optimal initial stability is challenging. This in vitro study presents an alternative method that allows tracking the insertion progress of acetabular implants in a non-destructive, real-time manner.

Materials and Methods

A simplified acetabular bone model was used for a series of insertion experiments. The bone model consisted of polyurethane solid foam blocks (Sawbones #1522-04 and #1522-05) into which a hemispherical cavity and cylindrical wall, representing the acetabular rim, were machined using a computer numerically controlled (CNC) milling machine (Haas Automation Inc., Oxnard, CA, USA). Fig. 1 depicts the bone model and setup used. A total of 10 insertions were carried out, 5 on a low density block, 5 on a high density block. The acetabular cups were press fitted into the bone models by succeeding hammer hits. The acceleration of the implant-insertor combination was measured using 2 shock accelerometers mounted on the insertor during the insertion process (PCB 350C03, PCB Depew, NY, USA). The force applied to the implant-insertor combination was also measured. 15 hammer hits were applied per insertion experiment. Two features were extracted from the acceleration time signal; total signal energy (E) and signal length (LS). Two features and one correlation measure were extracted from the acceleration frequency spectra; the relative signal power in the low frequency band (PL, from 500–2500Hz) and the signal power in the high frequency band (P Hf, from 4000–4800 Hz). The changes in the low frequency spectra (P Lf, from 500–2500 Hz) between two steps were tracked by calculating the Frequency Response Assurance Criterion (FRAC). Force features similar to the ones proposed by Mathieu et al., 2013 were obtained from the force time data. The convergence behavior of the features was tracked as insertion progressed.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 141 - 141
1 Feb 2017
Goossens Q Leuridan S Pastrav L Mulier M Desmet W Denis K Vander Sloten J
Full Access

Introduction

Each year, a large number of total hip arthroplasties (THA) are performed, of which 60 % use cementless fixation. The initial fixation is one of the most important factors for a long lasting fixation [Gheduzzi 2007]. The point of optimal initial fixation, the endpoint of insertion, is not easy to achieve, as the margin between optimal fixation and a femoral fracture is small. Femoral fractures are caused by peak stresses induced during broaching or by the hammer blows when the implant is excessively press-fitted in the femur. In order to reduce the peak stresses during broaching, IMT Integral Medizintechnik (Luzern, Switzerland) designed the Woodpecker, a pneumatic broach that generates impulses at a frequency of 70 Hz. This study explores the feasibility of using the Woodpecker for implant insertion by measuring both the strain in the cortical bone and the vibrational response. An in vitro study is presented.

Material and Methods

A Profemur Gladiator modular stem (MicroPort Orthopedics Inc. Arlington, TN, USA) and two artificial femora (composite bone 4th generation #3403, Sawbones Europe AB, Malmö, Sweden) were used. One artificial femur was instrumented with three rectangular strain gauge rosettes (Micro-Measurements, Raleigh, NC, USA). The rosettes were placed medially, posteriorly and anteriorly proximally on the cortical bone. Five paired implant insertions were repeated on both artificial bones, alternating between standard hammering and Woodpecker insertions. During the insertion processes the vibrational response was measured at the implant and Woodpecker side (fig. 1) using two shock accelerometers (PCB Piezotronics, Depew, NY, USA). Frequency spectra were derived from the vibrational responses. The endpoint of insertion was defined as the point when the static strain stopped increasing during the insertion.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 57 - 57
1 Jan 2017
Goossens Q Pastrav L Leuridan S Mulier M Desmet W Denis K Vander Sloten J
Full Access

A large number of total hip arthroplasties (THA) are performed each year, of which 60 % use cementless femoral fixation. This means that the implant is press-fitted in the bone by hammer blows. The initial fixation is one of the most important factors for a long lasting fixation [Gheduzzi 2007]. It is not easy to obtain the point of optimal initial fixation, because excessively press-fitting the implant by the hammer blows can cause peak stresses resulting in femoral fracture. In order to reduce these peak stresses during reaming, IMT Integral Medizintechnik (Luzern, Switzerland) designed the Woodpecker, a pneumatic reaming device using a vibrating tool. This study explores the feasibility of using this Woodpecker for implant insertion and detection of optimal fixation by analyzing the vibrational response of the implant and Woodpecker. The press-fit of the implant is quantified by measuring the strain in the cortical bone surrounding the implant. An in vitro study is presented.

Two replica femur models (Sawbones Europe AB, Malmo Sweden) were used in this study. One of the femur models was instrumented with three rectangular strain gauge rosettes (Micro-Measurements, Raleigh, USA). The rosettes were placed medially, posteriorly and anteriorly on the proximal femur. Five paired implant insertions were performed on both bone models, alternating between standard hammer blow insertions and using the Woodpecker. The vibrational response was measured during the insertion process, at the implant and Woodpecker side using two shock accelerometers (PCB Piezotronics, Depew, NY, USA). The endpoint of insertion was defined as the point when the static strain stopped increasing.

Significant trends were observed in the bandpower feature that was calculated from the vibrational spectrum at the implant side during the Woodpecker insertion. The bandpower is defined as the percentage power of the spectrum in the band 0–1000 Hz. Peak stress values calculated from the strain measurement during the insertion showed to be significantly (p < 0.05) lower at two locations using the Woodpecker compared to the hammer blows at the same level of static strain. However, the final static strain at the endpoint of insertion was approximately a factor two lower using the Woodpecker compared to the hammer.

A decreasing trend was observed in the bandpower feature, followed by a stagnation. This point of stagnation was correlated with the stagnation of the periprosthetic stress in the bone measured by the strain gages. The behavior of this bandpower feature shows the possibility of using vibrational measurements during insertion to assess the endpoint of insertion. However it needs to be taken into account that it was not possible to reach the same level of static strain using the Woodpecker as with the hammer insertion. This could mean that either extra hammer blows or a more powerful pneumatic device could be needed for proper implant insertion.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 9 - 9
1 Jan 2017
Boey H Natsakis T Van Dijck C Coudyzer W Dereymaeker G Jonkers I Vander Sloten J
Full Access

Four-dimensional computed tomography (4DCT: three dimensional + time) allows to measure individual bone position over a period of time usually during motion. This method has been found useful in studying the joints around the wrist as dynamic instabilities are difficult to detect during static CT scans while they can be diagnosed using a 4DCT scan [1]–[3]. For the foot, the PedCAT system (Curvebeam, Warrington, USA) has been developed to study the foot bones under full weight bearing, however its use is limited to static images. On the contrary, dynamic measurements of the foot kinematics using skin markers can only describe motion of foot segments and not of individual bones. However, the ability to measure individual bone kinematics during gait is of paramount importance as such detailed information could be used to detect instabilities, to evaluate the effect of joint degeneration, to help in pre-operative planning as well as in post-operative evaluation.

The overall gait kinematics of two healthy volunteers were measured in a gait analysis lab (Movement Analysis Lab Leuven, Belgium) using a detailed foot-model (Oxford foot model, [4]). The measured plantar-dorsiflexion and in-eversion were used to manipulate their foot during a 4D CT acquisition. The manipulation was performed through a custom made foot manipulator that controls the position and orientation of the foot bed according to input kinematics. The manipulator was compatible with the 4D CT Scanner (Aquilion One, Toshiba, JP), and a sequence of CT scans (37 CT scans over 10 seconds with 320 slices for each scan and a slice thickness of 0.5 mm) was generated over the duration of the simulation. The position of the individual bones was determined using an automatic segmentation routine after which the kinematics of individual foot bones were calculated. To do so, three landmarks were tracked on each bone over time allowing to construct bone-specific coordinate frames. The motion of the foot bed was compared against the calculated kinematics of the tibia-calcaneus as the angles between these two bones are captured with skin markers.

There is high repeatability between the imposed plantar/dorsiflexion and inversion/eversion and the calculated. Although the internal/external rotation was not imposed, the calculated kinematics follow the same pattern as the measured in the gait-analysis lab. Based on the validation of the tibia-calcaneus, the kinematics were also calculated between four other joints: tibia-talar, talar-calcaneus, calcaneus-cuboid and talar-navicular. Repeatable measurements of individual foot bone motion were obtained for both volunteers.

The use of 4D CT-scanning in combination with a foot manipulator can provide more detailed information than skin marker-based gait-analysis e.g. for the study of the the tibia-talar joint. In the future, the foot manipulator will be tested for its sensitivity for specific pathologies (e.g. metatarsal coalition) and will be further developed to better resemble a real-life stance phase of gait (i.e. to include isolated heel contact and toe off).


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 121 - 121
1 May 2016
Pastrav L Leuridan S Goossens Q Smits J Stournaras I Roosen J Desmet W Denis K Vander Sloten J Mulier M
Full Access

Introduction

The success of cementless total hip arthroplasty (THA), primary as well as for revision, largely depends on the initial stability of the femoral implant. In this respect, several studies have estimated that the micromotion at the bone-implant interface should not exceed 150µm (Jasty 1997, Viceconti 2000) in order to ensure optimal bonding between bone and implant. Therefore, evaluating the initial stability through micromotion measurements serves as a valid method towards reviewing implant design and its potential for uncemented THAs.

In general, the methods used to measure the micromotion assume that the implant behaves as a rigid body. While this could be valid for some primary stems (Østbyhaug 2010), studies that support the same assumption related to revision implants were not found.

The aim of this study is to assess the initial stability of a femoral revision stem, taking into account possible non-rigid behaviour of the implant. A new in vitro measuring method to determine the micromotion of femoral revision implants is presented. Both implant and bone induced displacements under cyclic load are measured locally.

Methods

A Profemur R modular revision stem (MicroPort Orthopedics Inc. Arlington, TN, United States of America) and artificial femora (composite bone 4th generation #3403, Sawbones Europe AB, Malmö, Sweden) prepared by a surgeon were used.

The micromotions were measured in proximal-distal, medial-lateral or anterior-posterior directions at four locations situated in two transverse planes, using pin and bushing combinations. At each measuring location an Ø8mm bushing was attached to the bone, and a concentric Ø3mm pin was attached to the implant [Fig.1 and 2]. A supporting structure used to hold either guiding bushings or linear variable displacement transducers (LVDT) is attached to the proximal part of the implant. The whole system was installed on a hydraulic force bench (PC160N, Schenck GmbH, Darmstadt, Germany) and 250 physiological loading cycles were applied [Fig.3].


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 51 - 51
1 Jul 2014
Vanden Berghe P Demol J Gelaude F Vander Sloten J
Full Access

Summary

This work proposes a novel, automatic method to obtain an anatomical reconstruction for 3D segmented bones with large acetabular defects. The method works through the fitting of a Statistical Shape Model to the non-defect parts of the bone.

Introduction

Patient-specific implants can be used to treat patients with large acetabular bone defects (IIa-c, IIIb, Paprosky 1994). These implants require a full 3D preoperative planning that includes segmentation of volumetric images (CT or MRI), extraction of the 3D shape, reconstruction of the bone defect into its anatomic (non-defect) state, design of an implant with a perfect fit and optimal placement of the screws. The anatomic reconstruction of the bone defect will play a key role in diagnosing the amount of bone loss and in the design of the implant. Previous reconstruction methods rely on a healthy contralateral (Gelaude 2007); however this is not always available (e.g. partial scan or implant present). Statistical shape models (SSM) of healthy bones can help to increase the accuracy and usability of the reconstruction and will decrease the manual labor and user dependency. Skadlubowicz (2009) illustrated the use of an SSM to reconstruct pelvic bones with tumor defects; however tumors generally affect a smaller region of the bone so that the reconstruction will be easier than in large acetabular bone defects. Also, the tumor reconstruction method uses 80 manually indicated landmarks, while the proposed method only uses 14.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 214 - 214
1 Sep 2012
Walscharts S Corten K Bartels W Jonkers I Bellemans J Simon J Vander Sloten J
Full Access

The 3D interplay between femoral component placement on contact stresses and range of motion of hip resurfacing was investigated with a hip model. Pre- and post-operative contours of the bone geometry and the gluteus medius were obtained from grey-value CT-segmentations. The joint contact forces and stresses were simulated for variations in component placement during a normal gait. The effect of component placement on range of motion was determined with a collision model. The contact forces were not increased with optimal component placement due to the compensatory effect of the medialisation of the center of rotation. However, the total range of motion decreased by 33%. Accumulative displacements of the femoral and acetabular center of rotation could increase the contact stresses between 5–24%. Inclining and anteverting the socket further increased the contact stresses between 6–11%. Increased socket inclination and anteversion in combination with shortening of the neck were associated with extremely high contact stresses. The effect of femoral offset restoration on range of motion was significantly higher than the effect of socket positioning. In conclusion, displacement of the femoral center of rotation in the lateral direction is at least as important for failure of hip resurfacings as socket malpositioning.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 101 - 101
1 Sep 2012
Leuridan S Vander Sloten J Desmet W De Wilde L Debeer P
Full Access

INTRODUCTION

Glenosphere disengagement can be a potential serious default in reverse shoulder arthroplasty [1]. To ensure a good clinical outcome, it is important for the surgeon to obtain an optimal assembly of the glenosphere - base plate system during surgery. However interpositioning of material particles (bone, soft tissue) between the contact surface of the glenosphere and the base plate and/or a misalignment of the glenosphere relative to the base plate can result in a suboptimal assembly of the glenosphere – base plate system [2]. This misalignment is typically caused by unwanted contact between the glenosphere and the scapula due to inadequate reaming. Both defects prevent the Morse taper from fully engaging, leading to a system configuration for which the assembly was not designed to be loaded in vivo. This study quantifies the influence these defects have on the relative movement between the glenosphere and metaglene.

MATERIALS AND METHODS

A biaxial test setup [Fig. 1] was developed to mechanically load the glenoidal assembly (base plate + glenosphere) of 5 Depuy® Delta Xtend 38 prostheses. The setup allows applying a cyclic loading pattern to the glenoidal component with a constant actuator load of 750 N. Each of the 5 samples was tested for 5000 cycles on 3 defects: an interpositioning of 150 µm thick (0.48 mm3) and two local underreaming defects, pushing one side of the glenosphere up 0.5 mm and 1 mm respectively, hence causing a misalignment. The relative movement was recorded using 4 Linear Variable Differential Transducers (LVDTs). The cycling frequency is 1 Hz.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 34 - 34
1 Sep 2012
Corten K Jonkergouw F Bartels W Van Lenthe H Bellemans J Simon J Vander Sloten J
Full Access

Summary sentence

The bowing of the femur defines a curvature plane to which the proximal and distal femoral anatomic landmarks have a predictable interrelationship. This plane can be a helpful adjunct for computer navigation to define the pre-operative, non-diseased anatomy of the femur and more particularly the rotational alignment of the femoral component in total knee arthroplasty (TKA).

Background and aims

There is very limited knowledge with regards to the sagittal curvature -or bowing- of the femur. It was our aim (1) to determine the most accurate assessment technique to define the femoral bowing, (2) to define the relationships of the curvature plane relative to proximal and distal anatomic landmarks and (3) to assess the position of femoral components of a TKA relative to the femoral bowing.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 512 - 512
1 Oct 2010
Corten K Bartels W Bellemans J Broos P Meermans G Simon J Vander Sloten J
Full Access

Aim: Component positioning may be adversely affected by minimally invasive approach in total hip replacement due to restricted visualization. Problems with proper alignement are suggested to concern anteversion more than inclination and occur particulary in the lateral position.

Method: 53 patients were enrolled prospectively randomised to each group. First group (standard group, n= 30pts) underwent conventional total hip replacement in supine position and transgluteal approach and second group (MIS group, n= 23pts) underwent THR using minimally invasive anterior approach in lateral decubitus position Every group was operated on by two experienced senior surgeons. Desired cup position was 40°–45°inclination and 15–20° anteversion for the MIS group and 45°inclination and 15 ° anteversion for standard group. Postoperatively all patients had pelvic CT scan. Inclination and anteversion were determined by an independent observer using a 3-D model and planning software, the operative definition was used according to Murray.

Results: Mean inclination/anteversion in the MIS group was 39°(26°–50°)/25°(10°–47°), and 44°(29°–57°)/22°(1°–53°) within the standard group. Standard deviation for inclination was 7° for both groups, and 10° (MIS group) vs 14° (standard group) for anteversion.

The difference in the mean values regarding inclination was greater than would be expected by chance; there was a statistically significant difference (P = 0,010).

Discussion: In general cup positioning in both groups was less steep and more anteverted as presumed. The standard deviation for inclination was the same in both groups, but the standard deviation for anteversion was less in MIS group, that means less outliers regarding anteversion. Cup positioning in minimally invasive total hip replacement is safe compared to traditional approach.

Navigation technique was discussed to equalize the drawback of MIS. However, tools like imageless navigation may further improve the cup position even in traditional approach.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 512 - 512
1 Oct 2010
Corten K Bartels W Bellemans J Broos P Meermans G Simon J Vander Sloten J
Full Access

Introduction: The Birmingham Hip Resurfacing (BHR) is the most commonly used hip resurfacing for the treatment of hip osteoarthritis. The goal of this study was to evaluate how the surgeon could influence the biomechanical features of the navigated and non-navigated resurfaced proximal femur. METHODS 20 Cadaver hips were resurfaced with a BHR using femoral navigation. The native anteversion and neck shaft angle as indicated by the navigation system were used as a reference. The non-navigated femoral component jig was first placed in the “ideal” position aiming for 10° of valgus and neutral anteversion. The jig was then displaced 5mm in 4 directions. The anteversion and stem shaft angle (SSA) angle were measured for each position using the navigation system. A scaled XR was taken pre- and post-operatively. For statistical analysis, the paired Student’s T-test with a confidence interval of 95% and a significant p-value of p< 0.05 was used.

Results: The centre of rotation (COR) of the navigated resurfaced femur was 3,5 mm significantly (p=0,0006) more distal in the femoral neck than the native COR. This resulted in a 2.1 mm vertical caudal drop (vertical offset) and an average 2.7 mm lateral displacement of the COR (horizontal offset). The same measurements were done with 5° increments of the SSA from 120° to 140°. The vertical offset loss increased non-significantly (1.7 to 2.6 mm). The horizontal offset loss decreased non-significantly (3 to 2.2 mm). The native vertical and horizontal offset could be restored if 5 mm less bone was taken off the femur. The offset loss was significantly increased if 5 mm more bone than the normal reaming had been taken off (p< 0.0001). The “ideal” jig position on the lateral femoral cortex led to an average 137° SSA. Five millimetres of jig displacement on the lateral cortex in either direction did not lead to significant changes in the SSA or anteversion angles relative to the “ideal” position (all p> 0,13). Five millimetres of posterior displacement resulted in an average 139° SSA and 5,8° of anteversion in 95% of hips.

Conclusion: Surgical interventions can significantly change the biomechanics of the hip. Increasing the SSA with a fixed femoral head entry point, as often is done with navigation, does not significantly change the femoral offset. If the surgeon decides to take less bone off the femur, then the offset could be restored and even increased to 1 mm more than the native femur. If due to pathologic changes the bone loss would be increased to 5mm more than the “normal” bone loss, a significant offset loss of > 5 mm could be expected which might lead to detrimental biomechanical effects. The positioning of the jig is subject to surgical errors. The effect of a 5 mm error in either direction does not lead to significant changes in anteversion or SSA. Posterior displacement led to the most reproducible component positioning.