header advert
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 35 - 35
1 Feb 2021
Hall T van Arkel R Cegla F
Full Access

Introduction & Aims

In other medical fields, smart implantable devices are enabling decentralised monitoring of patients and early detection of disease. Despite research-focused smart orthopaedic implants dating back to the 1980s, such implants have not been adopted into regular clinical practice. The hardware footprint and commercial cost of components for sensing, powering, processing, and communicating are too large for mass-market use. However, a low-cost, minimal-modification solution that could detect loosening and infection would have considerable benefits for both patients and healthcare providers. This proof-of-concept study aimed to determine if loosening/infection data could be monitored with only two components inside an implant: a single-element sensor and simple communication element.

Methods

The sensor and coil were embedded onto a representative cemented total knee replacement. The implant was then cemented onto synthetic bone using polymethylmethacrylate (PMMA). Wireless measurements for loosening and infection were then made across different thicknesses of porcine tissue to characterise the sensor's accuracy for a range of implantation depths. Loosening was simulated by taking measurements before and after compromising the implant-cement interface, with fluid influx simulated with phosphate-buffered saline solution. Elevated temperature was used as a proxy for infection, with the sensor calibrated wirelessly through 5 mm of porcine tissue across a temperature range of 26–40°C.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 107 - 107
1 Jan 2016
Darton H Cegla F Vaidyanathan R Jeffers J
Full Access

Objectives

Implant loosening is the most common reason for revision of total or partial knee replacement, but the patient complains of pain-not a loose implant. It would be a useful diagnostic tool to interrogate the implant to ascertain whether it remains well fixed or not, thus either confirming or eliminating this mode of failure. For such technology to be adopted by manufacturers, it must be extremely low cost and simple to build into an implant. We aim to develop a sensor that meets these requirements and, when embedded in an implant, can provide information on its fixation to the underlying bone. We have previously proven that, through impedance analysis of passive piezoelectric sensors, it is possible for such sensors to determine the cured state of cement with good correlation (0.7) to a surgeon's judgement (Darton et al, 2014). In this study we now look at how the impedance trances of the sensors can be interpreted to distinguish between tibial trays that are securely cemented in sawbone blocks and those with no cement in loose fitting sawbone blocks.

Method

Small piezoelectric sensors (12 mm diameter, 0.6 mm thickness) were attached using ethyl cyanoacrylate to the top of a small metal tibial tray analogue and wired to an Impedance Analyzer (AEA Technology Inc). The sensor was swept with an alternating current between 100KHz and 400KHz. Three readings were taken using a custom-built code in MATLAB and an average impedance trace was calculated. A pre-calibrated servo-mechanical testing machine (Instron) was used to carry out a pull-out test of the tray from the sawbone block. The force required to completely disengage the tray was recorded. The same tibial tray was then cemented to the same sawbone block using PMMA. Once cured, the same impedance readings were taken before a pull out test was performed on the cemented case. This was repeated on 6 different sawbone blocks

The impedance plots were differentiated to exaggerate the jagged nature of the impedance trace, representative of multiple modes of vibration following which the mean of their differential values was calculated. The average pull out force for cemented trays was approximately 20 times greater than the un-cemented.