header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

Consequence of proximal humeral fracture morphology on glenohumeral range of motion

British Orthopaedic Association/Irish Orthopaedic Association Annual Congress (BOA/IOA)



Abstract

Introduction

The reliability of currently available proximal humeral fracture classi?cation systems has been shown to be poor, giving rise to the question whether a more objective measure entails improved predictability of surgical outcome. This study aims to apply a novel software system to predict the functional range of motion of the glenohumeral joint after proximal humeral fracture.

Method

Using a validated system that simulates bone-determined range of motion of spheroidal joints such as the shoulder joint, we categorically analysed a consecutive series of 79 proximal humeral fractures. Morphological properties of the proximal humerus fractures were related to simulated bone-determined range of motion.

Results

The interobserver variability of range of motion assessment using our system showed excellent agreement (0.798). Maximal glenohumeral abduction and forward ?exion of intra-articular fractures were 34.3±6.6 SE and 60.7±12.4 SE degrees. For fractures with a displaced greater tuberosity abduction was 75.0±5.9 SE and forward flexion was 118.2±4.9 SE degrees, whilst for fractures where both tuberosities had been displaced they were 60.0±10.9 SE and 69.6±13.4 SE degrees respectively. For non-intra articular fractures without displaced tuberosities movements were 89.3±3.3 SE and 122.6±3.4 SE degrees respectively. The head inclination angle was positively correlated with maximum abduction (0.362, p = 0.014). Offset was negatively correlated with maximum abduction, but not statistically signi?cant (0.834, p = 0.087).

Conclusion

This study has demonstrated a novel and effective tool allowing the prediction of functional motion after proximal humeral fracture based on bone anatomy. The study demonstrates that intra-articular fractures generally have the worst prognosis with regards to bone-determined ROM. Fractures with displaced tuberosities show more motion limitations for abduction than for forward ?exion. A reduced head inclination angle is a strong predictor of limited bone-determined range of motion for all types of proximal humerus fractures.