header advert
Results 1 - 6 of 6
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 49 - 49
1 Mar 2021
Pasic N Degen R Burkhart T
Full Access

Hip arthroscopy rates continue to increase. As a result, there is growing interest in capsular management techniques. Without careful preservation and surgical techniques, failure of the repair result in capsular deficiency, contributing to iatrogenic instability and persistent post-operative pain. In this setting, capsular reconstruction may be indicated, however there is a paucity of objective evidence comparing surgical techniques to identify the optimal method. Therefore, the objective of this study was to evaluate the biomechanical effect of capsulectomy and two different capsular reconstruction techniques (iliotibial band [ITB] autograft and Achilles tendon allograft) on hip joint kinematics in both rotation and abduction/adduction.

Eight paired fresh-frozen hemi-pelvises were dissected of all overlying soft tissue, with the exception of the hip joint capsule. The femur was potted and attached to a load cell connected to a joint-motion simulator, while the pelvis was secured to a custom-designed fixture allowing adjustment of the flexion-extension arc. Optotrak markers were rigidly attached to the femur and pelvis to track motion of the femoral head with respect to the acetabulum. Pairs were divided into ITB or Achilles capsular reconstruction. After specimen preparation, three conditions were tested: (1) intact, (2) after capsulectomy, and (3) capsular reconstruction (ITB or Achilles). All conditions were tested in 0°, 45°, and 90° of flexion. Internal rotation (IR) and external rotation (ER) as well abduction (ABD) and adduction (ADD) moments of 3 N·m were applied to the femur via the load cell at each position. Rotational range of motion and joint kinematics were recorded.

When a rotational force was applied the total magnitude of internal/external rotation was significantly affected by the condition of the capsule, independent of the type of reconstruction that was performed (p=0.001). The internal/external rotation increased significantly by approximately 8° following the capsulectomy (p<0.001) and this was not resolved by either of the reconstructions; there remained a significant difference between the intact and reconstruction conditions (p=0.035). The total anterior/posterior translation was significantly affected by the condition of the capsule (p=0.034). There was a significant increase from 6.7 (6.0) mm when the capsule was intact to 9.0 (6.7) mm following the capsulectomy (p=0.002). Both of the reconstructions (8.6 [5.6] mm) reduced the anterior/posterior translation closer to the intact state. There was no difference between the two reconstructions. When an abduction/adduction force was applied there was a significant increase in the medial-lateral translation between the intact and capsulectomy states (p=0.047).

Across all three flexion angles the integrity of the native hip capsule played a significant role in rotational stability, where capsulectomy significantly increased rotational ROM. Hip capsule reconstruction did not restore rotational stability and also increased rotational ROM compared to the intact state a statistically significant amount. However, hip capsule reconstruction restored coronal and sagittal plane stability to approach that of the native hip. There was no difference in stability between ITB and Achilles reconstructions across all testing conditions.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 28 - 28
1 Jul 2020
Burkhart T Baha P Getgood A Degen R
Full Access

While hip arthroscopy utilization continues to increase, capsular management remains a controversial topic. Therefore the purpose of this research was to investigate the biomechanical effect of capsulotomy and capsular repair techniques on hip joint kinematics in varying combinations of sagittal and coronal joint positions.

Eight fresh-frozen hemipelvises (4 left, 6 male) were dissected of all overlying soft tissue, with the exception of the hip joint capsule. The femur was potted and attached to a load cell, while the pelvis was secured to a custom-designed fixture allowing static alteration of the flexion/extension arc. Optotrak markers were rigidly attached to the femur and pelvis to track motion of the femoral head with respect to the acetabulum.

Following specimen preparation, seven conditions were tested: i) intact, ii) after portal placement (anterolateral and mid-anterior), iii) interportal capsulotomy (IPC) [35 mm in length], iv) IPC repair, v)T-capsulotomy [15 mm longitudinal incision], vi) partial T-repair (vertical limb), vii) full T-repair. All conditions were tested in 15° of extension (−15˚), 0°, 30°, 60° and 90° of flexion. Additionally, all flexion angles were tested in neutral, as well as maximum abduction and adduction, resulting in 15 testing positions. 3Nm internal and external rotation moments were manually applied to the femur via the load cell at each position. Rotational range of motion and joint kinematics were recorded.

IPC and T-capsulotomies increased rotational ROM and mediolateral (ML) joint translation in several different joint configurations, most notably from 0–30˚ in neutral abduction/adduction. Complete capsular repair restored near native joint kinematics, with no significant differences between any complete capsular repair groups and the intact state, regardless of joint position. An unrepaired IPC resulted in increased rotational ROM, but no other adverse translational kinematics. However, an unrepaired or partially repaired T-capsulotomy resulted in increased rotational ROM and ML translation.

The results of this study show that complete capsular repair following interportal or T-capsulotomy adequately restores rotational ROM and joint translation to near intact levels. Where feasible, complete capsular closure should be performed, especially following T-capsulotomy. However, further clinical evaluation is required to determine if adverse kinematics of an unrepaired capsule are associated with patient reported outcomes.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 35 - 35
1 Jul 2020
Akindolire J Ndoja S Lawendy A Lanting B Degen R
Full Access

Closed ankle fractures have been reported to account for 10% off all fractures presenting to the Emergency Department. Many of these injuries require acute surgical management either via direct admission or through defined outpatient surgical pathways. While both methods have been shown to be safe, few studies have examined the cost effectiveness of each clinical scenario. The purpose of this study is to compare cost and resource utilization associated with inpatient and outpatient ankle fracture surgery at a Canadian academic institution.

This is a retrospective chart review of patients who underwent acute ankle fracture surgery at London Health Sciences Centre between 2016 and 2018. Thirty patients who underwent inpatient ankle surgery for closed, isolated ankle fractures at University Hospital were compared to 30 consecutive patients who underwent outpatient ankle surgery for similar fractures at Victoria hospital. Data pertaining to age at time of surgery, sex, BMI, fracture type, operating/recovery room time, and length of hospital stay were collected. All emergency room visits, readmissions and complications within 30 days of surgery were also recorded.

Inpatient and outpatient cohorts were similar with respect to average age (48 vs. 44, P=0.326) and body mass index (29.8 vs. 29.1, P=0.741). There was a greater proportion of patients with an American Society of Anesthesia (ASA) Classification of 3 or greater in the inpatient surgery group (48% vs. 23%). The inpatient group spent an average of 1.2 days in hospital while waiting for surgery and a average of 72 hours in hospital for their entire surgical encounter. The outpatient group spent an average of eight days (at home) waiting for surgery while spending an average of 7.4 hours in hospital during their entire surgical encounter. Outpatient ankle fracture surgery was associated with a cost savings of 35.9% in comparison to inpatient ankle fracture surgery (P < 0 .001). There were no significant differences in the rates of emergency room visits, readmissions, or complications between cohorts.

Preliminary findings suggest that outpatient ankle fracture surgery is appropriate for most patients, requires less hospital resources and is associated with similar rates of readmission and complications as inpatient surgery. An established outpatient surgical pathway may offer significant cost savings in the treatment of the common closed ankle fracture that requires surgical intervention.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 17 - 17
1 Dec 2016
Degen R Nawabi D Fields K McLawhorn A Ranawat A Sink E Kelly B
Full Access

The outcomes of hip arthroscopy in the treatment of dysplasia are variable. Historically, arthroscopic treatment of severe dysplasia (lateral center-edge angle [LCEA] < 18°) resulted in poor outcomes and iatrogenic instability. However, in milder forms of dysplasia, favorable outcomes have been reported. The purpose of this study was to compare outcomes following hip arthroscopy for femorocetabular impingement (FAI) in borderline dysplastic (BD) patients compared with a control group of non-dysplastic patients.

Between March 2009 and July 2012, a BD group (LCEA 18°–25°) of 46 patients (55 hips) was identified. An age and sex-matched control group of 131 patients (152 hips) was also identified (LCEA 25°–40°). Patient-reported outcome scores, including the Modified Harris Hip Score (mHHS), the Hip Outcome Score-Activity of Daily Living (HOS-ADL), the Sport-specific Subscale (HOS-SSS), and the International Hip Outcome Tool (iHOT-33), were collected pre-operatively, at 1, and 2 years.

The mean LCEA was 22.4 ± 2.0° (range, 18.4°–24.9°) in the BD group and 31.0 ± 3.1° (range, 25.4°–38.7°) in the control group (p<0.001). The mean preoperative alpha angle was 66.3 ± 9.9° in the BD group and 61.7 ± 13.0° in the control group (p=0.151). Cam decompression was performed in 98.2% and 99.3% of cases in the BD and control groups. Labral repair was performed in 69.1% and 75.3% of the BD and control groups respectively, with 100% of patients having a complete capsular closure performed in both groups. At a mean follow-up of 31.3 ± 7.6 months (range, 23.1–67.3) in unrevised patients and 21.6 ± 13.3 months (range 4.7–40.6) in revised patients, there was significant improvement (p<0.001) in all patient reported outcome scores in both groups. Multiple regression analysis did not identify any significant differences between groups. Importantly, female sex did not appear to be a predictor for inferior outcomes. Two patients (4.3%) in the BD group and six patients (4.6%) in the control group required revision arthroscopy during the study period.

Favorable outcomes can be expected following the treatment of impingement in borderline dysplastics when labral refixation and capsular closure are performed, with comparable outcomes to non-dysplastic patients. Further follow-up in larger cohorts is necessary to prove the durability and safety of hip arthroscopy in this challenging group and to further explore potential gender-related differences in outcome.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 22 - 22
1 Dec 2016
Degen R Garcia G Bui C McGarry M Lee T Dines J
Full Access

Acute Hill-Sachs (HS) reduction represents a potential alternative method to remplissage for the treatment of an engaging HS lesion. The purpose of this study is to biomechanically compare the stabilising effects of a acute HS reduction technique and remplissage in a complex instability model.

This was a comparative cadaveric study of 6 shoulders. For the acute HS lesion, a unique model was used to create a 30% defect, compressing the subchondral bone while preserving the articular surface in a more anatomic fashion. In addition, a 15% glenoid defect was made in all specimens. The HS lesion was reduced through a lateral cortical window with a bone tamp, and the subchondral void was filled with Quickset (Arthrex) bone cement to prevent plastic deformation. Five scenarios were tested; intact specimen, bipolar lesion, Bankart repair, remplissage with Bankart repair and HS reduction technique with Bankart repair. Translation, kinematics and dislocation events were recorded.

For all 6 specimens no dislocations occurred after either remplissage or the reduction technique. At 90 degrees of abduction and external rotation (ABER), anterior-inferior translation was 11.1 mm (SD 0.9) for the bipolar lesion. This was significantly reduced following both remplissage (5.1±0.7mm; p<0.001) and HS reduction (4.4±0.3mm; p<0.001). For anterior-inferior translation there was no significant difference in translation between the reduction technique and remplissage (p=0.91). At 90 degrees of ABER, the intact specimens average joint stiffness was 7.0±1.0N/mm, which was not significantly different from the remplissage (7.8±0.9 N/mm; p=0.9) and reduction technique (9.1±0.6 N/mm; p=0.50). Compared with an isolated Bankart repair, the average external rotation loss after also performing a remplissage procedure was 4.3±3.5 deg (p=0.65), while average ER loss following HS reduction was 1.1±3.3 deg (p=0.99). There was no significant difference in external rotation between remplissage and the reduction technique (p=0.83).

Similar joint stability was conferred following both procedures, though remplissage had 3.2-degree loss of ER in comparison. While not statistically significant, even slight ER loss may be clinically detrimental in overhead athletes. Overall, the acute reduction technique is a more anatomic alternative to the remplissage procedure with similar ability to prevent dislocation in a biomechanical model, making it a viable treatment option for engaging Hill-Sachs lesions.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 16 - 16
1 Nov 2016
Degen R Carbone A Carballo C Zong J Chen T Lebaschi A Ying L Deng X Rodeo S
Full Access

Bone marrow concentrates are being used to augment soft tissue healing. However, only 0.01% of these cells meet the criteria of a mesenchymal stem cell (MSC), which likely accounts for the variability in reported results. Previous studies using an established rat rotator cuff repair model have demonstrated that bone marrow-derived MSCs had no effect on healing. In this study we evaluated the effect of purified human MSCs on rotator cuff healing in an athymic rat model. Hypothesis: Purified human MSCs added to the repair site will improve biomechanical strength and fibrocartilage formation of the healing tendon.

Fifty-two athymic rats underwent unilateral detachment and repair of the supraspinatus tendon with either fibrin glue (control) or fibrin glue with 106 hMSCs (experimental) applied at the repair site. Flow cytometry verified the stem cell phenotype of the cells as CD73+, CD90+, CD105+, CD14-, CD34- and CD45-. Rats were sacrificed at 2 and 4 weeks, with 10 used for biomechanical testing and 3 for histologic analysis from each group.

Biomechanical testing revealed a significant increase in failure load (11.5±2.4N vs. 8.5±2.4N, p=0.002) and stiffness (7.1±1.2 N/mm vs. 5.7±2.1 N/mm, p0.17).

These data demonstrate the potential for stem cells to augment tendon healing. This is the first study to use purified stem cells, rather than simple bone marrow concentrate. In the future, cell sorting techniques and culture expansion could be used to select and expand the small population of true stem cells in bone marrow. Furthermore, healing could potentially be improved with repeat cell injection at an additional post-operative time point.