header advert
Results 1 - 14 of 14
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_7 | Pages 14 - 14
1 May 2018
McMenemy L Edwards D Bull A Clasper J
Full Access

This work examines the Upper limb (UL) blast-mediated traumatic amputation (TA) significance from recent operations in Afghanistan. It is hypothesized that the presence of an UL amputation at any level is an independent predictor of torso injury.

A joint theatre trauma registry search was performed to determine the number of British casualties with TA and their associated injuries.

UL TA accounted for 15.7% of all amputations; distributed: shoulder disarticulation 2.5%, trans-humeral 30%, elbow disarticulation 10%, trans-radial 20% and hand 37.5%. The presence of an UL amputation was more likely in dismounted casualties (P=0.015) and is a predictor of an increased number of total body regions injured and thoracic injuries (P 0.001 and P 0.026 respectively). An increased Injury Severity Score (ISS) was seen in patients with multiple amputations involving the UL (UL TA present ISS=30, no UL TA ISS=21; P=0.000) and the ISS was not significantly different whether mounted or dismounted (P=0.806).

The presence of an upper limb amputation at any level should insight in the receiving clinician a high index of suspicion of concomitant internal injury; especially thoracic injury. Therefore with regards to blast mediated TA the injury patterns observed reflect a primary and tertiary blast mechanism of injury.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_7 | Pages 21 - 21
1 May 2018
Edwards D Rosenberg N Karunaratne A Clasper J Bull A
Full Access

Electron Microscopy and Synchrotron analysis of Heterotopic Ossification (HO) from blast-related amputees' has shown that HO is bone with a disorganised structure and altered remodelling. This research performs mechanical testing of HO to understand its biomechanical properties in an attempt to create an accurate model to predict its morphological appearance. The hypothesis of this work is that HO is mechanically mediated in its formation.

Synchrotron mechanical analysis of HO samples was performed to measure Young's modulus, ultimate strength and density distribution. A novel algorithm based on Wolf's law was implemented in a Finite Element (FE) analysis model of HO to take into account the differing mechanical and biological properties measured and the presence of HO outside the skeletal system.

An HO modeling factor, which considers boundary conditions, and regulates recruitment of the soft tissue into bone formation, results in a re-creatable formation of HO within the soft tissues, comparable to the appearance of HO seen in military amputees. The results and model demonstrates that certain types of HO are under the control of endogenous and exogenous mechanical stimulus. HO can thus be mechanically exploited in the casualty management and rehabilitation process to achieve better clinical outcomes.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_7 | Pages 20 - 20
1 May 2018
Bonner T Masouros S Newell N Ramasamy A Hill A West A Clasper J Bull A
Full Access

The lower limbs of vehicle occupants are vulnerable to severe injuries during under vehicle explosions. Understanding the injury mechanism and causality of injury severity could aid in developing better protection. Therefore, we tested three different knee positions in standing occupants (standing, knee in hyper-extension, knee flexed at 20˚) of a simulated under‐vehicle explosion using cadaveric limbs in a traumatic blast injury simulator; the hypothesis was that occupant posture would affect injury severity.

Skeletal injuries were minimal in the cadaveric limbs with the knees flexed at 20˚. Severe, impairing injuries were observed in the foot of standing and hyper‐extended specimens. Strain gauge measurements taken from the lateral calcaneus in the standing and hyper-extended positions were more than double the strain found in specimens with the knee flexed position. The results in this study demonstrate that a vehicle occupant whose posture incorporates knee flexion at the time of an under‐vehicle explosion is likely to reduce the severity of lower limb injuries, when compared to a knee extended position.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_8 | Pages 6 - 6
1 Jun 2015
Edwards D McMenemy L Stapley S Clasper J Bull A
Full Access

The explosive device has successfully been used by terrorists globally, with their effects extending beyond the resulting injuries. Suicide bombings, in particular, are being increasingly deployed due to the devastating effect of a combination of, high lethality and target accuracy. This aim of this study was to analyse the demographics and casualty figures of terrorist bombings worldwide. Analysis of the Global Terrorism Database and a PubMed search (keywords “terrorist”, and/or “suicide”, and/or “bombing”) from 1970 to date was performed. Of 58,095 reported terrorist explosions worldwide, 5.08% were suicide bombings. Incidents per year is increasing (P<0.01). PubMed identified 41 publications reporting 167 incidents. Mean casualty statistics per incidents was 1.14 deaths and 3.45 wounded from non-suicide incidents, and 10.16 and 24.16 from suicide bombings (p<0.05). The Middle East witnessed the most incidents (26.9%), with Europe ranked 4th in the number of terrorist related explosion (13.2%). Differing injury patterns were seen in open, confined and building collapse incidents. Terrorist bombings continue to be a threat and are increasing in the Middle East and Europe. Suicide bombings are becoming an increased threat with greater casualty figures per incident seen. This data assists in the planning of security, logistics, casualty evacuation and care.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_8 | Pages 5 - 5
1 Jun 2015
Edwards D Karunaratne A Forsberg J Davis T Clasper J Bull A
Full Access

Heterotopic ossification (HO) is the formation of lamellar bone in extra-skeletal soft tissues. Its exact pathogenic mechanism remains elusive. Previous studies demonstrate observation only of HO at the microscopic scale. This study uses scanning electron microscopy (SEM), Back-scatter electron (BSE) imaging and mechanical testing to detail the organic and non-organic elements of HO, compared to normal bone, to guide stem cell and bio-modelling research into HO. Samples analysed were 5 military blast related HO patients, 5 control cadaveric samples (age and sex matched). Samples were imaged using SEM, BSE and the I13 beam Synchrotron x-ray diffraction scanner using validated quantitative and qualitative techniques of measurement. Appearances seen in HO compared to normal bone were characterised by the presence of a hyper-vascular network and high lacunae (osteocyte) counts, two distinct zones of bone mineral density distribution, with a tendency for hypermineralisation with kurtosis of the grey scale plots (mineral content as a weight percentage of Ca2+ was calibrated to atomic weight of C, Al and HA). Direction of dependence and collagen orientation in HO suggest isotropic properties. This research demonstrates that HO is bone, however its characteristics suggest a high metabolic turnover and disorganised ultra-structure consistent with an inflammatory origin.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_8 | Pages 7 - 7
1 Jun 2015
Edwards D Clasper J Bull A
Full Access

Previous reports of the prevalence of Heterotopic Ossification (HO) in limbs from UK blast-related amputees from Afghanistan, is demonstrated to be 57.1%. With the end of UK military operations in Afghanistan in 2014 the aim of this study is establish the rate of HO, assess causality demographics and ascertain risk factors for the formation of HO during the entire period of operations in Afghanistan. Military databases, case notes and radiographs were scrutinised to quantify and qualify the prevalence and risk factors for the formation of HO. 256 servicemen sustained 398 military trauma related amputations. The overall prevalence of HO was 65.9%. Significant (p<0.05) risks identified for the formation of HO included a blast mechanism of injury, a zone of injury the same as the subsequent amputation, and an increased number of debridements prior to closure. Positive correlation existed between the number of amputations and the presence and grade of HO (p=0.04). HO presents clinical problems to military blast injury patient populations. This study demonstrates that both a blast mechanism of injury and an increased injury load are key factors in the increased prevalence of HO seen in military trauma.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_26 | Pages 3 - 3
1 Jun 2013
Singleton J Walker N Gibb I Bull A Clasper J
Full Access

Traumatic amputations (TAs) are amongst the most significant orthopaedic sequelae following IED strikes. Biomechanically, longer residual limb length confers better function. However, post-trauma definitive through knee amputation (TKA) remains controversial.

UK military casualties sustaining ≥1 major TA, 01/08/2008–01/08/2010 were identified using the UK JTTR and post mortem CT databases. All through- and below-knee TAs were termed ‘potential TKAs’ (p-TKAs); hypothetical candidates for definitive TKA. We hypothesised that traumatic TKAs were more common than previously reported (4.5% of lower limb TAs) and a significant cohort of blast injuries exist suitable for definitive TKA.

146 cases (75 survivors, 71 fatalities) sustained 271 TAs (235 lower limb). TKA rate was 34/235 (14.2%). 63/130 survivor TAs and 66/140 fatality TAs merited analysis as p-TKAs. Detailed pathoanatomy was only available for fatality p-TKAs, for whom definitive TKA would have been proximal to the zone of injury (ZOI) in only 3/66 cases.

Blast-mediated traumatic TKAs are significantly more common than previously reported (p=0.0118). Most lower limb TAs are skeletally amenable to definitive TKA. Maximising stump length for function incurs the risks of definitive amputation within the original ZOI (including infection and heterotopic ossification) but proximal extent of blast soft tissue injury commonly makes this unavoidable.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_26 | Pages 16 - 16
1 Jun 2013
Bonner T Newell N Pullen A Bull A Masouros S
Full Access

Characterising material properties of ligaments is essential in the analysis of human morbidity and mortality of low-speed sporting accidents, high-speed road traffic accidents, and very high-speed battlefield injuries. At lower strain rates the elastic modulus and ultimate stress increase relative to strain rate, although very high strain rate testing has not been performed to date.

A porcine stifle joint lateral collateral ligament experiment was conducted that simulated the strain rates that occur during across a full range of different human knee ligament injuries. Tensile testing was performed at five strain rates, each an order of magnitude apart, in the range 100–104%/s. Seven specimens were tested at each rate. Three loading techniques were used: 1) screw-driven, 2) servo-hydraulic, 3) drop weight rig with tensile impact adaptor. Cross sectional area was measured by counting pixels on a standardized digital photograph of an alginate-paste cast of the mid-substance of each sample. Strain was measured directly from the mid-substance of each ligament by high-speed video extensometry. Stress-strain curves were produced and used to quantify the elastic modulus, failure strain and ultimate stress at each strain rate.

Across the range of strain rates, elastic modulus increased from 288 to 905 MPa (p< 0.05), and ultimate stress increased from 39.9 to 77.3 MPa (p< 0.05). A relationship between strain rate and both, elastic modulus and ultimate stress was identified. Strain rate sensitivity was not observed at very fast strain rates.

Ligament strength increases when strain rates are high. These data provide an explanation for very high strain rate failure of ligaments under extreme loading conditions, that can be considered protective of bone fracture, such as can be seen in traumatic through knee amputations in blast injuries.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_26 | Pages 4 - 4
1 Jun 2013
Walker N Singleton J Gibb I Bull A Clasper J
Full Access

The accepted mechanism of traumatic limb amputation following blast is initial bone disruption due to the shock wave, with amputation completed by the blast wind; survival is considered unlikely. The high survival rate of traumatic amputees following explosion, from the current conflict in Afghanistan, is at odds with previous work.

We reviewed extremity injuries, sustained in Afghanistan by UK military personnel, over a 2 year period. 774 British servicemen and women sustained AIS >1 injuries, 72.6% of whom survived. No significant difference was found in the survival rates following explosive blast or gunshot (p>0.05).

169 casualties (21.8%) sustained 263 lower limb and 74 upper limb traumatic amputations. Amputations were more common in the lower than the upper limbs and more common in the extremity proximal bone. Bilateral lower limb amputations were more common than a unilateral lower limb amputation. The majority (99%) of major amputations were sustained as a result of explosion. 46.3% (74) of those who sustained a major amputation following explosion survived.

Rates of fatalities caused by explosion, or by small arms are not statistically different. Blast-mediated amputations are not universally fatal, and a significant number were through joint, calling into question previously proposed mechanisms.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 56 - 56
1 Jan 2013
Ramasamy A Hill A Masouros S Gibb I Phillip R Bull A Clasper J
Full Access

The conflict in Afghanistan has been epitomised by the emergence of the Improvised Explosive Device(IEDs). Improvements in medical treatments have resulted in increasing numbers of casualties surviving with complex lower extremity injuries. To date, there has been no analysis of foot and ankle blast injuries as a result of IEDs. Therefore the aims of this study are to firstly report the pattern of injury and secondly determine which factors were associated with a poor clinical outcome in order to focus future research.

Using a prospective trauma registry, UK Service Personnel who sustained lower leg injuries following an under-vehicle explosion between Jan 2006 and Dec 2008 were identified. Patient demographics, injury severity, the nature of lower limb injury and clinical management was recorded. Clinical endpoints were determined by (i)need for amputation and (ii)need for ongoing clinical output at mean 33.0 months follow-up.

63 UK Service Personnel (89 injured limbs) were identified with lower leg injuries from explosion. 50% of casualties sustained multi-segmental injuries to the foot and ankle complex. 26(29%) limbs required amputation, with six amputated for chronic pain 18 months following injury. Regression analysis revealed that hindfoot injuries, open fractures and vascular injuries were independent predictors of amputation.

Of the 69 limbs initially salvaged, the overall infection rate was 42%, osteomyelitis 11.6% and non-union rates was 21.7%. Symptomatic traumatic osteoarthritis was noted in 33.3% salvaged limbs. At final follow-up, 66(74%) of injured limbs had persisting symptoms related to their injury, with only 9(14%) fit to return to their pre-injury duties.

This study demonstrates that foot and ankle injuries from IEDs are frequently associated with a high amputation rate and poor clinical outcome. Although, not life-threatening, they remain a source of long-term morbidity in an active population. Primary prevention of these injuries remain key in reducing the injury burden.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 217 - 217
1 Sep 2012
Majed A Krekel P Charles B Neilssen R Reilly P Bull A Emery R
Full Access

Introduction

The reliability of currently available proximal humeral fracture classi?cation systems has been shown to be poor, giving rise to the question whether a more objective measure entails improved predictability of surgical outcome. This study aims to apply a novel software system to predict the functional range of motion of the glenohumeral joint after proximal humeral fracture.

Method

Using a validated system that simulates bone-determined range of motion of spheroidal joints such as the shoulder joint, we categorically analysed a consecutive series of 79 proximal humeral fractures. Morphological properties of the proximal humerus fractures were related to simulated bone-determined range of motion.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXII | Pages 27 - 27
1 Jul 2012
Ramasamy A Hill A Phillip R Bull A Clasper J
Full Access

Anti-vehicle mines (AV) and Improvised Explosive Devices (IEDs) remain the most prevalent threat to Coalition troops operating in Iraq and Afghanistan. Detonation of these devices results in rapid deflection of the vehicle floor resulting in severe injuries to calcaneus. Anecdotally referred to as a ‘deck-slap’ injury, there have been no studies evaluating the pattern of injury or the effect of these potentially devastating injuries since World War II. Therefore the aim of this study is to determine the pattern of injury, medical management and functional outcome of UK Service Personnel sustaining calcaneal injuries from under-vehicle explosions.

From Jan 2006 – Dec 2008, utilising a prospectively collected trauma registry (Joint Theatre Trauma Registry, JTTR), the records of all UK Service Personnel sustaining a fractured calcaneus from a vehicle explosion were identified for in depth review. For each patient, demographic data, New Injury Severity Score (NISS), and associated injuries were recorded. In addition, the pattern of calcaneal fracture, the method of stabilisation, local complications and need for amputation was noted. Functional recovery was related to the ability of the casualty to return to military duties.

Forty calcaneal fractures (30 patients) were identified in this study. Mean follow-up was 33.2 months. The median NISS was 17, with the lower extremity the most severely injured body region in 90% of cases. Nine (30%) had an associated spinal injury. The overall amputation rate was 45% (18/40); 11 limbs (28%) were amputated primarily, with a further 3 amputated on return to the UK. Four (10%) casualties required a delayed amputation for chronic pain (mean 19.5 months). Of the 29 calcaneal fractures salvaged at the field hospital, wound infection developed in 11 (38%). At final follow-up, only 2 (6%) were able to return to full military duty with 23 (76%) only fit for sedentary work or unfit any military duty.

Calcaneal injuries following under-vehicle explosions are commonly associated with significant polytrauma, of which the lower limb injury is the most severe. Spinal injuries were frequently associated with this injury pattern and it is recommended that radiological evaluation of the spine be performed on all patients presenting with calcaneal injuries from this injury mechanism. The severity of the hindfoot injury witnessed is reflected by the high infection rate and amputation rate seen in this cohort of patients. Given the high physical demands of a young, active military population, only a small proportion of casualties were able to return to pre-injury duties. We believe that the key to the reduction in the injury burden to the soldier lies in the primary prevention of this injury. Work is currently on going to develop experimental and numerical models of this injury in order to drive future mitigation strategies.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IV | Pages 135 - 135
1 Mar 2012
McDermott I Lie D Edwards A Bull A Amis A
Full Access

This paper reports a series of comparative tests in-vitro that examined how lateral meniscectomy and meniscal allografting affected tibio-femoral joint contact pressures. 8 Cadaver knees (age range 81 – 98 years) were loaded in axial compression in an Instron materials testing machine up to 700N for 10 seconds and pressure maps obtained from the lateral compartment using Fuji Prescale film inserted below the meniscus. This was repeated after meniscectomy, then after meniscal allografting with fixation by a bone plug for the insertional ligaments, plus peripheral sutures. Finally, the pressure when the allograft was secured by peripheral sutures alone was measured.

Meniscectomy caused a significant increase in peak contact pressures (p=0.0002). Both of the reconstructive methods reduced the peak contact pressures significantly below that of the meniscectomised knee (p=0.0029 with bone block; p=0.0199 with sutures alone). A significant difference was not found between the peak contact pressures after the reconstructions and that of the intact knee (p=0.1721 with bone block; p=0.0910 with sutures alone). The peak pressures increased slightly when the allografts were converted from bone block to suture-only fixation (p=0.0349).

The principal finding was that both of the meniscal allograft insertion techniques reduced the peak contact pressure significantly below that of the meniscectomised knee, so that it did not then differ significantly from the peak contact pressure in the intact knee. When the two fixation methods were compared, the loss of the bone plug attachment caused a small increase in peak pressure.

This study suggests that meniscal allografting should have a chondroprotective effect and that there is a small advantage from adding bony fixation to suture fixation.


The posterior drawer is a commonly used test to diagnose an isolated PCL injury and combined PCL and PLC injury. Our aim was to analyse the effect of tibial internal and external rotation during the posterior drawer in isolated PCL and combined PCL and PLC deficient cadaver knee.

Ten fresh frozen and overnight-thawed cadaver knees with an average age of 76 years and without any signs of previous knee injury were used. A custom made wooden rig with electromagnetic tracking system was used to measure the knee kinematics. Each knee was tested with posterior and anterior drawer forces of 80N and posterior drawer with simultaneous external or internal rotational torque of 5Nm. Each knee was tested in intact condition, after PCL resection and after PLC (lateral collateral ligament and popliteus tendon) resection. Intact condition of each knees served as its own control. One-tailed paired student's t test with Bonferroni correction was used.

The posterior tibial displacement in a PCL deficient knee when a simultaneous external rotation torque was applied during posterior drawer at 90° flexion was not significantly different from the posterior tibial displacement with 80N posterior drawer in intact knee (p=0.22). In a PCL deficient knee posterior tibial displacement with simultaneous internal rotation torque and posterior drawer at 90° flexion was not significantly different from tibial displacement with isolated posterior drawer. In PCL and PLC deficient knee at extension with simultaneous internal rotational torque and posterior drawer force the posterior tibial displacement was not significantly different from an isolated PCL deficient condition (p=0.54).

We conclude that posterior drawer in an isolated PCL deficient knee could result in negative test if tibia is held in external rotation. During a recurvatum test for PCL and PLC deficient knee, tibial internal rotation in extension results in reduced posterior laxity.