header advert
Results 1 - 2 of 2
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 33 - 33
1 Apr 2018
Timur UT Emans P van Rhijn L Welting T
Full Access

Introduction

Cartilage homeoprotein 1 (CART-1) is a homeoprotein which has been suggested to play a role in chondrocyte differentiation and in skeletal development. It is expressed mainly in prechondrocytic mesenchymal condensations. Patients with mutations in the CART-1 gene display several craniofacial abnormalities, suggesting that CART-1 has a functional role in craniofacial skeletal development. However, its target genes and position in the established chondrogenic pathways is poorly documented. Given the fact that CART-1 is expressed predominantly in the chondrocyte lineage and its role in skeletal development, we hypothesized that CART-1 regulates expression of several pivotal genes involved in chondrogenic differentiation.

Methods

The coding sequence of human CART-1 was custom synthesized with optimized codon usage and cloned into a p3XFLAG-CMV-7.1 expression vector. FLAG-CART-1 was transiently overexpressed in SW1353 cells by polyethyleneimine-mediated transfection (1,000 ng of plasmid/well in 12-well plates). FLAG-Empty vector was used as a negative control. FLAG-CART-1 overexpression was confirmed by means of anti-FLAG immunoblotting. To investigate a potential connection between CART-1 and established key chondrogenic pathways, TGFβ3 (10 ng/mL) was added to SW1353 cells in CART-1 overexpression cultures or their appropriate controls. Cells were harvested 48 hours after transfection and mRNA expression of several genes involved in chondrogenic differentiation was determined by qRT-PCR. Data represent three separate experiments performed in technical triplicate.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 79 - 79
1 Apr 2018
Timur UT Caron M Welting T van Rhijn L Emans P Jahr H
Full Access

Introduction

In vitro expansion of human articular chondrocytes (HACs) is required for cell-based strategies to treat cartilage defects. We have earlier shown that culturing HACs at increased osmolarity (i.e., 380 mOsm), as compared to plasma osmolarity (i.e., 280 mOsm), increases collagen type II (COL2A1) expression in vitro. Our earlier results showed that knockdown of TGF-β2, a prototypic member of the TGF-β superfamily and an accepted key regulator of chondrocyte differentiation, resulted in increased COL2A1 production. BMPs are members of the TGF-β superfamily which are known to be involved in the regulation of COL2A1 expression. In this study, we aimed to elucidate the role of BMP signaling, in the upregulation of COL2 production upon TGF-β2 knockdown (KD) under hyperosmotic culture conditions.

Methods

HACs from five OA patients (passage 1) were cultured in cytokine-free medium, under 280 or 380 mOsm respectively, under standard 2D in vitro conditions. TGF-β2 knockdown (KD) by siRNA was performed in the presence or absence of the established bone morphogenetic protein (BMP) type I receptor (BMPRI) inhibitor dorsomorphin (10 μM). Expression of COL2A1 was evaluated by qRT-PCR.