header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

PATIENT-SPECIFIC PEDICULAR SCREW TRAJECTORY AND PURCHASE PREDICTION FOR A SAFER SURGERY IN AGEING SPINE

International Society for Technology in Arthroplasty (ISTA) meeting, 32nd Annual Congress, Toronto, Canada, October 2019. Part 1 of 2.



Abstract

Introduction

From 2004 to 2015, elective lumbar fusions increased by 62% in the US. The largest increases were for among age 65 or older (139% in volume) and scoliosis (187%) [1]. Age is a well known factor of osteoporosis. The load-sharing may exceed the pedicular screws constructs in aging spine and lead to non-union and re-do. Surgical options may increase the screw purchase (e.g.: augmentation, extensions) at supplementary risks. Pedicular screw are known to cause vascular, nerve root or cord injuries. Facing these pitfalls, the surgeon's experience and rule of thumbs are the most deciding factors for the surgical planning. The aim of this study is to assess the accuracy of a patient specific tool, designed to plan a safe pedicular trajectory and to provide an intraoperative screw pullout strength estimate.

Materials and Methods

Clinical QCT were taken for nine cadaveric spines (82 y. [61; 87], 6 females, 3 males). The experimental maximum axial pullout resistance (FMax) of twenty-seven pedicular screws inserted (nine T12, nine L4 and nine L5) was obtained as described in a previous study [2]. A custom 3D-WYSIWYG software simulated a medio-lateral surgical insertion technique in the QCTs coordinates reference, respecting the cortical walls. Repeatable density, morphometric and hardware parameters were recorded for each vertebrae. A statistical model was built to match predictive and experimental data.

Preliminary results

Experimental FMax(N) were [104;953] (359 ±223). A further displacement of 1,81mm ±0,35 halved the experimental FMax. Predictive FMax(N) were [142;862] (359 ±220). A high positive correlation between experimental and predictive FMax was revealed (Pearson, ρ = 0.93, R2 = 0.87, p < .001, figure 1). Absolute differences ranged between 3N and 177N.

Discussion

A high screw purchase in primary fixation is paramount to achieve spine surgical procedures (e.g.: kyphosis, scoliosis) and postoperative stability for vertebrae fusion. High losses of screw purchase by bone plastic deformation, begin with tiny pullouts. Theses unwanted intraoperative millimetric over-displacements are hard to avoid when monitoring at the same time tens of screws surrounded by bleedings. This advocates for including predictive FMax for each implantable pedicular screw in the surgical planning decision making process to prevent failures and assess risks. For the first time, this study presents an experimentally validated statistical model for FMax prediction with a safe trajectory definition tool, including patients’ vertebrae and hardware properties and referring to the patient's clinical 3D quantitative imagery. The model was able to differentiate between bone quality and vertebrae variations. More extensive model validation is currently ongoing to interface with robotics & navigation systems and to produce meshes for 3D printing of sterilizable insertion guides.