header advert
Results 1 - 1 of 1
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 18 - 18
1 Feb 2020
Valiadis J
Full Access

Introduction

From 2004 to 2015, elective lumbar fusions increased by 62% in the US. The largest increases were for among age 65 or older (139% in volume) and scoliosis (187%) [1]. Age is a well known factor of osteoporosis. The load-sharing may exceed the pedicular screws constructs in aging spine and lead to non-union and re-do. Surgical options may increase the screw purchase (e.g.: augmentation, extensions) at supplementary risks. Pedicular screw are known to cause vascular, nerve root or cord injuries. Facing these pitfalls, the surgeon's experience and rule of thumbs are the most deciding factors for the surgical planning. The aim of this study is to assess the accuracy of a patient specific tool, designed to plan a safe pedicular trajectory and to provide an intraoperative screw pullout strength estimate.

Materials and Methods

Clinical QCT were taken for nine cadaveric spines (82 y. [61; 87], 6 females, 3 males). The experimental maximum axial pullout resistance (FMax) of twenty-seven pedicular screws inserted (nine T12, nine L4 and nine L5) was obtained as described in a previous study [2]. A custom 3D-WYSIWYG software simulated a medio-lateral surgical insertion technique in the QCTs coordinates reference, respecting the cortical walls. Repeatable density, morphometric and hardware parameters were recorded for each vertebrae. A statistical model was built to match predictive and experimental data.