header advert
Results 1 - 1 of 1
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 68 - 68
1 Feb 2020
Gascoyne T Pejhan S Bohm E Wyss U
Full Access

Background

The anatomy of the human knee is very different than the tibiofemoral surface geometry of most modern total knee replacements (TKRs). Many TKRs are designed with simplified articulating surfaces that are mediolaterally symmetrical, resulting in non-natural patterns of motion of the knee joint [1]. Recent orthopaedic trends portray a shift away from basic tibiofemoral geometry towards designs which better replicate natural knee kinematics by adding constraint to the medial condyle and decreasing constraint on the lateral condyle [2]. A recent design concept has paired this theory with the concept of guided kinematic motion throughout the flexion range [3]. The purpose of this study was to validate the kinematic pattern of motion of the surface-guided knee concept through in vitro, mechanical testing.

Methods

Prototypes of the surface-guided knee implant were manufactured using cobalt chromium alloy (femoral component) and ultra-high molecular weight polyethylene (tibial component). The prototypes were installed in a force-controlled knee wear simulator (AMTI, Watertown, MA) to assess kinematic behavior of the tibiofemoral articulation (Figure 1). Axial joint load and knee flexion experienced during lunging and squatting exercises were extracted from literature and used as the primary inputs for the test. Anteroposterior and internal-external rotation of the implant components were left unconstrained so as to be passively driven by the tibiofemoral surface geometry. One hundred cycles of each exercise were performed on the simulator at 0.33 Hz using diluted bovine calf serum as the articular surface lubricant. Component motion and reaction force outputs were collected from the knee simulator and compared against the kinematic targets of the design in order to validate the surface-guided knee concept.