header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

BMP SIGNALLING IN HUMAN CHONDROCYTES IS INVOLVED IN THE EXPRESSION OF COL2 IN HUMAN CHONDROCYTES

The European Orthopaedic Research Society (EORS) 25th Annual and Anniversary Meeting, Munich, Germany, September 2017. Part 2 of 2.



Abstract

Introduction

In vitro expansion of human articular chondrocytes (HACs) is required for cell-based strategies to treat cartilage defects. We have earlier shown that culturing HACs at increased osmolarity (i.e., 380 mOsm), as compared to plasma osmolarity (i.e., 280 mOsm), increases collagen type II (COL2A1) expression in vitro. Our earlier results showed that knockdown of TGF-β2, a prototypic member of the TGF-β superfamily and an accepted key regulator of chondrocyte differentiation, resulted in increased COL2A1 production. BMPs are members of the TGF-β superfamily which are known to be involved in the regulation of COL2A1 expression. In this study, we aimed to elucidate the role of BMP signaling, in the upregulation of COL2 production upon TGF-β2 knockdown (KD) under hyperosmotic culture conditions.

Methods

HACs from five OA patients (passage 1) were cultured in cytokine-free medium, under 280 or 380 mOsm respectively, under standard 2D in vitro conditions. TGF-β2 knockdown (KD) by siRNA was performed in the presence or absence of the established bone morphogenetic protein (BMP) type I receptor (BMPRI) inhibitor dorsomorphin (10 μM). Expression of COL2A1 was evaluated by qRT-PCR.

Results

Culturing HACs at 380 mOsm increased COL2A1 mRNA expression. Addition of dorsomorphin decreased COL2A1 mRNA expression at both 280 and 380 mOsm, but its expression was still significantly higher at 380 mOsm. In hyperosmotic 380 mOsm culture conditions, TGF-β2 KD further increased COL2A1 mRNA expression, while addition of dorsomorphin under these conditions abrogated this effect. Still, expression of COL2A1 mRNA levels remained higher as compared to 280 mOsm.

Conclusion

This study confirms that BMP signalling is involved in the expression of the single best accepted key chondrocyte marker, COL2A1, in osteoarthritic HACs. However, inhibition of BMP signalling could not abrogate the increase in COL2A1 expression under hyperosmotic culture conditions. Our data suggest an inverse regulation of TGF-β2 and COL2A1, under these conditions, which may largely be dependent on increased BMPRI-mediated cell signaling. Our findings further suggest that hyperosmotic culture improves COL2A1 expression by means that are independent of TGF-β- and BMPRI-signaling. Further elucidation of the molecular network underlying this observation is ongoing.


Email: