header advert
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 47 - 47
1 Oct 2016
Halai M Jamal B Robinson P Qureshi M Kimpton J Syme B McMillan J Holt G
Full Access

Three distal femoral axes have been described to aid in alignment of the femoral component; the Trans Epicondylar Axis (TEA), the Posterior Condylar Axis (PCA) and the Antero Posterior (AP) axis. Our aim was to identify if there was a reproducible relationship between the axes which would aid alignment of the femoral component. This is the first study compare all three distal femoral axes with each other using magnetic resonance imaging (MRI) in a Caucasian population. Our sample group represents real life patients awaiting total knee arthroplasty (TKA), as opposed non-arthritic or cadaveric knees.

We identified the relationship between these rotational axes by performing MRI scans on 89 patients awaiting TKA with patient-specific instrumentation. Measurements were taken by two observers.

Patients had a mean age of 62.5 years (range 32–91). 51 patients were female. The mean angle between the TEA and the AP axis was 92.78° with a standard deviation of 2.51° (range 88° – 99°). The mean angle between the AP axis and the PCA was 95.43° with a standard deviation of 2.75° (range 85° – 105°). The mean angle between the TEA and the PCA was 2.78° with a standard deviation of 1.91° (range 0° – 10°).

We conclude that while there is a reproducible relationship between the differing femoral axes, there is a significant range in the relationship between the femoral axes. This range may lead to greater inaccuracy than has previously been appreciated when defining the rotation of the femoral component. There is most variation between the PCA and the AP axis. The TEA's relationship with the PCA and AP appears important in defining rotation. Due to the well accepted difficulty in defining the TEA intra-operatively, there may be a role for patient-specific instrumentation in TKA surgery with pre-operative MRI.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_7 | Pages 10 - 10
1 Apr 2014
Halai M Jamal B Robinson P Qureshi M Kimpton J Syme B McMillan J Holt G
Full Access

Three distal femoral axes have been described to aid in alignment of the femoral component; the Trans Epicondylar Axis (TEA), the Posterior Condylar Axis (PCA) and the Antero Posterior (AP) axis. Our aim was to identify if there was a reproducible relationship between the axes. Hopefully this will aid the surgeon to more accurately judge the rotation of the femoral cutting block by using the axes with the least variation. This is the first study compare all three distal femoral axes with each other using magnetic resonance imaging (MRI) in a Caucasian population awaiting total knee arthroplasty (TKA).

We identified the relationship between these axes by performing MRI scans on 89 patients awaiting TKA with patient-specific instrumentation. Measurements were taken by two observers.

Patients had a mean age of 62.5 years (range 32–91). 51 patients were female. The mean angle between the TEA and AP axis was 92.78°, standard deviation (SD) 2.51° (range 88°–99°). The mean angle between the AP axis and PCA was 95.43°, SD 2.75° (range 85°–105°). The mean angle between the TEA and PCA was 2.78°, SD 1.91° (range 0°–10°).

We conclude that while there is a reproducible relationship between the differing femoral axes, there is a significant range in the relationship between the femoral axes. This range may lead to greater inaccuracy than has previously been appreciated when defining the rotation of the femoral component. There is most variation between the PCA and the AP axis. Most systems have a cutting block with 3° of external rotation from the PCA and this would be parallel to the TEA in the majority, but not all, cases in this series. This data suggests that if the surgeon is to pick two axes to reference from, one should include the TEA.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_31 | Pages 51 - 51
1 Aug 2013
Robinson P Anthony I Stark A Jones B Ingram R
Full Access

The link between squeaking and ceramic on ceramic (CoC) bearings has been widely reported in orthopaedic literature and is described as a hard bearing phenomenon. We aim to look at the incidence of noise in CoC bearings compared to Metal on Polyethylene (MoP) bearing, which have yet to be linked to squeaking.

We developed a noise characterizing hip questionnaire and sent that along with the Oxford Hip Score (OHS) to 1000 patients; 3:2 ratio of CoC to MoP. 282 CoC patients and 227 MoP patients returned the questions: 509 patients in total. Our patient database provided details on femoral head size and the acetabular inclination angle, for each respondent

47 (17%) of the CoC hip patients reported noise compared to 19 (8%) of the MoP hip patients (P=0.054). 9 CoC patients and 4 MoP patients reported squeaking, while clicking was the most frequent answer in both groups. 27% patients with noise reported avoiding recreational activities because of it. Patient's with noisy hips scored on average, 5 points worse in the OHS (CoC: P = 0.04 and MoP: P = 0.007) and were on average 5 years younger (CoC: P<0.001 and MoP: P=0.007). No correlation was found between noisy hips and femoral head size or inclination angle.

The squeaking hip phenomenon is not exclusive to hard bearing THA. Noise from patient's hips may have social implications and this should be highlighted when consenting a patient for either of these hip procedures. In both implants, we showed there to be a correlation between noise production and a lower OHS. However, longer follow up studies are needed to link noise to a poorly functioning implant


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_31 | Pages 50 - 50
1 Aug 2013
Robinson P Wilkinson A Meek R
Full Access

Metal on metal (MoM) bearings in hip surgery may result in increased blood levels of metal ions. The nature of the relationship between ion levels and failure is still not fully understood.

We compared three cohorts of resurfacing patients, grouped for brand and diameter of femoral component. We measured the blood level of Cobalt and Chromium ions at an average of 4 years postoperatively. The results were grouped as follows: Birmingham Hip Resurfacing ≥50 mm diameter, Durom resurfacing ≥50 mm diameter and Durom resurfacing <50 mm diameter.

120 patients were included in each group. There were significant differences in Cobalt levels between the groups. The median cobalt level for the BHR group was 8 nmol/L higher than the Durom ≥50 mm group (P<0.005). The Durom <50 mm group recorded cobalt levels 8.5 nmol/L higher than the Durom ≥50 mm group (P=0.0004). Revision rates were equal in the Large BHR's and Large Durom HRA (both 3.3%) however the small Durom HRA had a revision rate of 8.3%.

Elevated blood ion levels can indicate a failing MoM bearing. When similar ion levels were reported for BHR and small Durom the latter had significantly higher revision rates. The large BHR and large Durom HRA have similar revision rates yet the large Durom HRA had significantly lower metal ion levels. Only one of the patients having revision surgery (n=18) had metal ion levels above the MHRA threshold. This suggests ion levels do not absolutely predict the rate of HRA failure. Given similar revision rates with different ion levels between the large BHR and large Durom hips, mechanisms of failure leading to revision must be isolated from the release of metal ions. Therefore clinical and image based follow up are recommended in addition to ion level monitoring.